GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Hydrology, ELSEVIER SCIENCE BV, 454-45(0), pp. 173-186, ISSN: 0022-1694
    Publication Date: 2019-07-17
    Description: Freshwater lenses below barrier islands are dynamic systems affected by changes in morphodynamic patterns, groundwater recharge and discharge. They are also vulnerable to pollution and overabstraction of groundwater. Basic knowledge on hydrogeological and hydrochemical processes of freshwater lenses is important to ensure a sustainable water management, especially when taking into account possible effects of climate change. This is the first study which gives a compact overview on the age distribution, recharge conditions and hydrochemical evolution of a barrier island freshwater lens in the southern North Sea (Spiekeroog Island, Eastfrisian Wadden Sea). Two ground- and surface water sampling campaigns were carried out in May and July 2011, supplemented by monthly precipitation sampling from July to October. 3H–3He ages, stable oxygen and hydrogen isotopes and major ion concentrations show that the freshwater lens reaches a depth of 44 mbsl, where an aquitard constrains further expansion in vertical direction. Groundwater ages are increasing from 4.4 years in 12 mbsl up to 〉70 years at the freshwater– saltwater interface. Stable isotope signatures reflect average local precipitation signatures. An annual recharge rate of 300–400 mm was calculated with 3H–3He data. Freshwater is primarily of Na–Ca–Mg–HCO3– and Ca–Na–HCO3–Cl type, while lowly mineralized precipitation and saltwater are of Na–Cl types. A trend towards heavier stable isotope signatures and higher electric conductivities in the shallower, younger groundwater within the freshwater lens may indicate increasing atmospheric temperatures in the last 30 years.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, ELSEVIER SCIENCE BV, 497, pp. 61-70, ISSN: 0022-0981
    Publication Date: 2017-10-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report STR
    Publication Date: 2022-01-11
    Description: The Global Geodetic Reference Frame (GGRF) plays a fundamental role in geodesy and related Positioning, Navigation, and Timing applications, and allows to quantify the Earth’s change in space and time. The ITRF and ICRF are the two most important components to realize GGRF, while the determination of these two reference frames relies on the combination of several space geodetic techniques, mainly, VLBI, SLR, GNSS, and DORIS. The combination is currently done on either the parameter level, or the normal equation level. However, the combination on the observation level, or the so-called integrated processing of multi-technique on the observation level, provides the results of best consistency, robustness, and accuracy. This thesis focuses on the investigation of the integrated processing of GNSS and VLBI on the observation level. The benefits of integrated processing are demonstrated in terms of TRF, CRF, and EOP, while the impact of global ties (EOP), tropospheric ties, and local ties are underlined. Several issues in integrated processing are addressed, including the systematic bias in ties (for instance, LOD and tropospheric ties), the relative weighting. An automatic reweighting strategy based on the normalized residuals is developed, which can properly handle the uncertainty of the ties without losing too much constraint. A software with state-of-the-art modules is the prerequisite to perform integrated processing. Based on the GNSS data processing software: Positioning And Navigation Data Analyst (PANDA), the VLBI and SLR modules are implemented in the common least-squares estimator. Therefore, the best consistency can be guaranteed. The software capability is demonstrated with the single-technique solutions. The station coordinate precision is at millimeter level for both GNSS and VLBI, while the EOP estimates are comparable to other Analysis Centers and the IERS products. It is also demonstrated that the SLR station coordinate precision is improved by 20% to 30% with additional GLONASS and GRACE satellites to contributing to the LAGEOS and ETALON constellation. Focusing on the tropospheric ties in GNSS and VLBI integrated processing, its contribution is demonstrated for the first time comprehensively. Applying tropospheric ties improves the VLBI station coordinate precision by 12% on the horizontal components and up to 30% on the vertical component. The network scale repeatability is reduced by up to 33%. The EOP estimates are also improved significantly, for instance, 10% to 30% for polar motion, and up to 10% for other components. Furthermore, applying the gradient ties in the VLBI intensive sessions reduces the systematic bias in UT1-UTC estimates. The consistent TRF, CRF, and EOP are achieved in the integrated VLBI and GNSS solution. Applying the global ties, tropospheric ties, and local ties stables the reference frame. The ERP estimates in the integrated solution are dominated by the GNSS technique, and the VLBI technique introduces additional 10% improvement on the y-pole component in terms of the day-boundary-discontinuity. The UT1-UTC and celestial pole offsets are also slightly improved in the integrated solution. It is also demonstrated that applying the LTs inappropriately distorts the network and introduces systematic biases to the ERP estimates, addressing the necessity of updating the local surveys. Moreover, the coordinates of AGN are also enhanced by up to 20% in the integrated solutions, especially the southern ones. This study reveals the importance of integrated processing of multi-technique on the observation level, as the best consistency can be achieved, and the applied ties improve the solutions significantly. It is strongly recommended that for the future realization of celestial and terrestrial reference frames, the concept of integrated processing on the observation level should be implemented, and all the possible ties should be applied, including the global ties (EOP), local ties, space ties, and tropospheric ties. Such kind of integrated solution of all the four techniques can provide robust estimates of the reference frames and EOP, with the advantage of each technique exploited to its full extend.
