GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (189)
  • Wiley  (173)
  • Copernicus Publications (EGU)  (68)
  • 1
    Publication Date: 2021-02-08
    Description: To enable successful management of marine bioinvasions, timely and robust scientific advice is required. This knowledge should inform managers and stakeholders on the magnitude of a pressure (rate of human-mediated introductions), the environmental state of an ecosystem (impacts of non-indigenous species), and the success of management response (prevention, eradication, mitigation). This advice often relies on baseline biodiversity information in the form of measureable parameters (metrics). This can be derived from conventional approaches such as visual surveys, but also by utilizing environmental DNA/RNA-based molecular techniques, which are increasingly being touted as promising tools for assessing biodiversity and detecting rare or invasive species. Depending on the stage of incursion, each approach has merits and limitations. In this review we assess the performance of biosecurity-relevant biodiversity parameters derived from eDNA/eRNA samples and discuss the results in relation to different stages of invasion and management applications. The overall performance of considered methods ranged between 42 and 90% based on defined criteria, with target-specific approaches scoring higher for respective biosecurity applications, followed by eDNA metabarcoding. Caveats are discussed along with avenues which may enhance these techniques and their successful uptake for marine biosecurity surveillance and management. To facilitate and encourage uptake of these techniques, there is a need for an international collaborative framework aimed at unifying molecular sampling and analysis methodologies. Improvement of quantitative capacity and cost-efficiency will also enhance their integration in biosecurity programmes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-09-27
    Description: While environmental science, and ecology in particular, is working to provide better understanding to base sustainable decisions on, the way scientific understanding is developed can at times be detrimental to this cause. Locked-in debates are often unnecessarily polarised and can compromise any common goals of the opposing camps. The present paper is inspired by a resolved debate from an unrelated field of psychology where Nobel laureate David Kahneman and Garry Klein turned what seemed to be a locked-in debate into a constructive process for their fields. The present paper is also motivated by previous discourses regarding the role of thresholds in natural systems for management and governance, but its scope of analysis targets the scientific process within complex social-ecological systems in general. We identified four features of environmental science that appear to predispose for locked-in debates: (1) The strongly context-dependent behaviour of ecological systems. (2) The dominant role of single hypothesis testing. (3) The high prominence given to theory demonstration compared investigation. (4) The effect of urgent demands to inform and steer policy. This fertile ground is further cultivated by human psychological aspects as well as the structure of funding and publication systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Frontiers
    In:  EPIC3Frontiers in Marine Science, Frontiers, 10, pp. 1234776-1234776, ISSN: 2296-7745
    Publication Date: 2024-02-13
    Description: Collaborations between artists and ocean scientists are becoming increasingly frequent. As the UN Ocean Decade (2021-2030) stresses the importance of engaging with the public, there is a growing interest in using art as a tool for communication as well as for scientific exploration and experimentation. This mini-review charts the current academic research on art-science collaborations and the ocean, focusing on literature where artists and scientists work together to produce something based on scientific research. The study finds that these relationships are never apolitical, are complex and develop differently depending on each project. In sum the paper will highlight that although the academic literature is limited, its diversity has the potential to reach numerous academic disciplines and that focusing on process and engagement should be a direction for further research to help broaden the academic reach of these important oceanic knowledges.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP) provides a globally coordinated network and oversight of 55 sustained decadal repeat hydrographic reference lines. GO-SHIP is part of the global ocean/climate observing systems (GOOS/GCOS) for study of physical oceanography, the ocean carbon, oxygen and nutrient cycles, and marine biogeochemistry. GO-SHIP enables assessment of the ocean sequestration of heat and carbon, changing ocean circulation and ventilation patterns, and their effects on ocean health and Earth's climate. Rapid quality control and open data release along with incorporation of the GO-SHIP effort in the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) in situ Observing Programs Support Center (JCOMMOPS) have increased the profile of, and participation in, the program and led to increased data use for a range of efforts. In addition to scientific discovery, GO-SHIP provides climate quality observations for ongoing calibration of measurements