GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Seaweeds are colonized by a microbial community, which can be directly linked to their performance. This community is shaped by an interplay of stochastic and deterministic processes, including mechanisms which the holobiont host deploys to manipulate its associated microbiota. The Anna Karenina principle predicts that when a holobiont is exposed to suboptimal or stressful conditions, these host mechanisms may be compromised. This leads to a relative increase of stochastic processes that may potentially result in the succession of a microbial community harmful to the host. Based on this principle, we used the variability in microbial communities (i.e., beta diversity) as a proxy for stability within the invasive holobiont Gracilaria vermiculophylla during a simulated invasion in a common garden experiment. Independent of host range, host performance declined at elevated temperature (22°C) and disease incidence and beta diversity increased. Under thermally stressful conditions, beta diversity increased more in epibiota from native populations, suggesting that epibiota from non-native holobionts are thermally more stable. This pattern reflects an increase in deterministic processes acting on epibiota associated with non-native hosts, which in the setting of a common garden can be assumed to originate from the host itself. Therefore, these experimental data suggest that the invasion process may have selected for hosts better able to maintain stable microbiota during stress. Future studies are needed to identify the underlying host mechanisms.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: In the course of the ongoing global intensification and diversification of human pressures, the study of variation patterns of biological traits along environmental gradients can provide relevant information on the performance of species under shifting conditions. The pronounced salinity gradient, co‐occurrence of multiple stressors, and accelerated rates of change make the Baltic Sea and its transition to North Sea a suitable region for this type of study. Focusing on the bladderwrack Fucus vesiculosus, one of the main foundation species on hard‐bottoms of the Baltic Sea, we analyzed the phenotypic variation among populations occurring along 2,000 km of coasts subjected to salinities from 4 to 〉30 and a variety of other stressors. Morphological and biochemical traits, including palatability for grazers, were recorded at 20 stations along the Baltic Sea and four stations in the North Sea. We evaluated in a common modeling framework the relative contribution of multiple environmental drivers to the observed trait patterns. Salinity was the main and, in some cases, the only environmental driver of the geographic trait variation in F. vesiculosus. The decrease in salinity from North Sea to Baltic Sea stations was accompanied by a decline in thallus size, photosynthetic pigments, and energy storage compounds, and affected the interaction of the alga with herbivores and epibiota. For some traits, drivers that vary locally such as wave exposure, light availability or nutrient enrichment were also important. The strong genetic population structure in this macroalgae might play a role in the generation and maintenance of phenotypic patterns across geographic scales. In light of our results, the desalination process projected for the Baltic Sea could have detrimental impacts on F. vesiculosus in areas close to its tolerance limit, affecting ecosystem functions such as habitat formation, primary production, and food supply.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Communities are shaped by scale dependent processes. To study the diversity and variation of microbial communities across scales, the invasive and widespread seaweed Agarophyton vermiculophyllum presents a unique opportunity. We characterized pro‐ and eukaryotic communities associated with this holobiont across its known distribution range, which stretches over the northern hemisphere. Our data reveal that community composition and diversity in the holobiont vary at local but also larger geographic scales. While processes acting at the local scale (i.e., within population) are the main structuring drivers of associated microbial communities, changes in community composition also depend on processes acting at larger geographic scales. Interestingly, the largest analysed scale (i.e., native and non‐native ranges) explained variation in the prevalence of predicted functional groups, which could suggest a functional shift in microbiota occurred over the course of the invasion process. While high variability in microbiota at the local scale supports A. vermiculophyllum to be a generalist host, we also identified a number of core taxa. These geographically independent holobiont members imply that cointroduction of specific microbiota may have additionally promoted the invasion process.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Rapid evolution of non-native species can facilitate invasion success, but recent reviews indicate that such microevolution rarely yields expansion of the climatic niche in the introduced habitats. However, because some invasions originate from a geographically restricted portion of the native species range and its climatic niche, it is possible that the frequency, direction and magnitude of phenotypic evolution during invasion has been underestimated. We explored the utility of niche-shift analyses in the red seaweed Gracilaria vermiculophylla, which expanded its range from the northeastern coastline of Japan to North America, Europe and northwestern Africa within the last 100 years. A genetically-informed climatic niche shift analysis indicates that native source populations occur in colder and highly seasonal habitats, while most non-native populations typically occur in warmer, less seasonal habitats. This climatic niche expansion predicts that non-native populations evolved greater tolerance for elevated heat conditions relative to native source populations. We assayed 935 field-collected and 325 common-garden thalli from 40 locations and as predicted, non-native populations had greater tolerance for ecologically-relevant extreme heat (40°C) than did Japanese source populations. Non-native populations also had greater tolerance for cold and low-salinity stresses relative to source populations. The importance of local adaptation to warm temperatures during invasion was reinforced by evolution of parallel clines: populations from warmer, lower-latitude estuaries had greater heat tolerance than did populations from colder, higher-latitude estuaries in both Japan and eastern North America. We conclude that rapid evolution plays an important role in facilitating the invasion success of this and perhaps other non-native marine species. Genetically-informed ecological niche analyses readily generate clear predictions of phenotypic shifts during invasions, and may help to resolve debate over the frequency of niche conservatism versus rapid adaptation during invasion.