GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    GEOMAR
    In:  [Proceedings]
    Publication Date: 2021-03-26
    Description: Modern digital scientific workflows - often implying Big Data challenges - require data infrastructures and innovative data science methods across disciplines and technologies. Diverse activities within and outside HGF deal with these challenges, on all levels. The series of Data Science Symposia fosters knowledge exchange and collaboration in the Earth and Environment research community.
    Type: Proceedings , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 80 pp.
    Publication Date: 2021-02-25
    Description: Abstract Legal requirement in Europe asks for Ecosystem-Based Fisheries Management (EBFM) in European seas, including considerations of trophic interactions and minimization of negative impacts of fishing on food webs and ecosystem functioning. Focusing on the interaction between fisheries and ecosystem components, the trophic model presented here shows for the first time the “big picture” of the western Baltic Sea (WBS) food web by quantifying structure and flows between all trophic elements and the impact of fisheries that were and are active in the area, based on best available recent data. Model results show that fishing pressures exerted on the WBS since the early nineties of the past century forces not only top predators such as harbour porpoises and seals but also cod and other demersal fish to heavily compete for fish as food and to cover their dietary needs by shifting to organisms lower in the trophic web, mainly to benthic macrofauna and / or search for suitable prey in adjacent ecosystems such as Kattegat, Skagerrak, central Baltic Sea and North Sea. While common sense implementations of EBFM have been proposed, such as fishing all stocks below Fmsy and reducing fishing pressure even further for forage fish such as herring and sprat, few studies compared such fishing to alternative scenarios. Different options for EBFM, with regards to recovery of depleted stocks and sustainable future catches, are presented here based on the WBS ecosystem model, the legal framework given by the new Common Fisheries Policy (CFP) and the Marine Strategy Framework Directive (MSFD) of the European Union. The model explores four legally valid future fishery scenarios: 1) business as usual, 2) maximum sustainable fishing (F = Fmsy), 3) half of Fmsy, and 4) EBFM with F = 0.5 Fmsy for forage fish and F = 0.8 Fmsy for other fish. In addition, a “No-fishing” scenario demonstrates, that neither individual stocks nor the whole system would collapse when all fishing activities from 2017 on would cease. Simulations show that “Business as usual” would perpetuate low 2016 catches from depleted stocks in an unstable ecosystem where endangered species may be lost. In contrast, an “EBFM” scenario - with herring and sprat fished at 0.5 Fmsy level and cod and other stocks fished at 0.8 Fmsy level - allows the recovery of all stocks with strongly increased catches close to the maximum (at Fmsy) for cod and flatfish and catches similar to the 2016 level for herring and sprat but with strongly reduced fishing effort. Model and methodology presented here are considered suitable to assess MSFD Criterion D4C2 in the WBS.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2023-09-11
    Description: This deliverable reports on the achievements of the EuroSea project in developing targeted indicators co-designed with demonstrators (WPs 5–7) and forecasts (WP4). For this, the indicators implemented are expressed in term of Essential Ocean/Climate Variables (EOVs/ECVs) together with their requirements. The co-development undertaken address ocean indicators for all range of scales: from the large, basin scale to the regional and local scales. Such approach as well as the proposed solution to focus, at regional/local scales, on EEZs, represent one of the innovative results of EuroSea that will help to rationalize risks assessments and guide environmental management approaches in European Seas.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-04
    Description: This task set out to increase communication between the ocean monitoring and modelling communities in the Baltic Sea area. Through these improved communications, the goal was to advance and improve the HELCOM marine environmental assessments. To gain confidence in the numerical model outputs, an effort was undertaken to ensure ocean observing in-situ data, collected by multiple nations in the Baltic Sea, was assimilated into a numerical model. Here, we report on the development of indicators, as requested by our stakeholders, and we discuss if the Baltic Sea numerical modelling efforts are ready to augment regional environmental status reports, and can our results help guide environmental management in the region.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-28
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-23
    Description: The European Ocean Observing and Forecasting System (EOOFS) plays a pivotal role in understanding, monitoring, forecasting, and managing the complex dynamics and resources of Europe's Seas. It serves as a critical interdisciplinary system for addressing a myriad of challenges, from climate change impacts to marine resources management. However, to ensure its continued effectiveness, it is essential to identify and address the gaps within this system and provide actionable recommendations for improvements at short- and long-term. Therefore, this document serves as a baseline that can guide the funders and supporters of the EOOFS, as well as the various stakeholders directly or indirectly related to the EOOFS, towards the gaps that hinder better monitoring and prediction of various ocean phenomena, along the ocean observing value chain. The main identified gaps are related to spatial and temporal coverage of data and products of the EOOFS, the data integration and accessibility by various types of users, the uncertainties of projections, the technological challenges, as well as to the engagement of various actors and the communication of results and services to them. The main recommendations to be taken into consideration for addressing all highlighted gaps are detailed in the report for every phenomenon and component of the ocean value chain. These recommendations are not provided just to satisfy the academic interest of the EOOFS community, however, they may have profound implications for multiple sectors and the society as a whole, if taken into consideration. This is due to the fact that the EOOFS is essential for climate change mitigation and adaptation measures, in improving the efficiency of the marine resources’ management, in enhancing the resilience of marine and coastal ecosystems as well as coastal cities and infrastructures against disasters and extreme events, for shipping and navigation safety, and for the scientific advancements and innovations of Europe in the field of marine science that serves the society. We propose a scoring approach that can evaluate the EOOFS readiness level (RL) in monitoring ocean phenomena, on a regular basis and in a systematic way. We have demonstrated the usefulness of this approach by implementing it based on our assessment and the feedback of the EOOFS community. The main results clearly show that the EOOFS has “Fitness for Purpose” readiness levels (RL 7) in the three main pillars of the value chain (Input, Process, and Output) only for one ocean phenomenon, while 83% of ocean phenomena have RLs varying from 1 (Idea) to 4 (Trial). A deeper analysis of the scoring results reflects that the EOOFS major gaps are predominantly concentrated in two of its three pillars: the coordination and observational elements (Process) and data management and information products (Output) (Figure 1). In a changing world that is affecting all aspects of European lives, it is crucial to significantly invest and support the EOOFS to better monitor and accurately predict the European Seas, and provide sustained services that can help businesses and improve the resilience of communities and resources.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-28
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-09-08
    Description: The 4th Evolving and Sustaining Ocean Best Practices Workshop was held online during the period 17-30 September 2020, addressing community needs for advanced method development and implementation in ocean observations, data management and application. The proceedings for the subject workshop are provided in 2 volumes. Volume 1 addresses the meeting overview, and Volume 2 - Annexes includes the complete Working Group reports.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-11-04
    Description: Identification of local and regional impacts of oxygen, heat and pH related “Extreme Marine Events”: Ocean model data products are overlaid with existing marine biological datasets to identify sensitive areas and organism vulnerabilities.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...