GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,484)
  • 2010-2014  (1,484)
Document type
  • Articles  (1,484)
Source
Publisher
Years
Year
Journal
  • 1
    Publication Date: 2014-12-18
    Description: Background In this issue, Schenkeveld and coworkers described the potential of phytosiderophores (a class of root exudates) to mobilize metals in the rhizosphere by an equilibrium modelling approach. Scope The rhizosphere is a complex and dynamic environment where several different organic and inorganic compounds coexist. Due to the different concentration and chemical characteristics there might be competitive and synergistic interactions. However the rhizosphere is strongly influenced by root activity: water and nutrient uptake, root respiration that might modify the pH and redox status of the rhizosphere. Thus, how does the complexity of the system and the dynamics influence the thermodynamics of the single process? Can chemical equilibria be really reached in the rhizosphere? Issues related to kinetics vs thermodynamics are discussed. The study of the single processes is important but more complex researches, being thus more realistic (i.e. field-like conditions), are necessary. Hence, what are the available tools/methods in rhizosphere research? What are the drawbacks? How can the results of these methods be related to thermodynamic and kinetic models? Conclusions Besides stimulating further awareness around the rhizosphere complexity, tentative answers are given highlighting the future challenges in rhizosphere research, essential knowledge for the development of agronomic practices ensuring a better exploitation of soil endogenous resources of nutrients by crops.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-18
    Description: Aims Selenium (Se) is an essential micronutrient for animals and humans but toxic at high levels. Soil Se concentration is highly variable. Selenium toxicity occurs in areas with seleniferous soils, while Se deficiency is prevalent in low-Se areas. Selenium-accumulating crop plants may be used to extract Se from seleniferous soils and provide dietary Se in low-Se areas. Methods In this study, Se accumulator, Brassica juncea (Indian mustard), was tested for its capacity to extract Se from naturally seleniferous soil (~8 mg Se kg -1 of soil) collected from west Fort Collins, CO, USA. Two Se-tolerant bacterial consortia (G1 and G2, 4–5 bacterial strains in each) were tested for their effects on plant growth and Se accumulation. Results B. juncea accumulated Se to 711 mg kg -1 dry weight (DW) in leaves, 276 mg kg -1 DW in pod husk and 358 mg kg -1 DW in seeds. Plants inoculated with consortium G1 showed significantly increased growth (dry biomass, seed weight) compared to control plants and G2-inoculated plants. G2-Inoculated plants showed reduced photosynthesis and stomatal conductance compared to control plants and G1-inoculated plants, as well as reduced Se accumulation in leaf and seed tissues. Sulfur levels were not affected by inoculation. Non-protein thiol levels were significantly elevated in G2-inoculated plants. Conclusions In conclusion, B. juncea may be used to extract Se from seleniferous soil for the production of Se-enriched plant material, and inoculation with bacterial consortium G1 further enhances the efficiency of this process by stimulating plant growth.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-18
    Description: Background and aims In order to develop new strategies aiming at reconverting agriculture-managed soils into forest plantations, pesticides effect on plant growth needs to be further understood. Thus, the development of Pinus pinea seedlings on soil spiked with benfluralin mimicking different application rates was evaluated, as a well as its effect on root colonisation with Pisolithus tinctorius and Suillus bellinii . Method P. pinea development and ectomycorrhiza colonization on soil spiked with benfluralin were assessed after 6 month growth. Results P. pinea seedlings inoculated with P. tinctorius showed higher plant growth and increased nutrient levels than seedlings inoculated with S. bellinii . At field application rate, benfluralin had an inhibitory effect on growth of non inoculated plants. Inoculation with P. tinctorius promoted plant development and nutrient uptake whereas inoculation with S. bellinii did not seem to confer plant protection against the toxic. Although P. tinctorius and S. bellinii were able to form ectomycorrhizae in the presence of benfluralin, the extent of root colonisation was affected by the herbicide. Conclusion P. tinctorius conferred protection to P. pinea against benfluralin toxicity, overcoming the effect of the herbicide on P. pinea growth and nutrient uptake. This approach can be advantageous for plant establishment on pesticide contaminated soils.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-18
    Description: Background and aims Olive mill wastewater (OMW) generated in Mediterranean countries is partly disposed of on soil. Its underlying fate mechanisms and influences on plant growth are still largely unknown. Our goal was to understand OMW organic matter (OMW-OM) degradation in soil and its phytotoxic effects. We hypothesized that OMW phytotoxicity decreased with degradation of its phenolic components. Methods In a 60 day incubation study, we monitored soil respiration, extractable total phenolic content (TPC) and carbon isotope ratio (δ 13 C) of OMW treated Israeli soil. The soil was extracted using accelerated solvent extraction (ASE) and its extracts were exemplarily analyzed for four phenolic substances by LC/MS. Phytotoxicity of soil and soil extracts were tested using a Lepidium sativum seed germination bioassay. Results Soil respiration was 2.5 times higher for OMW treated soil with two respiration maxima and indicated a degradation of up to 27 % of the added OMW-OM. Four phases of OMW-OM degradation were identified: (i) degradation of easily degradable OMW-OM and transformation of phenolic compounds, (ii) intermediate suppression of phytotoxicity, (iii) degradation of phytotoxic phenolic compounds and (iv) significant physical immobilization of phytotoxic compounds. Conclusion Environmental conditions during and after OMW disposal on soil ought to favor fast degradation of OMW-OM, minimizing their physical immobilization and phytotoxic effects.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-18