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: 1. Epimicrobial communities on seaweed surfaces usually contain not only potentially pathogenic but also potentially beneficial micro‐organisms. Capacity of terrestrial plants for chemically mediated recruitment, that is, “gardening” of bacterial communities in the rhizosphere was recently demonstrated. Empirical evidence directly linking such chemical “gardening” with the beneficial role of gardened microbes in terrestrial plants is rare and largely missing for aquatic macrophytes. 2. Here, we demonstrate that our model invasive seaweed holobiont Agarophyton vermiculophyllum possesses beneficial microbiota on its surface that provide protection from bacterial pathogens. Metabolites from the algal holobiont’s surface reduced settlement of opportunistic pathogens but attracted protective epibacterial settlement. 3. We tested 58 different bacterial species (isolated from the surface of A. vermiculophyllum) individually in tip bleaching assays. Kordia algicida was identified as a “significant pathogen” inducing a bleaching disease. In addition, nine other species significantly reduced the risk of algal bleaching and were thus “significantly protective”. Additionally, two “potential pathogens” and 10 “potential protectors” were identified. When 19 significant and potential protectors and 3 significant and potential pathogens were tested together, the protective strains fully prevented bleaching, suggesting that a component of A. vermiculophyllum’s epimicrobiome provides an associational defence against pathogens. Chemically mediated selective recruitment of microbes was demonstrated in bioassays, where A. vermiculophyllum surface metabolites attracted the settlement of protective strains, but reduced settlement of pathogens. 4. Synthesis. The capacity of an aquatic macrophyte to chemically “garden” protective micro‐organisms to the benefit of strengthened disease resistance is demonstrated for the first time. Such a role of surface chemistry in “gardening” of microbes as found in the current study could also be applicable to other host plant—microbe interactions. Our results may open new avenues towards manipulation of the surface microbiome of seaweeds via chemical “gardening,” enhancing sustainable production of healthy seaweeds.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: The identification of native sources and vectors of introduced species informs their ecological and evolutionary history and may guide policies that seek to prevent future introductions. Population genetics provides a powerful set of tools to identify origins and vectors. However, these tools can mislead when the native range is poorly sampled or few molecular markers are used. Here, we traced the introduction of the Asian seaweed Gracilaria vermiculophylla (Rhodophyta) into estuaries in coastal western North America, the eastern United States, Europe, and northwestern Africa by genotyping more than 2,500 thalli from 37 native and 53 non-native sites at mitochondrial cox1 and 10 nuclear microsatellite loci. Overall, greater than 90% of introduced thalli had a genetic signature similar to thalli sampled from the coastline of northeastern Japan, strongly indicating this region served as the principal source of the invasion. Notably, northeastern Japan exported the vast majority of the oyster Crassostrea gigas during the 20th century. The preponderance of evidence suggests G. vermiculophylla may have been inadvertently introduced with C. gigas shipments and that northeastern Japan is a common source region for estuarine invaders. Each invaded coastline reflected a complex mix of direct introductions from Japan and secondary introductions from other invaded coastlines. The spread of G. vermiculophylla along each coastline was likely facilitated by aquaculture, fishing, and boating activities. Our ability to document a source region was enabled by a robust sampling of locations and loci that previous studies lacked and strong phylogeographic structure along native coastlines.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Climate change is characterized not only by an increase in mean temperature, but also an increase in the variability around the means causing extreme events like marine heatwaves. These events are expected to have strong influence on the ecology of marine foundation species such as the eelgrass Zostera marina. Bacterial and macroscopic foulers are ubiquitous in the marine environment; they can have detrimental impacts on macrophytes and warming is known to enhance bacterial fouling. Thus, to investigate the consequence of heatwaves on the chemical defense of eelgrass against microbial colonizers, we incubated Z. marina plants in the Kiel Outdoor Benthocosm system under ambient control conditions and two different heatwave treatments: a treatment experiencing two spring heatwaves followed by a summer heatwave, and a treatment only experiencing just the summer heatwave. The capacity to deter microbial colonizers was found to be significantly up-regulated in Z. marina from both heatwave treatments in comparison to Z. marina under control conditions, suggesting defense regulation of Z. marina in response to marine heatwaves. We conclude climate extremes such as heatwaves can trigger a regulation in the defense capacity, which could be necessary for resilience against climate change scenarios. Such dynamics in rapid regulation of defense capacity as found in this study could also apply to other host plant – microbe interactions under scenarios of ongoing climate change or extreme climate events like heatwaves.
