GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2015-12-05
    Beschreibung: We investigate how uncertainties in seismic and density structure of the crust propagate to uncertainties in mantle density structure. The analysis is based on interpretation of residual upper-mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect of the crust from the observed satellite gravity field data (GOCE Direct release 3). Thus calculated residual mantle gravity anomalies are caused mainly by a heterogeneous density distribution in the upper mantle. Given a relatively small range of expected compositional density variations in the lithospheric mantle, knowledge on uncertainties associated with incomplete information on crustal structure is of utmost importance for progress in gravity modelling. Uncertainties in the residual upper-mantle gravity anomalies result chiefly from uncertainties in (i) seismic V P velocity–density conversion for the crust and (ii) uncertainties in the seismic crustal structure (thickness and average V P velocities of individual crustal layers, including the sedimentary cover). We examine the propagation of these uncertainties into determinations of lithospheric mantle density and analyse both sources of possible uncertainties by applying different velocity-to-density conversions and by introducing variations into the crustal structure which correspond to typical resolution of high-quality and low-quality seismic models. We apply our analysis to Siberia (the West Siberian Basin and the Siberian Craton) for which a new regional seismic crustal model, SibCrust, has recently become available. For the same region, we also compute upper-mantle gravity and density anomalies based on three global crustal models (CRUST 5.1, CRUST 2.0 and CRUST 1.0) and compare the results based on four different crustal models. A large uncertainty in the V P -to-density conversion may result in the uncertainty in lithospheric mantle density anomalies of ca. 0.02–0.03 g cm –3 (i.e. 0.5–1 per cent, which is comparable to compositional density anomalies expected for continental lithosphere mantle). Similar values of uncertainties may be caused by a 0.2 km s –1 error in average crustal V P velocities or by a 2 km uncertainty in the Moho depth. One of the largest uncertainties is caused by errors in thickness of the sedimentary layer, and a 2 km error leads to ca. 0.03 g cm –3 error in lithospheric mantle densities. Large deviations (locally ±10 km) of the Moho depth in global crustal models (CRUST 5.1, CRUST2.0 and CRUST1.0) from the high-resolution regional seismic model of the crust, SibCrust, may produce artefact residual mantle gravity anomalies of up to ±150 mGal locally, caused by large errors in crustal gravity corrections. These errors in gravity anomalies produce up to ca. 0.04 g cm –3 ( ca. 1.2 per cent) errors in density of the lithospheric mantle, which may well correspond to the amplitude of real density anomalies in the mantle. Our results demonstrate that gravity modelling alone cannot reliably constrain the crustal structure, including the Moho depth and thickness of sediments.
    Schlagwort(e): Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2015-11-19
    Beschreibung: Northern Attica in Greece is characterized by a set of north dipping, subparallel normal faults. These faults were considered to have low tectonic activity, based on historical earthquake reports, instrumental seismicity and slip rate estimates. This study presents new data for one of these faults, the Milesi Fault. We run GIS based geomorphological analyses on fault offset distribution, field mapping of postglacial fault scarps and ground penetrating radar profiling to image hangingwall deformation. The first palaeoseismological trenching in this part of Greece allowed obtaining direct data on slip rates and palaeoearthquakes. The trenching revealed downthrown and buried palaeosols, which were dated by radiocarbon. The results of our investigations show that the slip rates are higher than previously thought and that at least four palaeoearthquakes with magnitudes of around M 6.2 occurred during the last 4000–6000 yr. We calculate an average recurrence interval of 1000–1500 yr and a maximum throw rate of ~0.4–0.45 mm a –1 . Based on the new geological earthquake data we developed a seismic hazard scenario, which also incorporates geological site effects. Intensities up to IX must be expected for Northern Attica and the southeastern part of Evia. Earthquake environmental effects like liquefaction and mass movements are also likely to occur. This scenario is in contrast to the official Greek seismic hazard zonation that is based on historical records and assigns different hazard zones for municipalities that will experience the same intensity by earthquakes on the Milesi Fault. We show that the seismic hazard is likely underestimated in our study area and emphasize the need to incorporate geological information in such assessments.
    Schlagwort(e): Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2015-11-20
    Beschreibung: With the progress of mantle convection modelling over the last decade, it now becomes possible to solve for the dynamics of the interior flow and the surface tectonics to first order. We show here that tectonic data (like surface kinematics and seafloor age distribution) and mantle convection models with plate-like behaviour can in principle be combined to reconstruct mantle convection. We present a sequential data assimilation method, based on suboptimal schemes derived from the Kalman filter, where surface velocities and seafloor age maps are not used as boundary conditions for the flow, but as data to assimilate. Two stages (a forecast followed by an analysis) are repeated sequentially to take into account data observed at different times. Whenever observations are available, an analysis infers the most probable state of the mantle at this time, considering a prior guess (supplied by the forecast) and the new observations at hand, using the classical best linear unbiased estimate. Between two observation times, the evolution of the mantle is governed by the forward model of mantle convection. This method is applied to synthetic 2-D spherical annulus mantle cases to evaluate its efficiency. We compare the reference evolutions to the estimations obtained by data assimilation. Two parameters control the behaviour of the scheme: the time between two analyses, and the amplitude of noise in the synthetic observations. Our technique proves to be efficient in retrieving temperature field evolutions provided the time between two analyses is 10 Myr. If the amplitude of the a priori error on the observations is large (30 per cent), our method provides a better estimate of surface tectonics than the observations, taking advantage of the information within the physics of convection.
