GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-08
    Description: An appreciable fraction of introns is thought to have some function, but there is no obvious way to predict which specific intron is likely to be functional. We hypothesize that functional introns experience a different selection regime than non-functional ones and will therefore show distinct evolutionary histories. In particular, we expect functional introns to be more resistant to loss, and that this would be reflected in high conservation of their position with respect to the coding sequence. To test this hypothesis, we focused on introns whose function comes about from microRNAs and snoRNAs that are embedded within their sequence. We built a data set of orthologous genes across 28 eukaryotic species, reconstructed the evolutionary histories of their introns and compared functional introns with the rest of the introns. We found that, indeed, the position of microRNA- and snoRNA-bearing introns is significantly more conserved. In addition, we found that both families of RNA genes settled within introns early during metazoan evolution. We identified several easily computable intronic properties that can be used to detect functional introns in general, thereby suggesting a new strategy to pinpoint non-coding cellular functions.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-14
    Description: In this article, we focus on the analysis of competitive gene set methods for detecting the statistical significance of pathways from gene expression data. Our main result is to demonstrate that some of the most frequently used gene set methods, GSEA, GSEArot and GAGE, are severely influenced by the filtering of the data in a way that such an analysis is no longer reconcilable with the principles of statistical inference, rendering the obtained results in the worst case inexpressive. A possible consequence of this is that these methods can increase their power by the addition of unrelated data and noise. Our results are obtained within a bootstrapping framework that allows a rigorous assessment of the robustness of results and enables power estimates. Our results indicate that when using competitive gene set methods, it is imperative to apply a stringent gene filtering criterion. However, even when genes are filtered appropriately, for gene expression data from chips that do not provide a genome-scale coverage of the expression values of all mRNAs, this is not enough for GSEA, GSEArot and GAGE to ensure the statistical soundness of the applied procedure. For this reason, for biomedical and clinical studies, we strongly advice not to use GSEA, GSEArot and GAGE for such data sets.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-04
    Description: Tumor formation is partially driven by DNA copy number changes, which are typically measured using array comparative genomic hybridization, SNP arrays and DNA sequencing platforms. Many techniques are available for detecting recurring aberrations across multiple tumor samples, including CMAR, STAC, GISTIC and KC-SMART. GISTIC is widely used and detects both broad and focal (potentially overlapping) recurring events. However, GISTIC performs false discovery rate control on probes instead of events. Here we propose Analytical Multi-scale Identification of Recurrent Events, a multi-scale Gaussian smoothing approach, for the detection of both broad and focal (potentially overlapping) recurring copy number alterations. Importantly, false discovery rate control is performed analytically (no need for permutations) on events rather than probes. The method does not require segmentation or calling on the input dataset and therefore reduces the potential loss of information due to discretization. An important characteristic of the approach is that the error rate is controlled across all scales and that the algorithm outputs a single profile of significant events selected from the appropriate scales. We perform extensive simulations and showcase its utility on a glioblastoma SNP array dataset. Importantly, ADMIRE detects focal events that are missed by GISTIC, including two events involving known glioma tumor-suppressor genes: CDKN2C and NF1.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-01
    Description: Gene set enrichment testing can enhance the biological interpretation of ChIP-seq data. Here, we develop a method, ChIP-Enrich, for this analysis which empirically adjusts for gene locus length (the length of the gene body and its surrounding non-coding sequence). Adjustment for gene locus length is necessary because it is often positively associated with the presence of one or more peaks and because many biologically defined gene sets have an excess of genes with longer or shorter gene locus lengths. Unlike alternative methods, ChIP-Enrich can account for the wide range of gene locus length-to-peak presence relationships (observed in ENCODE ChIP-seq data sets). We show that ChIP-Enrich has a well-calibrated type I error rate using permuted ENCODE ChIP-seq data sets; in contrast, two commonly used gene set enrichment methods, Fisher's exact test and the binomial test implemented in Genomic Regions Enrichment of Annotations Tool (GREAT), can have highly inflated type I error rates and biases in ranking. We identify DNA-binding proteins, including CTCF, JunD and glucocorticoid receptor α (GRα), that show different enrichment patterns for peaks closer to versus further from transcription start sites. We also identify known and potential new biological functions of GRα. ChIP-Enrich is available as a web interface ( http://chip-enrich.med.umich.edu ) and Bioconductor package.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-02
    Description: Inundation of evolutionary markers expedited in Human Genome Project and 1000 Genome Consortium has necessitated pruning of redundant and dependent variables. Various computational tools based on machine-learning and data-mining methods like feature selection/extraction have been proposed to escape the curse of dimensionality in large datasets. Incidentally, evolutionary studies, primarily based on sequentially evolved variations have remained un-facilitated by such advances till date. Here, we present a novel approach of recursive feature selection for hierarchical clustering of Y-chromosomal SNPs/haplogroups to select a minimal set of independent markers, sufficient to infer population structure as precisely as deduced by a larger number of evolutionary markers. To validate the applicability of our approach, we optimally designed MALDI-TOF mass spectrometry-based multiplex to accommodate independent Y-chromosomal markers in a single multiplex and genotyped two geographically distinct Indian populations. An analysis of 105 world-wide populations reflected that 15 independent variations/markers were optimal in defining population structure parameters, such as F ST , molecular variance and correlation-based relationship. A subsequent addition of randomly selected markers had a negligible effect (close to zero, i.e. 1 x 10 –3 ) on these parameters. The study proves efficient in tracing complex population structures and deriving relationships among world-wide populations in a cost-effective and expedient manner.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-10
