GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 9 (1997), S. 277-285 
    ISSN: 1573-5176
    Keywords: cefotaxim ; epiphytic bacteria ; Gracilaria ; seaweed-microbe interactions ; seaweed pathology ; Vancomycin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Of 45 bacterial isolates from healthy tips of Gracilaria conferta (Schousboe ex Montagne) J. et G. Feldmann, 29% were identified as ‘conditional inducers’ of an apical necrosis. That is, the isolates induced necrotic tips in G. conferta within 16 h after elimination of most of the resident microflora from the alga. Several disinfectants and antibiotics were screened for their ability to induce algal susceptibility to the bacteria and to suppress uncontrolled appearance of tip necrosis. Treatment with 100 mg L-1 Cefotaxim + 100 mg L-1Vancomycin over three days was the least damaging and most efficient. Tip necrosis was related to isolates of the Corynebacterium-Arthrobacter-group and to the Flavobacterium-Cytophaga-group. The damaging effect occurred due to the bacterial excretion of active agents and was not correlated with acapability to degrade agar. The damaging influence of four Cytophaga-likestrains was inhibited by 20 of 40 isolates. This protective effect was caused by very different organisms. In five of six cases examined further, the effect was not cellbound, but due to the excretion of agents. These were not antimicrobially active, but inactivated necrosis-inducing excretions. These results indicate that epiphytic bacterial degradation or inactivation of damaging agents is a protecting factor in Gracilaria, which prevents the alga from being harmed by epiphytes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 12 (2000), S. 139-145 
    ISSN: 1573-5176
    Keywords: cellulose ; epiphytic bacteria ; Gracilaria conferta ; oligosaccharide ; peptide,plant-pathogen interactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Certain forms of oligocellulose and certainbacterially excreted peptides were identified asendogenous and exogenous elicitors, respectively, ofa tip bleaching response in Gracilaria conferta(Schousboe ex Montagne) J. et G. Feldmann. Thehalf-maximal tip bleaching response was observed when31.1 μM cellobiose or 11.6 μM cellotetraosewere present in the growth medium. In contrast, noresponse was detected after exposure to glucose,cellotriose, cellopentaose or maltooligosaccharides.The response was thus strongly dependent on themolecular size of the oligocellulose and onlysaccharides that consisted of an even number ofglucose residues were elicitor-active. Three bacterialspecies that had earlier been identified as potentialinducers of the tip bleaching symptom excretedelicitor-active compounds into the growth medium.These compounds were protease-sensitive and thuspeptides or proteins. The tip bleaching-inducingcompound that was excreted by one Cytophaga-likeorganism was partially purified. It could be extractedfrom culture supernatants with chloroform and itsmolecular size was between 700 and 1500 Da,corresponding with a structure of 4–20 amino acids.Various endogenous and exogenous elicitors are thusrecognized by G. conferta and allow this alga torespond hypersensitively to the maceration of its cellwall skeleton or just to the presence of certainepiphytic organisms.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Combined genetic, morphological and ontogenetic observations show that the circumarctic boreal green algal macrophyte Kornmannia leptoderma has expanded its distribution range into the Baltic Sea, on a German coastal section of 220 km length. The species is also again (or still) established at its former extreme southern distribution limit in the North Sea, the German island of Helgoland, where it has not been detected during the last four decades. Macroscopic visible sporophytes of K. leptoderma are nowadays present in the Baltic Sea and at Helgoland from February to September, while they were in the past only detected from February to May at Helgoland. This capacity for formation of sporophytes in summer correlates with the circumstance that K. leptoderma from the Baltic Sea can complete its life cycle at 15°C while several studies conducted decades ago with material from Helgoland and from Pacific coasts consistently reported an inhibition of the algal gametogenesis at temperatures that exceed 12°C. Possibly K. leptoderma has undergone adaptations that facilitate its spread into warmer environments, unless the Kornmannia present in the Baltic Sea and on Helgoland today represents a newly introduced cryptic species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Due to low salinity and lack of hard substrata, the Baltic Sea and Kattegat area and German and Danish North Sea coasts are characterized by a relatively low diversity of seaweeds. At the same time the areas are severely eutrophicated, which has caused extensive shifts in macroalgal communities toward opportunistic species. Unattached seaweed communities dominated by Furcellaria lumbricalis, which have been a resource for hydrocolloid production since the 1940s, have been severely reduced due to eutrophication and unsustainable harvesting and are nowadays only exploited commercially in Estonia. On the other hand, the biomass of opportunistic seaweeds of various red, green and brown