GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,603)
Document type
  • Articles  (1,603)
Source
Years
Topic
  • 11
    Publication Date: 2018-04-04
    Description: We present a novel reconstruction algorithm based on a general cone-beam CT forward model, which is capable of incorporating the blur and noise correlations that are exhibited in flat-panel CBCT measurement data. Specifically, the proposed model may include scintillator blur, focal-spot blur, and noise correlations due to light spread in the scintillator. The proposed algorithm (GPL-BC) uses a Gaussian Penalized-Likelihood objective function, which incorporates models of blur and correlated noise. In a simulation study, GPL-BC was able to achieve lower bias as compared with deblurring followed by FDK as well as a model-based reconstruction method without integration of measurement blur. In the same study, GPL-BC was able to achieve better line-pair reconstructions (in terms of segmented-image accuracy) as compared with deblurring followed by FDK, a model-based method without blur, and a model-based method with blur but not noise correlations. A prototype extremities quantitative cone-beam CT test-bench was used to image a physical sample of human trabecular bone. These data were used to compare reconstructions using the proposed method and model-based methods without blur and/or correlation to a registered $mu $ CT image of the same bone sample. The GPL-BC reconstructions resulted in more accurate trabecular bone segmentation. Multiple trabecular bone metrics, including trabecular thickness (Tb.Th.) were computed for each reconstruction approach as well as the $mu $ CT volume. The GPL-BC reconstruction provided the most accurate Tb.Th. measurement, 0.255 mm, as compared with the $mu $ CT derived value of 0.193 mm, followed by the GPL-B reconstruction, the GPL-I reconstruction, and then the FDK reconstruction (0.271 mm, 0.309 mm, and 0.335 mm, respect- vely).
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-04-04
    Description: We are developing a 1-mm 3 resolution, high-sensitivity positron emission tomography (PET) system for loco-regional cancer imaging. The completed system will comprise two $16.5times 10$ cm detector panels and contain 4 608 position sensitive avalanche photodiodes (PSAPDs) coupled to arrays of $0.9times 0.9times 1$ mm 3 LYSO crystal elements for a total of 294 912 crystal elements. For the first time, this paper summarizes the design and reports the performance of a significant portion of the final clinical PET system, comprising 1 536 PSAPDs, 98 304 crystal elements, and an active field-of-view (FOV) of $16.5times3.3$ cm. The sub-system performance parameters, such as energy, time, and spatial resolutions are predictive of the performance of the final system due to the modular design. Analysis of the multiplexed crystal flood histograms shows 84% of the crystal elements have〉99% crystal identification accuracy. The 511 keV photopeak energy resolution was 11.34±0.06% full-width half maximum (FWHM), and coincidence timing resolution was 13.92 ± 0.01 ns FWHM at 511 keV. The spatial resolution was measured using maximum likelihood expectation maximization reconstruction of a grid of point sources suspended in warm background. The averaged resolution over the central 6 cm of the FOV is 1.01 ± 0.13 mm in the X-direction, 1.84 ± 0.20 mm in the Y-direction, and 0.84 ± 0.11 mm in the Z-direction. Quantitative analysis of acquired micro-Derenzo phantom images shows better than 1.2 mm resolution at the center of the FOV, with subsequent resolution degradation in the y-direction toward the edge of the FOV caused by limited angle tomography effec- s.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: Computer-aided diagnosis (CAD) of retinal pathologies is a current active area in medical image analysis. Due to the increasing use of retinal optical coherence tomography (OCT) imaging technique, a CAD system in retinal OCT is essential to assist ophthalmologist in the early detection of ocular diseases and treatment monitoring. This paper presents a novel CAD system based on a multi-scale convolutional mixture of expert (MCME) ensemble model to identify normal retina, and two common types of macular pathologies, namely, dry age-related macular degeneration, and diabetic macular edema. The proposed MCME modular model is a data-driven neural structure, which employs a new cost function for discriminative and fast learning of image features by applying convolutional neural networks on multiple-scale sub-images. MCME maximizes the likelihood function of the training data set and ground truth by considering a mixture model, which tries also to model the joint interaction between individual experts by using a correlated multivariate component for each expert module instead of only modeling the marginal distributions by independent Gaussian components. Two different macular OCT data sets from Heidelberg devices were considered for the evaluation of the method, i.e., a local data set of OCT images of 148 subjects and a public data set of 45 OCT acquisitions. For comparison purpose, we performed a wide range of classification measures to compare the results with the best configurations of the MCME method. With the MCME model of four scale-dependent experts, the precision rate of 98.86%, and the area under the receiver operating characteristic curve (AUC) of 0.9985 were obtained on average.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: Hyperpolarized MRI with 13 C-labelled compounds is an emerging clinical technique allowing in vivo metabolic processes to be characterized non-invasively. Accurate quantification of 13 C data, both for clinical and research purposes, typically relies on the use of region-of-interest analysis to detect and compare regions of altered metabolism. However, it is not clear how this should be determined from the five-dimensional data produced and most standard methodologies are unable to exploit the multidimensional nature of the data. Here we propose a solution to the novel problem of 13 C image segmentation using a hybrid Markov random field model with continuous fuzzy logic. The algorithm fully utilizes the multi-dimensional data format in order to classify each voxel into one of six distinct classes based on its metabolic characteristics. Bayesian priors fully incorporate spatial, temporal and ratiometric contextual information whilst image contrast from multiple spectral dimensions are considered concurrently by using an analogy from color image segmentation. Performance of the algorithm is demonstrated on in silico data, where the superiority of the approach over a reference thresholding method is consistently observed. Application to in vivo animal data from a pre-clinical subcutaneous tumor model illustrates the ability of the MRF algorithm to successfully detect tumor location whilst avoiding image artifacts. This work has the potential to assist the analysis of human hyperpolarized 13 C data in the future.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-04-04