    Description: Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5' distal regions were often enriched in 3' distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/ .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-18
    Description: We define a new category of candidate tumor drivers in cancer genome evolution: ‘selected expression regulators’ (SERs)—genes driving dysregulated transcriptional programs in cancer evolution. The SERs are identified from genome-wide tumor expression data with a novel method, namely SPARROW ( SPAR se selected exp R essi O n regulators identified W ith penalized regression). SPARROW uncovers a previously unknown connection between cancer expression variation and driver events, by using a novel sparse regression technique. Our results indicate that SPARROW is a powerful complementary approach to identify candidate genes containing driver events that are hard to detect from sequence data, due to a large number of passenger mutations and lack of comprehensive sequence information from a sufficiently large number of samples. SERs identified by SPARROW reveal known driver mutations in multiple human cancers, along with known cancer-associated processes and survival-associated genes, better than popular methods for inferring gene expression networks. We demonstrate that when applied to acute myeloid leukemia expression data, SPARROW identifies an apoptotic biomarker ( PYCARD ) for an investigational drug obatoclax. The PYCARD and obatoclax association is validated in 30 AML patient samples.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-04-02
    Description: High-throughput sequencing of DNA coding regions has become a common way of assaying genomic variation in the study of human diseases. Copy number variation (CNV) is an important type of genomic variation, but detecting and characterizing CNV from exome sequencing is challenging due to the high level of biases and artifacts. We propose CODEX, a normalization and CNV calling procedure for whole exome sequencing data. The Poisson latent factor model in CODEX includes terms that specifically remove biases due to GC content, exon capture and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based recursive segmentation procedure that explicitly models the count-based exome sequencing data. CODEX is compared to existing methods on a population analysis of HapMap samples from the 1000 Genomes Project, and shown to be more accurate on three microarray-based validation data sets. We further evaluate performance on 222 neuroblastoma samples with matched normals and focus on a well-studied rare somatic CNV within the ATRX gene. We show that the cross-sample normalization procedure of CODEX removes more noise than normalizing the tumor against the matched normal and that the segmentation procedure performs well in detecting CNVs with nested structures.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-05-03
    Description: The Metabolic Models Reconstruction Using Genome-Scale Information ( merlin ) tool is a user-friendly Java application that aids the reconstruction of genome-scale metabolic models for any organism that has its genome sequenced. It performs the major steps of the reconstruction process, including the functional genomic annotation of the whole genome and subsequent construction of the portfolio of reactions. Moreover, merlin includes tools for the identification and annotation of genes encoding transport proteins, generating the transport reactions for those carriers. It also performs the compartmentalisation of the model, predicting the organelle localisation of the proteins encoded in the genome and thus the localisation of the metabolites involved in the reactions promoted by such enzymes. The gene-proteins-reactions (GPR) associations are automatically generated and included in the model. Finally, merlin expedites the transition from genomic data to draft metabolic models reconstructions exported in the SBML standard format, allowing the user to have a preliminary view of the biochemical network, which can be manually curated within the environment provided by merlin .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-03-14
    Description: Mutual information (MI), a quantity describing the nonlinear dependence between two random variables, has been widely used to construct gene regulatory networks (GRNs). Despite its good performance, MI cannot separate the direct regulations from indirect ones among genes. Although the conditional mutual information (CMI) is able to identify the direct regulations, it generally underestimates the regulation strength, i.e. it may result in false negatives when inferring gene regulations. In this work, to overcome the problems, we propose a novel concept, namely conditional mutual inclusive information (CMI2), to describe the regulations between genes. Furthermore, with CMI2, we develop a new approach, namely CMI2NI (CMI2-based network inference), for reverse-engineering GRNs. In CMI2NI, CMI2 is used to quantify the mutual information between two genes given a third one through calculating the Kullback–Leibler divergence between the postulated distributions of including and excluding the edge between the two genes. The benchmark results on the GRNs from DREAM challenge as well as the SOS DNA repair network in Escherichia coli demonstrate the superior performance of CMI2NI. Specifically, even for gene expression data with small sample size, CMI2NI can not only infer the correct topology of the regulation networks but also accurately quantify the regulation strength between genes. As a case study, CMI2NI was also used to reconstruct cancer-specific GRNs using gene expression data from The Cancer Genome Atlas (TCGA). CMI2NI is freely accessible at http://www.comp-sysbio.org/cmi2ni .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...