GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
  • Blackwell Science Ltd  (1)
  • Springer  (1)
  • 1
    Publication Date: 2017-04-04
    Description: An analysis of the field scaling power spectrum yields useful information about the source distribution, but it is uncertain whether deterministic, random, fractal or mixed approaches have to be used for the interpretation. To this end, the scaling properties of potential field spectra are analysed for a number of different source models of geological interest. Besides the models of Naidu (purely random sources) and Spector and Grant (gross block statistical ensembles) we consider other types of density and magnetization distributions with spectral exponents in the fractal range, such as a single homogeneous body with a random white source distribution. Spectral slopes in the fractal range are obtained. We also study the effects of important natural sources, such as salt domes and sedimentary basins, representing them with simple Gaussians or combinations of Gaussian signals. The same spectral slopes as for gravity signals generated by 3-D fractal source distributions are found for them. Hence the power law decay of the field is not a characteristic only of fractal source models. If a 3-D fractal source distribution is assumed a priori, a way of verifying the goodness of the model is to examine the whitened field at source level. The probability that the whitened field derives from a random white population is estimated for synthetic and real anomalies by applying the usual statistical tests.
    Description: Published
    Description: 311-323
    Description: JCR Journal
    Description: reserved
    Keywords: fractals ; potential field ; spectral analysis ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We show the magnetic model of the Selli-Vavilov region. The Selli Line is known as the northwestern edge of the southern Tyrrhenian basin. The tectonic evolution of the Tyrrhenian basin is dominated by a Tortonian - Quaternary extension through the eastward movement of the Apennine subduction system. This migration has generated a diffuse stretching of the continental crust with the emplacement of new oceanic material. This latter occurred in several localized zones where the eastward retreating of the Ionian subduction system produced a strong depletion of the crust with formation of basins and correlated spreading. Nowadays the presence of oceanic crust is confirmed through direct drilling investigation but a complete mapping of the oceanic crustal distribution is still lacking. The Selli-Vavilov region shows a differentiated crustal setting where seamount structures, the oceanic basement portions and continental crust blocks are superimposed. To this aim, a 2D inversion of the magnetic data of this region was conducted to define buried structures. The magnetic susceptibility pattern was computed by solving the least squares problem of the misfit between the predicted and real data for separated wavebands. This method produced two 2D models of the high and low frequency fields of the Selli-Vavilov region. The two apparent susceptibility maps provide different information for distinct ranges of depth. The results of the inversions were also combined with seismic data of the Selli region highlighting the position of the highly-magnetized buried bodies. The results confirm a role for the Selli Line as a deep crustal boundary dividing the Sardinian passive domain from the easternmost active region where different oceanic structures are located. The Selli Line has worked as a detachment fault system which has moved eastward. Finally, the Selli-Vavilov region may be interpreted as a tectonic result due to a passive asymmetrical rift occurred between the Tortonian and Pliocene.
    Description: Published
    Description: 251-266
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Geomagnetism ; Tectonics ; Geodynamics ; Inversion ; Oceanic crust ; Volcanic structure ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...