    Description: We present a multi-scale approach of tumor modeling in order to predict its evolution during radiotherapy. Within this context we focus on three different scales of tumor modeling: microscopic (individual cells in a voxel), mesoscopic (population of cells in a voxel) and macroscopic (whole tumor), with transition interfaces between these three scales. At the cellular level, the description is based on phase transfer probabilities in the cellular cycle. At the mesoscopic scale we represent populations of cells according to different stages in a cell cycle. Finally, at the macroscopic scale, the tumor description is based on the use of FDG PET image voxels. These three scales exist naturally: biological data are collected at the macroscopic scale, but the pathological behavior of the tumor is based on an abnormal cell-cycle at the microscopic scale. On the other hand, the introduction of a mesoscopic scale is essential in order to reduce the gap between the two extreme, in terms of resolution, description levels. It also reduces the computational burden of simulating a large number of individual cells. As an application of the proposed multi-scale model, we simulate the effect of oxygen on tumor evolution during radiotherapy. Two consecutive FDG PET images of 17 rectal cancer patients undergoing radiotherapy are used to simulate the tumor evolution during treatment. The simulated results are compared with those obtained on a third FDG PET image acquired two weeks after the beginning of the treatment.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: Automated cell segmentation and tracking is essential for dynamic studies of cellular morphology, movement, and interactions as well as other cellular behaviors. However, accurate, automated, and easy-to-use cell segmentation remains a challenge, especially in cases of high cell densities, where discrete boundaries are not easily discernable. Here, we present a fully automated segmentation algorithm that iteratively segments cells based on the observed distribution of optical cell volumes measured by quantitative phase microscopy. By fitting these distributions to known probability density functions, we are able to converge on volumetric thresholds that enable valid segmentation cuts. Since each threshold is determined from the observed data itself, virtually no input is needed from the user. We demonstrate the effectiveness of this approach over time using six cell types that display a range of morphologies, and evaluate these cultures over a range of confluencies. Facile dynamic measures of cell mobility and function revealed unique cellular behaviors that relate to tissue origins, state of differentiation, and real-time signaling. These will improve our understanding of multicellular communication and organization.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: We present the first in vivo images of anisotropic conductivity distribution in the human head, measured at a frequency of approximately 10 Hz. We used magnetic resonance electrical impedance tomography techniques to encode phase changes caused by current flow within the head via two independent electrode pairs. These results were then combined with diffusion tensor imaging data to reconstruct full anisotropic conductivity distributions in 5-mm-thick slices of the brains of two participants. Conductivity values recovered in this paper were broadly consistent with literature values. We anticipate that this technique will be of use in many areas of neuroscience, most importantly in functional imaging via inverse electroencephalogram. Future studies will involve pulse sequence acceleration to maximize brain coverage and resolution.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-04-04
    Description: Inhomogeneities in the transmit radio frequency magnetic field ( ${text{B}}_{1}^{+}$ ) reduce the quality of magnetic resonance (MR) images. This quality can be improved by using high-permittivity pads that tailor the ${text{B}}_{1}^{+}$ fields. The design of an optimal pad is application-specific and not straightforward and would therefore benefit from a systematic optimization approach. In this paper, we propose such a method to efficiently design dielectric pads. To this end, a projection-based model order reduction technique is used that significantly decreases the dimension of the design problem. Subsequently, the resulting reduced-order model is incorporated in an optimization method in which a desired field in a region of interest can be set. The method is validated by designing a pad for imaging the cerebellum at 7 T. The optimal pad that is found is used in an MR measurement to demonstrate its effectiveness in improving the image quality.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-04-04
    Description: Robust and effective shape prior modeling from a set of training data remains a challenging task, since the shape variation is complicated, and shape models should preserve local details as well as handle shape noises. To address these challenges, a novel robust projective dictionary learning (RPDL) scheme is proposed in this paper. Specifically, the RPDL method integrates the dimension reduction and dictionary learning into a unified framework for shape prior modeling, which can not only learn a robust and representative dictionary with the energy preservation of the training data, but also reduce the dimensionality and computational cost via the subspace learning. In addition, the proposed RPDL algorithm is regularized by using the $ell _{1}$ norm to handle the outliers and noises, and is embedded in an online framework so that of memory and time efficiency. The proposed method is employed to model prostate shape prior for the application of magnetic resonance transrectal ultrasound registration. The experimental results demonstrate that our method provides more accurate and robust shape modeling than the state-of-the-art methods do. The proposed RPDL method is applicable for modeling other organs, and hence, a general solution for the problem of shape prior modeling.
    Print ISSN: 0278-0062
    Electronic ISSN: 1558-254X
    Topics: Medicine , Technology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...