algal genera has increased. They cause ecological problems, are a nuisance on many tourist beaches and constitute at the same time a potential bioresource that is so far only exploited to a limited extent for production of energy and fertilizer. Commercial seaweed cultivation is largely focused on Saccharina latissima and still very limited, but is currently being expanded as a compensation measure for sea-based fish aquaculture. Also land-based seaweed cultivation is primarily employed for recycling of nutrients in tank animal aquaculture, but in most cases so far only on an experimental scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Supralittoral and shallow water seaweed communities are particularly exposed to impacts such as climate change and disturbance by humans. Therefore, their classification, the study of composition, and the monitoring of their structural changes are particularly important. A phytosociological survey of the supralittoral and upper sublittoral vegetation of the South West Baltic Sea revealed eight phytobenthos communities with two variants comprising 35 taxa of macrophytes (18 taxa of Chlorophyta, 13 taxa of Rhodophyta and four taxa of Phaeophyceae, Ochrophyta). Five of the eight communities were dominated by Ulvales (Ulva intestinalis, Kornmannia leptoderma, and three Blidingia species), the other three by Fucus vesiculosus. Most Fucus vesiculosus-dominated communities contained U. intestinalis and U. linza as subdominants. Only one of the communities had until now been described as an association ( Ulvetum intestinalis Feldman 1937). The syntaxonomic composition of the investigated vegetation includes both phytocenoses with the domination of green algae ( Ulvetum intestinalis Feldman 1937 and communities of Blidingia marginata, unidentified Blidingia spp. and Kornmannia leptoderma), as well as a number of communities dominated by Fucus vesiculosus. Mainly boreal Atlantic species and cosmopolitans make up the bulk of the species in these associations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Seaweed bioinvasions increasingly affect coastal environments around the world, which increases the need for predictive models and mitigation strategies. The biotic interactions between seaweed invaders and invaded communities are often considered a key determinant of invasion success and failure and we here revise the current evidence that the capacity of seaweed invaders to deter enemies in newly reached environments correlates with their invasion success. Particularly efficient chemical defences have been described for several of the more problematic seaweed invaders during the last decades. However, confirmed cases in which seaweed invaders confronted un-adapted enemies in newly gained environments with deterrents that were absent from these environments prior to the invasion (so-called “novel weapons”) are scarce, although an increasing number of invasive and non-invasive seaweeds are screened for defence compounds. More evidence exists that seaweeds may adapt defence intensities to changing pressure by biological enemies in newly invaded habitats. However, most of this evidence of shifting defence was gathered with only one particular model seaweed, the Asia-endemic red alga Agarophyton vermiculophyllum, which is particularly accessible for direct comparisons of native and non-native populations in common garden experiments. A. vermiculophyllum interacts with consumers, epibionts and bacterial pathogens and in most of these interactions, non-native populations have rather gained than lost defensive capacity relative to native conspecifics. The increases in the few examined cases were due to an increased production of broad-spectrum deterrents and the relative scarcity of specialized deterrents perhaps reflects the circumstance that seaweed consumers and epibionts are overwhelmingly generalists.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: The Kiel Canal is one of the world’s most frequently used inland waterways and connects the SW Baltic Sea with the Wadden Sea. At the same time, the canal is a highly eutrophicated environment that is characterized by salinities that range from 3 to 16. This brackish character could make the Kiel Canal an important stepping stone for the introductions of species into the inner Baltic Sea. It could also hinder the identification of native and introduced species, given the fact that salinity sometimes severely affects algal morphology. Here we report on a survey of introduced and native seaweed species in the canal, focusing on the dominant groups, which are Fucales and Ulvales. Of the Fucales, the introduced species Fucus evanescens was detected nearly exclusively inside the canal, while Fucus vesiculosus dominated rockweed communities directly outside the sluice gates. Morphological analysis and genetic barcoding distinguished three species of Ulvales, Ulva linza, Ulva intestinalis and an unknown and possibly introduced species of the genus Blidingia. Species distributions and – in the case of U. intestinalis – branching patterns were clearly affected by salinity, while thallus sizes appeared to be affected by the specific eutrophication status of sites within the canal.