GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (122)
  • 2010-2014  (122)
Document type
  • Articles  (122)
Source
Publisher
Years
Year
Topic
  • 1
    Publication Date: 2014-12-28
    Description: Meteoroids are responsible for deposition of thousands of kilograms of annual mass flux in the Earth’s upper atmosphere but the disintegration mechanisms of these bodies, and hence their composition, still remains a subject of debate in the meteor radar community. The role and significance of fragmentation as a meteoroid disintegration mechanism has been of particular interest in the past few years but in contrast to the head echoes, relatively little work has been done to study the effect and extent of fragmentation on trail echoes observed by the high power large aperture radars. Using the 53 MHz Gadanki MST radar, we present examples of radar meteor trails whose evolution cannot be explained with just the aid of classical meteor ablation theory. These examples are analyzed and discussed on a case-by-case basis and it is reported that the evolution of these trails can be explained with the help of fragmentation. This study will form the basis for future modeling efforts of fragmenting meteor trails and has important implications on the form in which the meteoroid mass is deposited in the upper atmosphere.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-03
    Description: Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth’s weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145–1177, 2007 ) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089–1100, 1982 ) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to −100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057–1070, 1985 ) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015–1024, 1993 ) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009 ; Pedersen et al. in Geophys Res Lett 37:L02106, 2010 ; Blagoveshchenskaya et al. in Ann Geophys 27:131–145, 2009 ) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038–2045, 2014 ) and planetary (Simon et al. in Ann Geophys 29:187–195, 2011 ) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles to derive more accurate HF electron flux spectra.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-29
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-15
    Description: Photometric measurements of 33 transneptunian objects (TNOs) and Centaurs from the target list of the Herschel Key program ‘TNOs are cool’ are presented. Broadband filter observations of 5 Plutinos, 14 classical disk objects (CDOs), 5 scattered disk objects (SDOs), 5 detached disk objects (DDOs) and 4 Centaurs are used to determine absolute magnitudes, broadband colours and spectral gradients in the visible wavelength range. The diameters of the objects estimated with assumed average albedo values fall in the typical range for the various dynamical populations. Deviations between our and published measurements of the photometric brightnesses for three objects indicate larger lightcurve amplitudes (0.4–0.8 mag) due to non-spherical shape and/or albedo. A statistical analysis of photometric population properties using our data and those of the MBOSS2 database by Hainaut et al. (A&A 546:A115, 2012 ) supports the results and conclusion of this group of authors, namely it shows that dynamically cold CDOs are disjunct for their visible colours from the other TNO populations and Centaurs. Six objects (2002 GV31, 2003 AZ84, 2003 MW12, 2003 OP32, 2003 UZ117, 2005 RM43) with neutral to bluish spectral gradients were found, of which 2002 GV31 shows the smallest spectral slope among the dynamically cold CDOs known so far. Three very red objects (2002 KY14, 2004 GV9, 2007 OR10) with spectral gradients above 40 %/100 nm were found of which 2007 OR10 is by far the reddest DDO measured so far.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-15
    Description: The ~50 or 570 ka old Lonar crater, India, was excavated in the Deccan Trap flood basalt of Cretaceous age by the impact of a chondritic asteroid. The impact-spherules known from within the ejecta around this crater are of three types namely aerodynamically shaped sub-mm and mm size spherules, and a sub-mm sized variety of spherule, described as mantled lapilli, having a core consisting of ash-sized grains, shocked basalt and solidified melts surrounded by a rim of ash-sized materials. Although, information is now available on the bulk composition of the sub-mm sized spherules (Misra et al. in Meteorit Planet Sci 7:1001–1018, 2009 ), almost no idea exists on the latter two varieties. Here, we presented the microprobe data on major oxides and a few trace elements (e.g. Cr, Ni, Cu, Zn) of mm-sized impact spherules in unravelling their petrogenetic evolution. The mm-sized spherules are characterised by homogeneous glassy interior with vesicular margin in contrast to an overall smooth and glassy-texture of the sub-mm sized spherules. Undigested micro-xenocrysts of mainly plagioclase, magnetite and rare clinopyroxene of the target basalt are present only at the marginal parts of the mm-sized spherules. The minor relative enrichment of SiO 2 (~3.5 wt% in average) and absence of schlieren structure in these spherules suggest relatively high viscosity of the parent melt droplets of these spherules in comparison to their sub-mm sized counterpart. Chemically homogeneous mm-sized spherule and impact-melt bomb share similar bulk chemical and trace element compositions and show no enrichment in impactor components. The general depletion of Na 2 O within all the Lonar impactites was resulted due to impact-induced volatilisation effect, and it indicates the solidification temperature of the Lonar impactites close to 1,100 °C. The systematic geochemical variation within the mm-sized spherules (Mg# ~0.38–0.43) could be attributed to various level of mixing between plagioclase-dominated impact melts and ultrafine pyroxene and/or titanomagnetite produced from the target basalt due to impact. Predominance of schlieren and impactor components (mainly Cr, Ni), and nearly absence of vesicles in the sub-mm sized spherules plausibly suggest that these quenched liquid droplets could have produced from the impactor-rich, hotter (~1,100 °C or more) central part of the plume, whereas the morpho-chemistry of the mm-sized spherules induces their formation from the relatively cool outer part of the same impact plume.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-24
