GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-04
    Description: Purpose: The phosphoinositide 3-kinase (PI3K) pathway is fundamental for cell proliferation and survival and is frequently altered and activated in neoplasia, including carcinomas of the lung. In this study, we investigated the potential of targeting the catalytic class I A PI3K isoforms in small cell lung cancer (SCLC), which is the most aggressive of all lung cancer types. Experimental Design: The expression of PI3K isoforms in patient specimens was analyzed. The effects on SCLC cell survival and downstream signaling were determined following PI3K isoform inhibition by selective inhibitors or downregulation by siRNA. Results: Overexpression of the PI3K isoforms p110-α and p110-β and the antiapoptotic protein Bcl-2 was shown by immunohistochemistry in primary SCLC tissue samples. Targeting the PI3K p110-α with RNA interference or selective pharmacologic inhibitors resulted in strongly affected cell proliferation of SCLC cells in vitro and in vivo , whereas targeting p110-β was less effective. Inhibition of p110-α also resulted in increased apoptosis and autophagy, which was accompanied by decreased phosphorylation of Akt and components of the mTOR pathway, such as the ribosomal S6 protein, and the eukaryotic translation initiation factor 4E-binding protein 1. A DNA microarray analysis revealed that p110-α inhibition profoundly affected the balance of pro- and antiapoptotic Bcl-2 family proteins. Finally, p110-α inhibition led to impaired SCLC tumor formation and vascularization in vivo . Conclusion: Together our data show the key involvement of the PI3K isoform p110-α in the regulation of multiple tumor-promoting processes in SCLC. Clin Cancer Res; 19(1); 96–105. ©2012 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    The American Association for Cancer Research (AACR)
    Publication Date: 2015-01-16
    Description: Acute myelogenous leukemia stem cells (AML–LSC) give rise to the leukemic bulk population and maintain disease. Relapse can arise from residual LSCs that have distinct sensitivity and dependencies when compared with the AML bulk. AML–LSCs are driven by genetic and epigenomic changes, and these alterations influence prognosis and clonal selection. Therapies targeting these molecular aberrations have been developed and show promising responses in advanced clinical trials; however, so far success with LSCs has been limited. Besides the genetic diversity, AML–LSCs are critically influenced by the microenvironment, and a third crucial aspect has recently come to the fore: A group of evolutionarily conserved signaling pathways such as canonical Wnt signaling, Notch signaling, or the Hedgehog pathway can be essential for maintenance of AML–LSC but may be redundant for normal hematopoietic stem cells. In addition, early reports suggest also regulators of cell polarity may also influence hematopoietic stem cells and AML biology. Interactions between these pathways have been investigated recently and suggest a network of signaling pathways involved in regulation of self-renewal and response to oncogenic stress. Here, we review how recent discoveries on regulation of AML–LSC-relevant evolutionarily conserved pathways may open opportunities for novel treatment approaches eradicating residual disease. Clin Cancer Res; 21(2); 240–8. ©2015 AACR .
    Print ISSN: 1078-0432
    Electronic ISSN: 1557-3265
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...