from existing and new autonomous platforms. This includes biogeochemical observations for the nascent array of biogeochemical (BGC)-Argo floats; temperature and salinity for Deep Argo; and salinity for the core Argo array. GO-SHIP provides the relevant suite of global, full depth, high quality observations and co-located deployment opportunities that, for the foreseeable future, remain crucial to maintenance and evolution of Argo's unique contribution to climate science. The evolution of GO-SHIP from a program primarily focused on physical climate to increased emphasis on ocean health and sustainability has put an emphasis on the addition of essential ocean variables for biology and ecosystems in the program measurement suite. In conjunction with novel automated measurement systems, ocean color, particulate matter, and phytoplankton enumeration are being explored as GO-SHIP variables. The addition of biological and ecosystem measurements will enable GO-SHIP to determine trends and variability in these key indicators of ocean health. The active and adaptive community has sustained the network, quality and relevance of the global repeat hydrography effort through societally important scientific results, increased exposure, and interoperability with new efforts and opportunities within the community. Here we provide key recommendations for the continuation and growth of GO-SHIP in the next decade.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-03-27
    Description: Widespread global declines in shellfish reefs (ecosystem-forming bivalves such as oysters and mussels) have led to growing interest in their restoration and protection. With restoration projects now occurring on four continents and in at least seven countries, global restoration guidelines for these ecosystems have been developed based on experience over the past two decades. The following key elements of the guidelines are outlined: (a) the case for shellfish reef resto- ration and securing financial resources; (b) planning, feasibility, and goal set- ting; (c) biosecurity and permitting; (d) restoration in practice; (e) scaling up from pilot to larger scale restoration, (f) monitoring, (g) restoration beyond oyster reefs (specifically mussels), and (h) successful communication for shell- fish reef restoration projects.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates – internally consistently – the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within and impacts upon the terrestrial biosphere as increasingly shaped by human activities such as climate change and land use change. Here we describe the core model structure, including recently developed modules now unified in LPJmL4. Thereby, we also review LPJmL model developments and evaluations in the field of permafrost, human and ecological water demand, and improved representation of crop types. We summarize and discuss LPJmL model applications dealing with the impacts of historical and future environmental change on the terrestrial biosphere at regional and global scale and provide a comprehensive overview of LPJmL publications since the first model description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at https://gitlab.pik-potsdam.de/lpjml/LPJmL, we hope to stimulate the application and further development of LPJmL4 across scientific communities in support of major activities such as the IPCC and SDG process.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: The dynamic global vegetation model LPJmL4 is a process-based model that simulates climate and land use change impacts on the terrestrial biosphere, agricultural production, and the water and carbon cycle. Different versions of the model have been developed and applied to evaluate the role of natural and managed ecosystems in the Earth system and the potential impacts of global environmental change. A comprehensive model description of the new model version, LPJmL4, is provided in a companion paper (Schaphoff et al., 2018c). Here, we provide a full picture of the model performance, going beyond standard benchmark procedures and give hints on the strengths and shortcomings of the model to identify the need for further model improvement. Specifically, we evaluate LPJmL4 against various datasets from in situ measurement sites, satellite observations, and agricultural yield statistics. We apply a range of metrics to evaluate the quality of the model to simulate stocks and flows of carbon and water in natural and managed ecosystems at different temporal and spatial scales. We show that an advanced phenology scheme improves the simulation of seasonal fluctuations in the atmospheric CO2 concentration, while the permafrost scheme improves estimates of carbon stocks. The full LPJmL4 code including the new developments will be supplied open source through https://gitlab.pik-potsdam.de/lpjml/LPJmL. We hope that this will lead to new model developments and applications that improve the model performance and possibly build up a new understanding of the terrestrial biosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-21