    Description: For many years lunar crescent visibility has been studied by many astronomers. Different criteria have been used to predict and evaluate the visibility status of new Moon crescents. Powerful equipment such as telescopes and binoculars have changed capability of observations. Most of conventional statistical criteria made wrong predictions when new observations (based on modern equipment) were reported. In order to verify such reports and modify criteria, not only previous statistical parameters should be considered but also some new and effective parameters like high magnification, contour effect, low signal to noise, eyestrain and weather conditions should be viewed. In this paper a new method is presented for lunar crescent detection based on processing of lunar crescent images. The method includes two main steps, first, an image processing algorithm that improves signal to noise ratio and detects lunar crescents based on circular Hough transform (CHT). Second using an algorithm based on image histogram processing to detect the crescent visually. Final decision is made by comparing the results of visual and CHT algorithms. In order to evaluate the proposed method, a database, including 31 images are tested. The illustrated method can distinguish and extract the crescent that even the eye can’t recognize. Proposed method significantly reduces artifacts, increases SNR and can be used easily by both groups astronomers and who want to develop a new criterion as a reliable method to verify empirical observation.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-16
    Description: Recent spacecraft’s observations of kilometric continuum radiation showed that the linear mode conversion theory (LMCT) cannot explain the beaming angle of these observations; on the other hand satellite observations show some local fluctuation in the density gradient. In this research, we consider the mode conversion process from UHR-mode (slow Z- mode) to LO-mode (ordinary) waves, focusing on the effect of the angle between the density gradient and the external magnetic field on the efficiency of the LMCT and the resultant beaming angle of converted LO-mode waves; a comparison of the LMCT and simulation results are presented. We first consider a condition that the density gradient is perpendicular to the external magnetic field, corresponding to the condition assumed in the conventional LMCT. Next, we extend the discussion to the condition that the density gradient is oblique to the external magnetic field. Our aim here is to investigate a condition where the efficient mode conversion can occur and to study the deviation of the beaming angle from that estimated by LMCT. From the results of analyses, for both perpendicular and oblique cases, the highest conversion efficiency is obtained for a certain value of the wave normal angle (critical wave normal angle) of the incident slow Z-mode waves, corresponding to the case when two mode branches are matched. The simulation results show in the perpendicular case that the beaming angle is consistent with the conventional LMCT; but in the oblique case a critical wave normal angle becomes different from the perpendicular case and the beaming angle is different from the LMCT prediction.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-24
    Description: In this paper we analytically estimate the magnetic field scale of planets with physical core conditions similar to that of Earth from a statistical physics point of view. We evaluate the magnetic field on the basis of the physical parameters of the center of the planet, such as density, temperature, and core size. We look at the contribution of the Seebeck effect on the magnetic field, showing that a thermally induced electrical current can exist in a rotating fluid sphere. We apply our calculations to Earth, where the currents would be driven by the temperature difference at the outer-inner core boundary, Jupiter and the Jupiter’s satellite Ganymede. In each case we show that the thermal generation of currents leads to a magnetic field scale comparable to the observed fields of the considered celestial bodies.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-23
    Description: Limits are placed on the range of orbits and masses of possible moons orbiting extrasolar planets which orbit single central stars. The Roche limiting radius determines how close the moon can approach the planet before tidal disruption occurs; while the Hill stability of the star–planet–moon system determines stable orbits of the moon around the planet. Here the full three-body Hill stability is derived for a system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star. The approximation derived here in Eq. ( 17 ) assumes the binary mass is very small compared with the mass of the star and has not previously been applied to this problem and gives the criterion against disruption and component exchange in a closed form. This criterion was applied to transiting extrasolar planetary systems discovered since the last estimation of the critical separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a ) for a variety of planet/moon ratios including binary planets, with the moon moving on a circular orbit. The effects of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but with the moon moving with a variety of eccentricities and inclinations. For the non-zero values of the eccentricity of the moon, the critical separation distance decreased as the eccentricity increased in value. Similarly the critical separation decreased as the inclination increased. In both cases the changes though very small were significant.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-08-21
    Description: The origin of the Rio Cuarto crater field, Argentina has been widely debated since the early 1990s when it was first brought to public attention. In a binary on–off sense, however, the craters are either of a terrestrial origin or they formed via a large asteroid impact. While there are distinct arguments in favour of the former option being the correct interpretation, it is the latter possibility that is principally investigated here, and five distinct impact formation models are described. Of the impact scenarios it is found that the most workable model, although based upon a set of fine-tuned initial conditions, is that in which a large, 100–150-m initial diameter asteroid, entered Earth’s atmosphere on a shallow angle path that resulted in temporary capture. In this specific situation a multiple-thousand kilometer long flight path enables the asteroid to survive atmospheric passage, without suffering significant fragmentation, and to impact the ground as a largely coherent mass. Although the odds against such an impact occurring are extremely small, the crater field may nonetheless be interpreted as having potentially formed via a very low-angle, smaller than 5° to the horizon, impact with a ground contact speed of order 5 km/s. Under this scenario, as originally suggested by Schultz and Lianza (Nature 355:234, 1992 ), the largest of the craters (crater A) in the Rio Cuarto structure was produced in the initial ground impact, and the additional, smaller craters are interpreted as being formed through the down-range transport of decapitated impactor material and crater A ejecta.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...