    Schlagwort(e): Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2015-10-22
    Beschreibung: The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (~1 mm yr –1 ) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ~5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ~50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ~13–15 m throw of this fault splay since the end of the Last Glacial Maximum (~18 ka), leading to a 0.7–0.8 mm yr –1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ~200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ~90–100 m depth. We therefore provide a minimal ~150–160 m estimate of the cumulative throw of the Piano di Pezza fault system in the investigated section. We further hypothesize that the onset of the Piano di Pezza fault activity may date back to the Middle Pleistocene (~0.5 Ma), so this is a quite young active normal fault if compared to other mature normal fault systems active since 2–3 Ma in this portion of the central Apennines.
    Schlagwort(e): Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2015-10-22
    Beschreibung: We present the first estimates of Southwest Indian Ridge (SWIR) plate motions at high temporal resolution during the Quaternary and Neogene based on nearly 5000 crossings of 21 magnetic reversals out to C6no (19.72 Ma) and the digitized traces of 17 fracture zones and transform faults. Our reconstructions of this slow-spreading mid-ocean ridge reveal several unexpected results with notable implications for regional and global plate reconstructions since 20 Ma. Extrapolations of seafloor opening distances to zero-age seafloor based on reconstructions of reversals C1n (0.78 Ma) through C3n.4 (5.2 Ma) reveal evidence for surprisingly large outward displacement of 5 ± 1 km west of 32°E, where motion between the Nubia and Antarctic plates occurs, but 2 ± 1 km east of 32°E, more typical of most mid-ocean ridges. Newly estimated SWIR seafloor spreading rates are up to 15 per cent slower everywhere along the ridge than previous estimates. Reconstructions of the numerous observations for times back to 11 Ma confirm the existence of the hypothesized Lwandle plate at high confidence level and indicate that the Lwandle plate's western and eastern boundaries respectively intersect the ridge near the Andrew Bain transform fault complex at 32°E and between ~45°E and 52°E, in accord with previous results. The Nubia–Antarctic, Lwandle–Antarctic and Somalia–Antarctic rotation sequences that best fit many magnetic reversal, fracture zone and transform fault crossings define previously unknown changes in the Neogene motions of all three plate pairs, consisting of ~20 per cent slowdowns in their spreading rates at 7.2 $^{+0.9 }_{ -1.4}$ Ma if we enforce a simultaneous change in motion everywhere along the SWIR and gradual 3°–7° anticlockwise rotations of the relative slip directions. We apply trans-dimensional Bayesian analysis to our noisy, best-fitting rotation sequences in order to estimate less-noisy rotation sequences suitable for use in future global plate reconstructions and geodynamic studies. Notably, our new Nubia–Antarctic reconstruction of C5n.2 (11.0 Ma) predicts 20 per cent less opening than do two previous estimates, with important implications for motion that is estimated between the Nubia and Somalia plates. A Nubia–Somalia rotation determined from our Nubia–Antarctic and Somalia–Antarctic plate rotations for C5n.2 (11.0 Ma) predicts cumulative opening of 45 ± 4 km (95 per cent uncertainty) across the northernmost East Africa rift since 11.0 Ma, 70 per cent less than a recent 129 ± 62 km opening estimate based on a now-superseded interpretation of Anomaly 5 along the western portion of the SWIR.
    Schlagwort(e): Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2015-10-31
    Beschreibung: The Gibraltar arc and surrounding areas are a complex tectonic region and its tectonic evolution since Miocene is still under debate. Knowledge of its lithospheric structure will help to understand the mechanisms that produced extension and westward motion of the Alboran domain, simultaneously with NW–SE compression driven by Africa–Europe plates convergence. We perform a P -wave receiver function analysis in which we analyse new data recorded at 83 permanent and temporary seismic broad-band stations located in the South of the Iberian peninsula. These data are stacked and combined with data from a previous study in northern Morocco to build maps of thickness and average v P / v S ratio for the crust, and cross-sections to image the lithospheric discontinuities beneath the Gibraltar arc, the Betic and Rif Ranges and their Iberian and Moroccan forelands. Crustal thickness values show strong lateral variations in the southern Iberia peninsula, ranging from ~19 to ~46 km. The Variscan foreland is characterized by a relatively flat Moho at ~31 km depth, and an average v P / v S ratio of ~1.72, similar to other Variscan terranes, which may indicate that part of the lower crustal orogenic root was lost. The thickest crust is found at the contact between the Alboran domain and the External Zones of the Betic Range, while crustal thinning is observed southeastern Iberia (down to 19 km) and in the Guadalquivir basin where the thinning at the Iberian paleomargin could be still preserved. In the cross-sections, we see a strong change between the eastern Betics, where the Iberian crust underthrusts and couples to the Alboran crust, and the western Betics, where the underthrusting Iberian crust becomes partially delaminated and enters into the mantle. The structures largely mirror those on the Moroccan side where a similar detachment was observed in northern Morocco. We attribute a relatively shallow strong negative-polarity discontinuity to the lithosphere-asthenosphere boundary. This means relatively thin lithosphere ranging from ~50 km thickness in southeastern Iberia and northeastern Morocco to ~90–100 km beneath the western Betics and the Rif, with abrupt changes of ~30 km under the central Betics and northern Morocco. Our observations support a geodynamic scenario where in western Betics oceanic subduction has developed into ongoing continental subduction/delamination while in eastern Betics this process is inactive.
