GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • Biology  (1)
Material
Publisher
Language
Years
  • 2000-2004  (1)
Year
Subjects(RVK)
  • Biology  (1)
RVK
  • 1
    Online Resource
    Online Resource
    Wiley ; 2001
    In:  Journal of Phycology Vol. 37, No. s3 ( 2001-06), p. 12-12
    In: Journal of Phycology, Wiley, Vol. 37, No. s3 ( 2001-06), p. 12-12
    Abstract: Chopin, T. 1 , Yarish, C. 2 , Neefus, C. 3 , Kraemer, G. P. 4 , Belyea, E. 1 , Carmona, R. 2 , Saunders, G. W. 5 , Bates, C. 5 , Page, F. 6 & Dowd, M. 6 1 University of New Brunswick, Centre for Coastal Studies and Aquaculture and Centre for Environmental and Molecular Algal Research, P.O. Box 5050, Saint John, New Brunswick, E2L 4L5, Canada; 2 University of Connecticut, Department of Ecology and Evolutionary Biology, 1 University Place, Stamford, Connecticut, 06901‐2315, USA; 3 University of New Hampshire, Department of Plant Biology, Office of Biometrics, G32 Spaulding Life Science Center, Durham, New Hampshire, 03824, USA; 4 State University of New York, Purchase College, Division of Natural Sciences, Purchase, New York, 10577, USA; 5 University of New Brunswick, Centre for Environmental and Molecular Algal Research, P.O. Box 4400, Fredericton, New Brunswick, E3B 5A3, Canada; 6 Department of Fisheries and Oceans, Biological Station, 531 Brandy Cove Road, St. Andrews, New Brunswick, E5B 2L9, Canada On a regional scale, finfish aquaculture can be one of the significant contributors to coastal nutrification. Contrary to common belief, even in regions of exceptional tidal and apparent “flushing” regimes like the Bay of Fundy, water mixing and transport may be limited and water residency time can be locally prolonged. Hence, nutrient bio‐availability remains significant for a relatively long period of time in some areas. Understanding the assimilative capacity of coastal ecosystems under cumulative pressure, then, becomes critical. To avoid pronounced shifts in coastal processes, conversion, not dilution, is the solution by integrating fed aquaculture (finfish) with organic and inorganic extractive aquaculture (shellfish and seaweed) so that the “ wastes” of one resource user become a resource for the others. Such a bioremediative approach provides mutual benefits to co‐cultured organisms, and economic diversification and increased profitability per cultivation unit for the aquaculture industry. These concepts will be discussed and illustrated by the results of our on‐going projects and we will demonstrate that seaweeds can also be excellent bio‐indicators of nutrification/eutrophication revealing symptoms of environmental stress and measuring the zone of influence of an aquaculture site. The aquaculture industry is here to stay in our “coastal scape”: it has its place in the global seafood supply and demand, and in the economy of coastal communities. To help ensure its sustainability, it needs, however, to responsibly change its too often monotrophic practices by adopting polytrophic ones to become better integrated into a broader coastal management framework.
    Type of Medium: Online Resource
    ISSN: 0022-3646 , 1529-8817
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2001
    detail.hit.zdb_id: 281226-5
    detail.hit.zdb_id: 1478748-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...