GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Research  (3)
  • Oxford Univ. Press  (2)
  • 1
    Publication Date: 2024-02-07
    Description: Invasive species are co-introduced with microbiota from their native range and also interact with microbiota found in the novel environment to which they are introduced. Host flexibility toward microbiota, or host promiscuity, is an important trait underlying terrestrial plant invasions. To test whether host promiscuity may be important in macroalgal invasions, we experimentally simulated an invasion in a common garden setting, using the widespread invasive macroalga Agarophyton vermiculophyllum as a model invasive seaweed holobiont. After disturbing the microbiota of individuals from native and non-native populations with antibiotics, we monitored the microbial succession trajectories in the presence of a new source of microbes. Microbial communities were strongly impacted by the treatment and changed compositionally and in terms of diversity but recovered functionally by the end of the experiment in most respects. Beta-diversity in disturbed holobionts strongly decreased, indicating that different populations configure more similar –or more common– microbial communities when exposed to the same conditions. This decline in beta-diversity occurred not only more rapidly, but was also more pronounced in non-native populations, while individuals from native populations retained communities more similar to those observed in the field. This study demonstrates that microbial communities of non-native A. vermiculophyllum are more flexibly adjusted to the environment and suggests that an intraspecific increase in host promiscuity has promoted the invasion process of A. vermiculophyllum. This phenomenon may be important among invasive macroalgal holobionts in general.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Plants rely on both mechanical and chemical defence mechanisms to protect their surfaces against microorganisms. The recently completed genome of the eelgrass Zostera marina, a marine angiosperm with fundamental importance for coastal ecosystems, showed that its re-adaptation from land to the sea has led to the loss of essential genes (for chemical communication and defence) and structural features (stomata and thick cuticle) that are typical of terrestrial plants. This study was designed to understand the molecular nature of surface protection and fouling-control strategy of eelgrass against marine epiphytic yeasts. Different surface extraction methods and comparative metabolomics by tandem mass spectrometry (LC-MS/MS) were used for targeted and untargeted identification of the metabolite profiles of the leaf surface and the whole tissue extracts. Desorption electrospray ionization-imaging mass spectrometry (DESI-IMS) coupled with traditional bioassays revealed, for the first time, the unique spatial distribution of the eelgrass surface-associated phenolics and fatty acids, as well as their differential bioactivity against the growth and settlement of epiphytic yeasts. This study provides insights into the complex chemical defence system of the eelgrass leaf surface. It suggests that surface-associated metabolites modulate biotic interactions and provide chemical defence and structural protection to eelgrass in its marine environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-10
    Description: Gametophytes of the marine alga Chondrus crispus are more resistant than tetrasporophytes to infection by the filamentous endophytic alga Acrochaete operculata. It has been shown recently that carrageenan oligosaccharides from the resistant gametophytic generation of C. crispus stimulate the secretion of L-asparagine (L-Asn) by the endophyte and that the host generates hydrogen peroxide and 2-oxo-succinamic acid after contact with this amino acid. Here the response of C. crispus to L-Asn and its effect on the pathogen is investigated. Chondrus crispus released hydrogen peroxide, ammonium ions, and a carbonyl compound into the medium when exposed to L-Asn. This response was correlated with an increase in oxygen consumption. Inhibitor studies indicated the involvement of a flavoenzyme in the reaction, which was sensitive to high concentrations of the reaction product, ammonium, and to chlorpromazine, quinacrine, and cyanide, inhibitors of L-amino acid oxidase. Cell wall macerate of C. crispus also responded to L-Asn, while protoplasts were inactive. Uptake of L-Asn into the cell was not necessary for the response, suggesting that the involved L-amino acid oxidase is apoplastic. Acrochaete operculata was more sensitive to hydrogen peroxide than C. crispus and settlement of A. operculata zoospores on C. crispus was reduced by 86% in the presence of L-Asn. This reduced settlement could be prevented with catalase. Chondrus crispus thus features an apoplastic amino acid oxidase, which is involved in the control of its endophytic pathogen. The modulation of the amino acid secretion in A. operculata by carrageenan oligosaccharides is therefore a key issue in the etiology of the association.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-10
    Description: The related red seaweeds Gracilaria sp. from the eastern Mediterranean and Gracilaria chilensis from Chile were similar in their enzymatic inventory for halogenation. In both species, halogenation was dependent upon H(2)O(2) and thus driven by haloperoxidases. These could be inhibited with phosphate and reversibly inhibited with azide and were therefore apparently dependent upon vanadate. Both species generated in the first line bromoform and other brominated halocarbons. Gel electrophoresis under non-denaturating conditions demonstrated that both species expressed halogenating peroxidases. Elicitation of Gracilaria sp. with agar oligosaccharides resulted in marked increases in bromination, iodination, and chlorination. Production rates of volatile halocarbons and phenol red bromination both increased by a factor of eight, presumably due to increased availability for haloperoxidases of H(2)O(2) during the oxidative burst response. Elicitation of Gracilaria sp. also triggered a release of bromide ions through DIDS-sensitive anion channels, which allowed for some bromination in bromide-free medium. However, this effect was relatively limited. By contrast, agar oligosaccharide oxidation in G. chilensis did not increase halogenation. Obviously, agar oligosaccharide oxidation does not provide sufficient amounts of hypohalous acids for such increases, because it does not deliver H(2)O(2) at the active site of vanadium-dependent haloperoxidases. These results correlate with earlier findings that the agar oligosaccharide-elicited oxidative burst controls microorganisms while agar oligosaccharide oxidation does not.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: the brown alga Fucus vesiculosus is a keystone marine species, which is subject to heavy surface colonisation. this study was designed to analyse the surface epibiome of F. vesiculosus in conjunction with the composition and spatial distribution of its surface metabolome. the amplicon sequencing, seM and CARD-FIsH imaging studies showed Alphaproteobacteria to predominate the epibiotic bacteria. Fungi of the class Eurotiomycetes were visualised for the first time on an algal surface. An untargeted metabolomics approach using molecular networks, in silico prediction and manual dereplication showed the differential metabolome of the surface and the whole tissue extracts. In total, 50 compounds were putatively dereplicated by UPLC-MS/MS, 37 of which were previously reported from both seaweeds and microorganisms. Untargeted spatial metabolomics by DESI-Imaging MS identified the specific localisation and distribution of various primary and secondary metabolites on surface imprints and in algal cross sections. The UPLC-MS, DESI-IMS and NMR analyses failed to confirm the presence of any surface-associated metabolite, except for mannitol, which were previously reported from F. vesiculosus. This is the first study analysing the seaweed surface microbiome in conjunction with untargeted surface metabolomics and spatial metabolomics approaches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...