    Description: Background and Aims Fire has profound effects on ecosystem properties, but few studies have addressed the effect of repeated burns on soil nutrients, and none have been conducted in cold desert ecosystems where invasion by exotic annual grasses is resulting in greater fire frequency. Methods In a 5 year study, we examined effects of repeated burning, litter removal, and post-fire seeding on carbon (C) and nitrogen (N) contents in soils, litter, and vegetation in a cheatgrass-dominated Wyoming big sagebrush ecological type. We developed a multivariate model to identify potential mechanisms influencing treatment effects and examine the influence of environmental factors such as precipitation and temperature. Results We found that repeated burning had strong negative effects on litter C and N contents, but did not reduce soil nutrients or vegetation C and N contents, likely due to cool fire temperatures. There were few effects of litter removal or post-fire seeding. Instead, precipitation and temperature interacted with burning and had the strongest influences on soil N and vegetation C and N contents over time. Conclusions Management strategies aimed at decreasing litter and seed banks and increasing competitive interactions may be more effective at reducing cheatgrass success than approaches for reducing soil nutrients.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-17
    Description: Background and aims As part of a research consortium that explores ways to improve soil health, we study how entomopathogenic nematodes (EPNs) can be better exploited for the biological control of soil-dwelling insect pests in annual crops. Methods We evaluated how tillage might affect belowground interactions in two 30-year running Swiss field trials by combining traditional (insect bait) and molecular (novel real-time qPCR protocols) methods. Soil samples (April and October 2013) were evaluated for the presence and activity of EPN soil food web assemblage comprising 13 EPN species, six nematophagous fungi, one ectoparasitic bacterium, and the free-living nematodes (FLN) of the Acrobeloides group. Results Mortality of sentinel larvae, as well as qPCR analyses (for which we provide seven new primers/probes sets) found only trace levels of six EPN species, dominated by heterorhabditids species. Analysis of nematode progeny revealed that EPN compete intensely with FLN for insect cadavers. Overall, it appears that temperate annual cropping systems provide poor environments for EPN and that tillage does not negatively affect the natural occurrence of EPN. Conclusions Natural occurrence of EPN in Swiss tillage soils was very low, and augmentation may be a promising strategy to improve the control of root pests of annual crops.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-16
    Description: Aims In deserts, moss-dominated crusts may play an important role in terrestrial-aquatic and aboveground-belowground connections. Despite its importance, very little is known about moss’s role in biogeochemical cycles and how nutrient pulses (e.g., from N deposition in air pollution) will affect their functional significance as an integrator of nutrient cycling in deserts. Methods Moss and soil were sampled from 15 sites in the Sonoran Desert in and around Phoenix, covering the city core subject to N deposition and rural areas to the east and west. Samples were analyzed for C, N, P and micronutrient content to compare moss stoichiometry over a gradient of soil resource availability. Results Moss %N and %P were positively correlated with soil N and P. Thus, sites in the city core subject to N deposition tended to have higher soil N and therefore higher moss N than the sites outside the city core. Micronutrient content varied with sampling region but was not related to soil content. Conclusions Results suggest that moss can take up excess N,, but overall coverage of moss is lower in the city, limiting its ability to act as a N sink.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-14
    Description: Background and Aims Given that plant growth is often water limited in drylands, it has been proposed that water seems to influence productivity by altering physiological/metabolic responses and nutrient availability in short term. It is unclear, however, whether water mediates a positive plant-soil feedback and whether the feedback drives variations in plant productivity. Methods A 4-year field experiment was performed to examine the effects of water and nitrogen (N) addition on nutrient concentrations in soil and plant, nutrient resorption and potential return, in a temperate grassland in northern China. Results Water addition enhanced plant N and phosphorus (P) concentrations but reduced plant N and P resorption efficiency, leading to the increased potential N and P return to soil via litterfall. Enhanced nutrient potential return likely contributed to an increase of plant productivity in the following year. These “fertilization effects” caused by water addition were similar to those by N addition. Conclusions Our study suggests that the positive plant-soil feedback induced by increased precipitation may have a role in water-induced increases in productivity, and highlights the “fertilization effect” of water addition in a semiarid grassland in short term.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-13
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-13
    Description: Background and aims Nitrogen (N 2 ) fixation by moss-associated bacteria is an important N source in boreal peatlands and forests. Here we studied whether moss species, water table fluctuations, methane (CH 4 ) availability and diazotroph community structure would affect the rate of Sphagnum -associated N 2 fixation. Methods Diazotrophy and methanotrophy were studied in parallel in a double labeling ( 15  N 2 and 13 CH 4 ) experiment in forest and fen habitats. The role of N 2 -fixing methanotrophs was further characterized by the phylogenetic analysis of nifH genes encoding for dinitrogenase reductase. Results N 2 fixation rates were dependent on the moss species in a habitat level, but independent of the diazotroph community structure. Only 6 % of the nifH sequences were taxonomically assigned to cyanobacteria, while the majority (82 %) of genes were assigned to Alphaproteobacteria clustering with the nifH sequences of the order Rhizobiales, but without close matches to sequences of cultivated species. In the originally submerged fen mosses, water increased both N 2 fixation and CH 4 oxidation rates. However, such effect was not seen in forest mosses grown above the water table level. CH 4 addition did not enhance N 2 fixation. Conclusions N 2 fixation associated to Sphagnum mosses was controlled by the moss species and the water environment. Although most of the observed nifH sequences were related to the order Rhizobiales, methanotrophs were not responsible for the N 2 fixation.
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...