    Description: The calving of A-68, the 5,800-km2, 1-trillion-ton iceberg shed from the Larsen C Ice Shelf in July 2017, is one of over 10 significant ice-shelf loss events in the past few decades resulting from rapid warming around the Antarctic Peninsula. The rapid thinning, retreat, and collapse of ice shelves along the Antarctic Peninsula are harbingers of warming effects around the entire continent. Ice shelves cover more than 1.5 million km2 and fringe 75% of Antarctica's coastline, delineating the primary connections between the Antarctic continent, the continental ice, and the Southern Ocean. Changes in Antarctic ice shelves bring dramatic and large-scale modifications to Southern Ocean ecosystems and continental ice movements, with global-scale implications. The thinning and rate of future ice-shelf demise is notoriously unpredictable, but models suggest increased shelf-melt and calving will become more common. To date, little is known about sub-ice-shelf ecosystems, and our understanding of ecosystem change following collapse and calving is predominantly based on responsive science once collapses have occurred. In this review, we outline what is known about (a) ice-shelf melt, volume loss, retreat, and calving, (b) ice-shelf-associated ecosystems through sub-ice, sediment-core, and pre-collapse and post-collapse studies, and (c) ecological responses in pelagic, sympagic, and benthic ecosystems. We then discuss major knowledge gaps and how science might address these gaps. This article is categorized under: Climate, Ecology, and Conservation 〉 Modeling Species and Community Interactions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-10-30
    Description: 〈jats:p〉In many of the Pacific Islands, local communities have long-held cultural and spiritual attachments to the sea, in particular to species and specific marine areas, processes, habitats, islands, and natural seabed formations. Traditional knowledge, customary marine management approaches and integrated relationships between biodiversity, ecosystems and local communities promote conservation and ensure that marine benefits are reaped in a holistic, sustainable and equitable manner. However, the interaction between local traditional knowledge, contemporary scientific approaches to marine resource management and specific regulatory frameworks has often been challenging. To some extent, the value of community practices and customary law, which have provided an incentive for regional cooperation and coordination around ocean governance, is acknowledged in several legal systems in the Pacific and a number of regional and international instruments, but this important connection can be further enhanced. In this article we present a science-based overview of the marine habitats that would be affected by deep seabed mining (DSM) along with an analysis of some traditional dimensions and cultural/societal aspects of marine resource management. We then assess whether the applicable legal frameworks at different levels attach sufficient importance to these traditional dimensions and to the human and societal aspects of seabed (mineral) resource management in the region. On the basis of this analysis, we identify best practices and formulate recommendations with regard to the current regulatory frameworks and seabed resource management approaches. Indeed, the policies and practices developed in the Pacific could well serve as a suitable model elsewhere to reconcile commercial, ecological, cultural and social values within the context of deep sea mineral exploitation in addition to sustaining the Human Well-being and Sustainable Livelihoods (HWSL) of the Pacific communities and the health of the Global Ocean.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-10
    Description: Global climate change affects marine fish through drivers such as ocean warming, acidification and oxygen depletion, causing changes in marine ecosystems and socioeconomic impacts. While experimental and observational results can inform about anticipated effects of different drivers, linking between these results and ecosystem-level changes requires quantitative integration of physiological and ecological processes into models to advance research and inform management. We give an overview of important physiological and ecological processes affected by environmental drivers. We then provide a review of available modelling approaches for marine fish, analysing their capacities for process-based integration of environmental drivers. Building on this, we propose approaches to advance important research questions. Examples of integration of environmental drivers exist for each model class. Recent extensions of modelling frameworks increase the potential for including detailed mechanisms and improving model projections. Experimental results on energy allocation, behaviour and physiological limitations will advance the understanding of organism-level trade-offs and thresholds in response to multiple drivers. More explicit representation of life cycles and biological traits can improve description of population dynamics and adaptation, and data on food web topology and feeding interactions help to detail the conditions for possible regime shifts. Identification of relevant processes will also benefit the coupling of different models to investigate spatial–temporal changes in stock productivity and integrated responses of social–ecological systems. Thus, a more process-informed foundation for models will promote the integration of experimental and observational results and increase the potential for model-based extrapolations into a future under changing environmental conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...