    Schlagwort(e): Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2015-10-07
    Beschreibung: The elastic displacement and stress fields due to rectangular faults and opening-mode fractures within an anisotropic homogeneous half-space are derived in this paper. The solution is expressed in terms of the mathematically elegant and computationally powerful Stroh formalism and can be applied to the generally anisotropic half-space or a transversely isotropic half-space with any oriented isotropic plane. For any flat fault or opening-mode fracture of polygonal shape, one needs only to carry out a simple line integral from 0 to in order to express the fault-induced response. Numerical examples are presented to demonstrate the effect of the anisotropy and fault orientation on the internal and surface responses of the half-space. Our results prove that both rock anisotropy and fault orientation could dramatically change the fields in the domain and one needs to consider these properties as accurately as possible to be able to predict the response in the domain precisely. Anisotropy of the rock mass may alter the dominant displacement and stress components at observation points in the model domain as compared to the isotropic case.
    Schlagwort(e): Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2015-10-09
    Beschreibung: Shear deformation of partially molten rock in laboratory experiments causes the emergence of melt-enriched sheets (bands in cross-section) that are aligned at about 15°–20° to the shear plane. Deformation and deviatoric stress also cause the coherent alignment of pores at the grain scale. This leads to a melt-preferred orientation that may, in turn, give rise to an anisotropic permeability. Here we develop a simple, general model of anisotropic permeability in partially molten rocks. We use linearized analysis and nonlinear numerical solutions to investigate its behaviour under simple-shear deformation. In particular, we consider implications of the model for the emergence and angle of melt-rich bands. Anisotropic permeability affects the angle of bands and, in a certain parameter regime, it can give rise to low angles consistent with experiments. However, the conditions required for this regime have a narrow range and seem unlikely to be entirely met by experiments. Anisotropic permeability may nonetheless affect melt transport and the behaviour of partially molten rocks in Earth's mantle.
    Schlagwort(e): Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2015-10-09
    Beschreibung: Eastern Anatolia region between north–south colliding Arabian and Eurasian plates has no significant crustal root and shallow (upper) mantle flow beneath seems to be vertically supporting its high topography. It has a high surface heat flow and the underlying mantle is characterized by low seismic velocity zones. Using a mantle density/temperature variation field derived from P -wave seismic velocity, current shallow mantle flow and resultant dynamic topography of Eastern Anatolia and adjacent Arabian foreland and Caucasus areas were calculated along a vertical section. The section crosses the tectonic boundaries interrelated with slab bodies (high seismic velocity/cold regions) and the low velocity zones above the slabs. According to the modelling experiments, the surface topography of Eastern Anatolia seems to be supported by shallow mantle flow dynamics. On the other hand, residual topography for the region was calculated using high resolution crustal thickness data. Positive residual topography that suggests an undercompensated state of Eastern Anatolia is in concordance with the dynamic topography anomaly. The modelled local shallow mantle flow support due to the density contrast between hot (low velocity) zones and underlying cold slab bodies beneath the area may be the present-day snapshot of the mantle flow uplift in Eastern Anatolia presence of which was previously suggested.
    Schlagwort(e): Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2015-10-16
    Beschreibung: The large-scale geological evolution of the North Atlantic Realm during the past 450 Myr is largely understood, but crucial elements remain uncertain. These involve the Caledonian orogeny, the formation of the North Atlantic and accompanying igneous activity, and the present-day high topography surrounding the North Atlantic. Teleseismic receiver function interpretation in the Central Fjord Region of East Greenland recently suggested the presence of a fossil Caledonian subduction complex, including a slab of eclogitised mafic crust and an overlying wedge of serpentinised mantle peridotite. Here we further investigate this topic using inverse receiver functions modelling. The obtained velocity models are tested with regard to their consistency with the regional gravity field and topography. We find that the obtained receiver function model is generally consistent with gravity and isostasy. The western part of the section, with topography of 〉1000 m, is clearly supported by the 40-km-thick crust. The eastern part requires additional buoyancy as provided by the hydrated mantle wedge. The geometry, velocities and densities are consistent with interpretation of the lithospheric structure as a fossil subduction zone complex. The spatial relations with Caledonian structures suggest a Caledonian origin. The results indicate that topography is isostatically compensated by density variations within the lithosphere, and that significant dynamic topography is not required at the present-day.
    Schlagwort(e): Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...