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The green seaweed Ulva is a model system to study seaweed–bacteria interactions, but the impact of environmental drivers on the dynamics of these interactions is little understood. In this study, we investigated the stability and variability of the seaweed-associated bacteria across the Atlantic–Baltic Sea salinity gradient. We characterized the bacterial communities of 15 Ulva sensu lato species along 2,000 km of coastline in a total of 481 samples. Our results demonstrate that the Ulva-associated bacterial composition was strongly structured by both salinity and host species (together explaining between 34% and 91% of the variation in the abundance of the different bacterial genera). The largest shift in the bacterial consortia coincided with the horohalinicum (5–8 PSU, known as the transition zone from freshwater to marine conditions). Low-salinity communities especially contained high relative abundances of Luteolibacter, Cyanobium, Pirellula, Lacihabitans and an uncultured Spirosomaceae, whereas high-salinity communities were predominantly enriched in Litorimonas, Leucothrix, Sulfurovum, Algibacter and Dokdonia. We identified a small taxonomic core community (consisting of Paracoccus, Sulfitobacter and an uncultured Rhodobacteraceae), which together contributed to 14% of the reads per sample, on average. Additional core taxa followed a gradient model, as more core taxa were shared between neighbouring salinity ranges than between ranges at opposite ends of the Atlantic–Baltic Sea gradient. Our results contradict earlier statements that Ulva-associated bacterial communities are taxonomically highly variable across individuals and largely stochastically defined. Characteristic bacterial communities associated with distinct salinity regions may therefore facilitate the host's adaptation across the environmental gradient.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Marine heatwaves have been observed worldwide and are expected to increase in both frequency and intensity due to climate change. Such events may cause ecosystem reconfigurations arising from species range contraction or redistribution, with ecological, economic and social implications. Macrophytes such as the brown seaweed Fucus vesiculosus and the seagrass Zostera marina are foundation species in many coastal ecosystems of the temperate northern hemisphere. Hence, their response to extreme events can potentially determine the fate of associated ecosystems. Macrophyte functioning is intimately linked to the maintenance of photosynthesis, growth and reproduction, and resistance against pathogens, epibionts and grazers. We investigated morphological, physiological, pathological and chemical defence responses of western Baltic Sea F. vesiculosus and Z. marina populations to simulated near‐natural marine heatwaves. Along with (a) the control, which constituted no heatwave but natural stochastic temperature variability (0HW), two treatments were applied: (b) two late‐spring heatwaves (June, July) followed by a summer heatwave (August; 3HW) and (c) a summer heatwave only (1HW). The 3HW treatment was applied to test whether preconditioning events can modulate the potential sensitivity to the summer heatwave. Despite the variety of responses measured in both species, only Z. marina growth was impaired by the accumulative heat stress imposed by the 3HW treatment. Photosynthetic rate, however, remained high after the last heatwave indicating potential for recovery. Only epibacterial abundance was significantly affected in F. vesiculosus. Hence both macrophytes, and in particular F. vesiculosus, seem to be fairly tolerant to short‐term marine heatwaves at least at the intensities applied in this experiment (up to 5°C above mean temperature over a period of 9 days). This may partly be due to the fact that F. vesiculosus grows in a highly variable environment, and may have a high phenotypic plasticity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: Epibiosis in the marine environment is a stressor that may determine invasion success in introduced species. Previous comparisons showed resistance to epibionts can be higher in non-native than in resident seaweed species, but we do not know whether it is an intrinsic trait of the non-natives or it has been acquired during the invasion process. To elucidate this question, a comparison between native and non-native populations of the same species is needed. Resistance against two groups of epiphytes was assessed in living thalli and in artificial substrata coated with surface extracts, both gained from four Asian (native) and four European (non-native) populations of the red alga Gracilaria vermiculophylla. Two diatom species and two filamentous macroalgae were used as micro- and macro-epiphytes, and one of each type was collected in Asia, while the other came from Europe. Laboratory assays were done in both distributional ranges of G. vermiculophylla and in different seasons. We used G. vermiculophylla from four populations in each range and used a fully crossed design with the factors (i) ‘Origin of Gracilaria’, (ii) ‘Origin of epiphytes’, (iii) ‘Season’ and (iv) ‘Solvent used for extraction’. Both groups of epiphytes, regardless of their origin, attached less to living thalli and to surface extracts from non-native G. vermiculophylla. Fewer diatoms attached to hexane-based extracts, while fewer Ceramium filaments settled on extracts gained with dichloromethane. Synthesis. Our results show for the first time that non-native individuals of a marine organism are better defended against epiphytes than native conspecifics. Furthermore, we found evidence that at least a part of the defence is based on extractable secondary metabolites. We discuss several mechanisms that could explain the increased resistance to epiphytes in non-native individuals, including the release from enemies in the non-native range, which could lead to an increase in algal performance during the invasion process. We suggest that an enhanced defence against epiphytes after introduction is one reason for G. vermiculophylla's invasion success. Our observation may also apply to other basibiont–epibiont and host–enemy systems, including plant–plant, plant–animal and animal–animal interactions, in aquatic environments and could be a key feature of bioinvasions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...