GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (41,698)
  • 550 - Earth sciences  (19,122)
  • Chemical Engineering  (17,096)
Document type
Language
Years
  • 1
    Publication Date: 2014-10-04
    Description: Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Felix H -- Ghaderi, Adel -- Fink, Gerald R -- Stephanopoulos, Gregory -- R01 GM035010/GM/NIGMS NIH HHS/ -- R01-GM035010/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):71-5. doi: 10.1126/science.1257859. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. Whitehead Institute for Biomedical Research, Cambridge, MA, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA, USA. gfink@wi.mit.edu gregstep@mit.edu. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. gfink@wi.mit.edu gregstep@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278607" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Cation Transport Proteins/genetics ; Cell Culture Techniques ; Cell Membrane/metabolism ; Chemical Engineering ; *Drug Resistance, Fungal/genetics ; Ethanol/*metabolism/pharmacology ; Fermentation ; Genetic Engineering ; Glucose/metabolism ; Hydrogen-Ion Concentration ; Phosphates/*metabolism ; Potassium Compounds/*metabolism ; Proton Pumps/genetics ; Proton-Translocating ATPases/genetics ; Saccharomyces cerevisiae/drug effects/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics ; Up-Regulation ; Xylose/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-11-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Savage, Phillip E -- New York, N.Y. -- Science. 2012 Nov 23;338(6110):1039-40. doi: 10.1126/science.1224310.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA. psavage@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23180853" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Cell Culture Techniques ; Chemical Engineering ; Chlorophyta/*chemistry/growth & development ; *Hot Temperature ; *Hydrostatic Pressure ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Langer, Robert S -- Gura, Trisha -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1146. doi: 10.1126/science.346.6213.1146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Trisha Gura is a freelance writer who lives in Boston. For more on life and careers visit www.sciencecareers.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430772" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology ; *Career Choice ; Chemical Engineering ; *Entrepreneurship ; *Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-19
    Description: Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pakulska, Malgosia M -- Miersch, Shane -- Shoichet, Molly S -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):aac4750. doi: 10.1126/science.aac4750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ; Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989257" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Engineering ; Combinatorial Chemistry Techniques ; Delayed-Action Preparations/*chemistry ; Directed Molecular Evolution ; *Drug Design ; Humans ; Lactic Acid/*chemistry ; Microspheres ; Polyglycolic Acid/*chemistry ; Proteins/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Workshop on Plume-Lithosphere Interaction (Strasbourg, France 2000)
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: Fluid dynamical simulations were carried out in order to investigate the effect of the large-scale mantle flow field and the depth of the plume source on the structure of the Iceland plume through time. The time-dependent location and shape of the plume in the Earth's mantle was calculated in a global model and it was refined in the upper mantle using a 3D Cartesian model box. Global flow was computed based on density heterogeneities derived from seismic tomography. Plate motion history served as a velocity boundary condition in both models. Hotspot tracks of the plume conduits and the plume head were calculated and compared to actual bathymetry of the North Atlantic. If a plume source in the lowermost mantle is assumed, the calculated surface position of the plume conduit has a southward component of motion due to southward flow in the lower mantle. Depending on tomography model, assumed plume age and buoyancy the southward component is more or less dominating. Plume models having a source at the 660 km discontinuity are only influenced by flow in the upper mantle and transition zone and hence rather yield westward hotspot motion. Many whole-mantle plume models result in a V-shaped track, which does not match the straight Greenland–Iceland–Faroe ridge. Models without strong southward motion, such as for a plume source at 660 km depth, match actual bathymetry better. Plume tracks were calculated from both plume conduits and plume heads. A plume head of 120 K anomalous temperature gives the best match between plume head track and bathymetry.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...