GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (3)
  • 2010-2014  (3)
Material
Publisher
  • Frontiers Media SA  (3)
Language
Years
  • 2010-2014  (3)
Year
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2014
    In:  Spanish Journal of Soil Science Vol. 2 ( 2014-9-05)
    In: Spanish Journal of Soil Science, Frontiers Media SA, Vol. 2 ( 2014-9-05)
    Abstract: Estimating the spatial variability of soil properties is significant for evaluating environmental impacts. For example, many soil properties are directly used in the modelling of environmental processes such as global climate change. These aspects have not previously been studied at this level in La Rioja (a region of Spain with a humid Mediterranean environment). The intention of this study was to provide quantitative information on soil assessment and mapping methods for natural soils in a humid Mediterranean environment. The properties considered included: pH and organic matter, calcium carbonate and clay contents. For testing, samples were selected from several different soil types which, in theory, were only affected by pedogenetic processes and had developed on different parent materials. More than half of the samples did not contain any CaCO 〈 sub 〉 3 〈 /sub 〉 , while the rest of the samples presented a variety of CaCO 〈 sub 〉 3 〈 /sub 〉 , forms, with high percentages being present in certain cases (up to 65% on the surface). It was possible to establish two different areas: one predominantly acidic and the other principally basic. The predominately basic samples were due to the high percentage of carbonate in the parent materials. The clay content on the surface was similar to that in the subsurface layers. Finally, the organic matter contents in the uppermost layers presented average values of 3.9%,with a range of from 0.3 to 17.5%. The major variations in soils were determined by soil type (therefore by soil forming processes), parent material composition, and vegetation type. This study reveals that these methods are useful to determine the spatial distribution of some soil properties in undisturbed soils. The contour maps of soil property variability could be used to improve future sampling designs and management decisions.
    Type of Medium: Online Resource
    ISSN: 2253-6574
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2014
    detail.hit.zdb_id: 2700695-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Spanish Journal of Soil Science, Frontiers Media SA, Vol. 2 ( 2014-9-05)
    Abstract: Estimating the spatial variability of soil properties is significant for evaluating environmental impacts. For example, many soil properties are directly used in the modelling of environmental processes such as global climate change. These aspects have not previously been studied at this level in La Rioja (a region of Spain with a humid Mediterranean environment). The intention of this study was to provide quantitative information on soil assessment and mapping methods for natural soils in a humid Mediterranean environment. The properties considered included: pH and organic matter, calcium carbonate and clay contents. For testing, samples were selected from several different soil types which, in theory, were only affected by pedogenetic processes and had developed on different parent materials. More than half of the samples did not contain any CaCO 〈 sub 〉 3 〈 /sub 〉 , while the rest of the samples presented a variety of CaCO 〈 sub 〉 3 〈 /sub 〉 , forms, with high percentages being present in certain cases (up to 65% on the surface). It was possible to establish two different areas: one predominantly acidic and the other principally basic. The predominately basic samples were due to the high percentage of carbonate in the parent materials. The clay content on the surface was similar to that in the subsurface layers. Finally, the organic matter contents in the uppermost layers presented average values of 3.9%,with a range of from 0.3 to 17.5%. The major variations in soils were determined by soil type (therefore by soil forming processes), parent material composition, and vegetation type. This study reveals that these methods are useful to determine the spatial distribution of some soil properties in undisturbed soils. The contour maps of soil property variability could be used to improve future sampling designs and management decisions.
    Type of Medium: Online Resource
    ISSN: 2253-6574
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2014
    detail.hit.zdb_id: 2700695-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2014
    In:  Spanish Journal of Soil Science Vol. 4 ( 2014-12-3)
    In: Spanish Journal of Soil Science, Frontiers Media SA, Vol. 4 ( 2014-12-3)
    Abstract: Increased human influences on soils frequently result in widespread land and soil degradation. The processes of soil and water degradation are closely linked, as unfavourable changes in the hydrological processes affect soil water regimes. In the last 15-20 years there has been increased interest in human-induced climate change, associated with increased atmospheric concentrations of greenhouse gases. Most of the present and future problems of land and soil degradation, water supply and natural disasters are mainly attributed to these climate changes. At the same time, and probably related to it, there has been a change in the focus of research on soil and water conservation. From the late 1960s there was an increasing interest in stimulating studies related to soil and water conservation. This was a great change from the previous emphasis on more static studies of the characteristics of the soil resource, mainly for soil classification and mapping, and for land evaluation related to agricultural and other uses. This situation was due to the increasing evidence of the global problems of land, soil and water degradation, and their effects on food production and the environment. Particular attention was paid to the processes of soil and water degradation in relation to their use and management for agricultural purposes. These efforts led to the development of models and evaluation systems mainly using empirical approaches. Later studies demonstrated the limitations of the generalized universal use of these empirical approaches. Concurrently there was an increase in related organizations, conventions, congresses and conferences associated with the renewed interest on soil and water conservation. A global assessment of human-induced soil degradation (GLASOD) demonstrated the paucity, difficult accessibility and poor quality of basic information. This information, however, is essential for adequate planning and effective application of practices to prevent soil and water degradation. The most recent conventions and programs at international and regional levels are generally based on re-interpretations, and a different processing method or representation of old information using “new” terminology. In other cases, new information has been mostly generated through indirect or remote sensing deductions, usually without adequate ground-truthing. The decreasing public or private support for more integrated interdisciplinary studies and the compulsion to quickly publish papers has resulted in a very specialized and isolated consideration of different aspects related to the degradation of soil functions. This frequently results in over-simplifications, failures and even contradictions in the proposed strategies to control soil degradation. Currently we have reached quasi-stagnation in soil conservation research and a new series of soil conservation terms (soil quality, desertification, tillage erosion) and clichés (“C sequestration”, “no-tillage”) have been introduced. These are derived from different interests, but generally they are very empirical approaches without a strong scientific basis. However, they attract increased attention from organizations setting policies and providing funds for research in soil and water conservation, and as a consequence many research activities in the last 20 years have been concentrated in such topics. Regretfully, these approaches have very limited accuracy and are insufficient for developing adequate policies for land use and management. Climate, soil and socio-economic conditions differ greatly from one location to another and are changing continuously. There cannot therefore be simple universal prescriptions regarding practices of sustainable soil management for crop production and environmental protection or for mitigation of the greenhouse effect by “C sequestration” in soils. The adequate selection of those sustainable practices must be based on research with a broader vision of soil conservation, where all the system components and their interactions are considered and understood with a far-sighted approach, to ensure that short term gains in one aspect or location do not induce long-term losses in other aspects or elsewhere. Research needs to be directed to better the understanding of the processes and reactions in soils related to chemical recycling and water balance over a range of spatial and temporal scales, with the common objective of improving crop production and environmental protection. Lasting solutions will only be found if adequately trained researchers in soil science and hydrology, who recognize the complexity of the problems, develop appropriate strategies.
    Type of Medium: Online Resource
    ISSN: 2253-6574
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2014
    detail.hit.zdb_id: 2700695-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...