    Description: Der Globale Geodätische Referenzrahmen (Global Geodetic Reference Frame, GGRF) spielt eine fundamentale Rolle in der Geodäsie und den damit verbundenen Positionierungs-, Navigations- und Zeitmessungsanwendungen (Positioning, Navigation, and Timing, PNT) und ermöglicht die Quantifizierung der Veränderung der Erde in Raum und Zeit. Der ITRF und der ICRF sind die beiden wichtigsten Komponenten zur Realisierung des GGRF, wobei die Bestimmung dieser beiden Referenzrahmen auf der Kombination verschiedener raumgeodätischer Techniken beruht, hauptsächlich VLBI, SLR, GNSS und DORIS. Die Kombination wird derzeit entweder auf der Parameterebene oder auf der Normalgleichungsebene durchgeführt. Die Kombination auf der Beobachtungsebene oder die sogenannte integrierte Daten-Verarbeitung von Multi-Techniken auf der Beobachtungsebene, bietet jedoch eine Lösung mit der besten Konsistenz, Robustheit und Genauigkeit. Diese Arbeit konzentriert sich auf die Untersuchung der integrierten Daten-Verarbeitung von GNSS und VLBI auf der Beobachtungsebene. Die Vorteile der integrierten Lösung werden in Bezug auf TRF, CRF, und EOP aufgezeigt, während die Auswirkungen von „Global Ties (EOP), Tropospheric Ties, and Local Ties“ hervorgehoben werden. Einige Punkte der integrierten Verarbeitung werden in dieser Arbeit untersucht, einschließlich der systematischen Abweichungen von „Ties“ (z.B. LOD und Tropospheric Ties), der relativen Gewichtung usw. Anhand der normalisierten Residuen wird eine automatische Umgewichtungsstrategie entwickelt, mit der die Unsicherheit der „Ties“ angemessen behandelt werden kann, ohne dass zu viel Einschränkung dabei verloren geht. Eine Software mit modernsten Modulen ist die Voraussetzung für die integrierte Daten Verarbeitung. Basierend auf der GNSS-Datenverarbeitungssoftware Paket: Positioning And Navigation Data Analyst (PANDA) werden die Module VLBI und SLR in demselben Least-Squares-Estimator wie GNSS implementiert, damit kann man die beste Konsistenz in der Datenverarbeitung erreichen. In dieser Arbeit wird die Leistungsfähigkeit der Software mit den Ein-Technik-Lösungen demonstriert. Die Genauigkeit der Stationskoordinaten liegt sowohl für GNSS als auch für VLBI im Millimeterbereich, und die geschätzten EOP-Parameter sind auch mit der anderer Analysezentren und den IERS-Produkten vergleichbar. Es wird auch gezeigt, dass die Koordinatengenauigkeit der SLR-Station um 20-30% verbessert wird, wenn zusätzliche GLONASS- und GRACE-Satelliten zur LAGEOS und ETALON-Konstellation beitragen. Mit dem Schwerpunkt auf den „Tropospheric Ties“ in der integrierten GNSS- und VLBI- Daten Verarbeitung wird ihr Beitrag zum ersten Mal umfassend dargestellt. Die Anwendung der „Tropospheric Ties“ verbessert die Genauigkeit der VLBI-Koordinaten um 12% bei der horizontalen Komponente und bis zu 30% bei der vertikalen Komponente. Die Genauigkeit im Netzwerkmaßstab wird um bis zu 33% verbessert. Auch die EOP-Bestimmungen werden deutlich verbessert, z.B. um 10-30% bei polaren Bewegungen und bis zu 10% bei anderen Komponenten. Darüber hinaus reduziert die Einführung der „Gradient Ties“ in der VLBI-Intensivsession die systematische Abweichung in den dUT1-Bestimmungen. Die konsistente TRF, CRF, und EOP werden bei der integrierten VLBI- und GNSS-Lösung erreicht. Die Anwendung der „Global Ties, Tropospheric Ties and Local Ties“ stabilisiert die Bestimmungen des Referenzrahmens. Die ERP-Bestimmungen in der integrierten Lösung werden von der GNSS-Technik dominiert, und die VLBI-Technik bringt eine zusätzliche Verbesserung um 10% auf die Tagesgrenzen-Diskontinuität (day-boundary-discontinuity, DBD) für die y-Pol-Komponente. Die dUT1- und CPO werden in der integrierten Lösung ebenfalls leicht verbessert. Es wird auch gezeigt, dass eine ungeeignete Anwendung der LTs das Netzwerk verzerrt und systematische Abweichungen in die ERP-Bestimmungen einführt, wodurch die Notwendigkeit einer Aktualisierung der lokalen Tie Messungen deutlich wird. Darüber hinaus werden die Koordinaten der AGN in den integrierten Lösungen um bis zu 20% verbessert, insbesondere im Süden. Diese Arbeit zeigt die Bedeutung der integrierten Daten Verarbeitung von Multi-Technik auf der Beobachtungsebene, da die beste Konsistenz erreicht werden kann und die angewandten „Ties“ die Lösungen erheblich verbessern. Es wird nachdrücklich empfohlen, für die zukünftige Realisierung von himmelsfesten und erdfesten Referenzrahmen das Konzept der integrierten Verarbeitung auf Beobachtungsebene durchzuführen und alle möglichen „Ties“ anzuwenden, einschließlich der „Global Ties (EOP), Local Ties, Space Ties, and Tropospheric Ties“. Eine solche integrierte Lösung aller vier Techniken kann die robusten Bestimmungen der Referenzrahmen und der EOP liefern, wobei die Vorteile jeder Technik voll ausgeschöpft werden.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-07-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-09-06