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: Diseases increasingly threaten aquaculture of kelps and other seaweeds. At the same time, protection concepts that are based upon application of biocides are usually not applicable, as such compounds would be rapidly diluted in the sea, causing ecological damage. An alternative concept could be the application of immune stimulants to prevent and control diseases in farmed seaweeds. We here present a pilot study that investigated the effects of oligoalginate elicitation on juvenile and adult sporophytes of Saccharina japonica cultivated in China and on adult sporophytes of Saccharina latissima cultivated in Germany. In two consecutive years, treatment with oligoalginate clearly reduced the detachment of S. japonica juveniles from their substrate curtains during the nursery stage in greenhouse ponds. Oligoalginate elicitation also decreased the density of endobionts and the number of bacterial cells on sporophytes of S. latissima that were cultivated on sea-based rafts. However, the treatment increased the susceptibility of kelp adults to settlement of epibionts (barnacles in Germany and filamentous algal epiphytes in China). In addition, oligoalginate elicitation accelerated the aging of S. japonica adults. Based upon these findings, oligoalginate elicitation could be a feasible way to provide “environmentally friendly” protection of kelp juveniles in nurseries. The same treatment causes not only beneficial, but also unwanted effects in adult kelp sporophytes. Therefore, it is not recommended as a treatment after the juvenile stage is completed. Future tests with other elicitors and other cultivated seaweed species may allow for the development of more feasible applications of targeted defense elicitation in seaweed aquaculture.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Climate change is characterized not only by an increase in mean temperature, but also an increase in the variability around the means causing extreme events like marine heatwaves. These events are expected to have strong influence on the ecology of marine foundation species such as the eelgrass Zostera marina. Bacterial and macroscopic foulers are ubiquitous in the marine environment; they can have detrimental impacts on macrophytes and warming is known to enhance bacterial fouling. Thus, to investigate the consequence of heatwaves on the chemical defense of eelgrass against microbial colonizers, we incubated Z. marina plants in the Kiel Outdoor Benthocosm system under ambient control conditions and two different heatwave treatments: a treatment experiencing two spring heatwaves followed by a summer heatwave, and a treatment only experiencing just the summer heatwave. The capacity to deter microbial colonizers was found to be significantly up-regulated in Z. marina from both heatwave treatments in comparison to Z. marina under control conditions, suggesting defense regulation of Z. marina in response to marine heatwaves. We conclude climate extremes such as heatwaves can trigger a regulation in the defense capacity, which could be necessary for resilience against climate change scenarios. Such dynamics in rapid regulation of defense capacity as found in this study could also apply to other host plant – microbe interactions under scenarios of ongoing climate change or extreme climate events like heatwaves.
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: The establishment of epibacterial communities is fundamental to seaweed health and fitness, in modulating ecological interactions and may also facilitate adaptation to new environments. Abiotic factors like salinity can determine bacterial abundance, growth and community composition. However, influence of salinity as a driver of epibacterial community composition (until species level) has not been investigated for seaweeds and especially under long time scales. We also do not know how abiotic stressors may influence the ‘core’ bacterial species of seaweeds. Following an initial (immediately after field collection) sampling of epibacterial community of an invasive red seaweed Agarophyton vermicullophylum, we conducted a long term mesocosm experiment for 5 months, to examine the influence of three different salinities (low, medium and high) at two different time points (3 months after start of experiment and 5 months, i.e., at the end of experiment) on the epibacterial community richness and composition of Agarophyton. Metagenomic sequencing showed that epibacterial communities changed significantly according to salinity and time points sampled. Epibacterial richness was significantly different between low and high salinities at both time points. Epibacterial richness also varied significantly between 3 months (after start of experiment) and 5 months (end of experiment) within low, medium and high salinity level. Irrespective of salinity levels and time points sampled 727 taxa consistently appeared in all Agarophyton samples hinting at the presence of core bacterial species on the surface of the alga. Our results indicate that both salinity and time can be major driving forces in structuring epibacterial communities of seaweeds with respect to richness and β-diversity. We highlight the necessity of conducting long term experiments allowing us to detect and understand epibacterial succession over time on seaweeds.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...