    Description: Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predator–prey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds.Wec onsider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region—the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long term. Regional boundary: south of 30°S.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-09-26
    Description: This report describes the activities performed within Task 1.3 “Summary of gas solubility and degassing kinetics (type A)” until the end of month 39 of the REFLECT project. Two series of experiments have been carried out that assess the degassing process of type A geothermal fluids respectively in bulk and porous media. This has resulted in an improved understanding of the process and the associated physical phenomena by utilizing experimental equipment and data analysis tools specifically created for this task.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-16
    Description: Harmful algal blooms (HABs) are globally expanding, compromising water quality worldwide. HAB dynamics are determined by a complex interplay of abiotic and biotic factors, and their emergence has often been linked to eutrophication, and more recently to climate change. The dinoflagellate Alexandrium is one of the most widespread HAB genera and its success is based on key functional traits like allelopathy, mixotrophy, cyst formation and nutrient retrieval migrations. Since 2012, dense Alexandrium ostenfeldii blooms (up to 4500 cells mL−1) have recurred annually in a creek located in the southwest of the Netherlands, an area characterized by intense agriculture and aquaculture. We investigated how physical, chemical and biological factors influenced A. ostenfeldii bloom dynamics over three consecutive years (2013–2015). Overall, we found a decrease in the magnitude of the bloom over the years that could largely be linked to changing weather conditions during summer. More specifically, low salinities due to excessive rainfall and increased wind speed corresponded to a delayed A. ostenfeldii bloom with reduced population densities in 2015. Within each year, highest population densities generally corresponded to high temperatures, low DIN:DIP ratios and low grazer densities. Together, our results demonstrate an important role of nutrient availability, absence of grazing, and particularly of the physical environment on the magnitude and duration of A. ostenfeldii blooms. Our results suggest that predicted changes in the physical environment may enhance bloom development in future coastal waters and embayments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-01-01
    Description: The abundance of the alien, Indo-Pacific damselfish Neopomacentrus cyanomos on an oil-loading platform in the southwest Gulf of Mexico indicates that widely distributed platforms could facilitate the expansion of its geo- graphic range across the western and northern fringes of the Gulf. From there it likely will spread to other areas of the Greater Caribbean. The lionfish example demonstrates that it eventually happens, and can do so rapidly. Reduced temperature effects on the physiology of this species were examined to better predict its survivability in the northern Gulf during winter, when sea surface temperatures fall as low as 15 °C along the coast. Overall, our results show that when the degree of experimental temperature decline was large and rapid, no compensation occurred and the stress response observed mostly reflected cellular processes that minimized damage. Integrated biomarker response values were significantly different between fish rapidly exposed to colder vs. warmer temperatures (declines of −4 °C each day, from 26 to 14 °C), reflected in higher values of blood metabolites and routine metabolic rates observed in fish exposed to 14 and 18 °C respectively, and lower activity of all enzymes, lower protein carbonylation, and higher oxidative damage to lipids in fish exposed to 14 °C. While the phy- siological proxies responded to minimize damage during the rapid-decrease experiment, the same proxies re- flected the consequences of compensation when fish were thermally challenged after a 45 days acclimation at 18 °C. In this case, lower values of blood metabolites and high antioxidant levels and indicators of damages underpinned its pejus lower range. Based on the results of the present work, it seems clear that low winter SSTs in the northern Gulf will slow down the colonization of the inshore area of N. cyanomos. We suggest that the use of physiological cellular stress markers on specimens acquired at the beginning of an invasion should be im- plemented in new standardized experimental protocols, including both rapid increases/decreases of temperature and post-acclimation temperature challenges, to assess the invasiveness potential of aquatic species such as this.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-03-25
    Description: Detailed monitoring of subterranean microclimatic and hydrological conditions can delineate factors influencing speleothem-based climate proxy data and helps in their interpretation. Multi-annual monitoring of water stable isotopes, air temperature, relative humidity, drip rates and PCO2 in surface, soil and cave air gives detailed insight into dripwater isotopes, temperature and ventilation dynamics in Mawmluh Cave, NE India. Water isotopes vary seasonally in response to monsoonal rainfall. Most negative values are observed during late Indian Summer Monsoon (ISM), with a less than one-month lag between ISM rainfall and drip response. Two dry season and two less-well distinguishable wet season dynamic ventilation regimes are identified in Mawmluh Cave. Cave air temperatures higher than surface air result in chimney ventilation during dry season nights. Dry season days show reduced ventilation due to cool cave air relative to surface air and cold-air lake development. Both, high water flow and cooler-than-surface cave air temperatures result in air inflow during wet season nights. Wet season daytime ventilation is governed by river flow, but is prone to stagnation and development of cold air lakes. CO2 monitoring indicates that PCO2 levels vary at diurnal to annual scale. Mawmluh Cave seems to act as CO2 sink during part of the dry season. While very likely, additional data is needed to establish whether wet season cave air CO2 levels rise above atmospheric values. Drip behavior is highly nonlinear, related to effective recharge dynamics, and further complicated by human influence on the epikarst aquifer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Marine Geology, ELSEVIER SCIENCE BV, 336, pp. 61-83, ISSN: 0025-3227
    Publication Date: 2019-07-17
    Description: Identification of the pre-glacial, transitional and full glacial components in the deep-sea sedimentary record is necessary to understand the ice sheet development of Antarctica and to build circum-Antarctic sediment thickness grids for palaeotopography/-bathymetry reconstructions, which constrain palaeoclimate models. A ~3300 km long Weddell Sea to Scotia Sea multichannel seismic reflection data transect was constructed to define the first basin-wide seismostratigraphy and to identify the pre-glacial to glacial components. Seven main seismic units were mapped: Of these, WS-S1, WS-S2 and WS-S3 comprise the inferred Cretaceous– Palaeocene pre-glacial regime (〉27 Ma in our age model), WS-S4 the Eocene–Oligocene transitional regime (27–11 Ma) and WS-S5, WS-S6, WS-S7 the Miocene–Pleistocene full glacial climate regime (11–1 Ma). Sparse borehole data from ODP Leg 113 and SHALDRIL constrain the ages of the upper three seismic units and seafloor spreading magnetic anomalies compiled from literature constrain the basement ages in the presented age model. The new horizons and stratigraphy often contradict local studies and show an increase in age from southeast to the northwest. The up to 1130 m thick pre-glacial seismic units form a mound in the central Weddell Sea basin and in conjunction with the eroded flank geometry, allow the interpretation of a Cretaceous proto-Weddell Gyre bottom current. The base reflector of the transitional seismic unit has a model age of 26.6–15.5 Ma from southeast to northwest, suggesting similar southeast to northwest initial ice sheet propagation to the outer shelf. We interpret an Eocene East Antarctic Ice Sheet expansion, Oligocene grounding of the West Antarctic Ice Sheet and Early Miocene grounding of the Antarctic Peninsula Ice Sheet. The transitional regime sedimentation rates in the central and northwestern Weddell Sea (6–10 cm/ky) are higher than in the pre-glacial (1–3 cm/ky) and full glacial regimes (4–8 cm/ky). The pre-glacial to glacial rates are highest in the Jane- and Powell Basins (10–12 cm/ky). Total sediment volume in the Weddell Sea deep-sea basin is estimated at 3.3–3.9×10^6 km3.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...