GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  [Poster] In: Wissenschaftlich-technische Jahrestagung der deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation, 26.-28.03.2014, Hamburg, Germany .
    Publication Date: 2014-04-24
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-21
    Description: Chemical defense of the invasive red alga Gracilaria vermiculophylla has been studied and compared to that of the noninvasive but related Gracilaria chilensis. Both species rely on a wound-activated chemical defense that makes them less attractive to the herbivorous sea snail Echinolittorina peruviana. The chemical stress response of both species was monitored by LC–ESIMS-based metabolic profiling and revealed commonalities and differences. Both algae rely on a rapid lipoxygenase mediated transformation of arachidonic acid to known and novel oxylipins. Common products are 7,8-dihydroxyeicosatetraenoic acid and a novel eicosanoid with an unusual γ-lactone moiety. Several prostaglandins were predominantly formed by the invasive species. The role of some of these metabolites was investigated by surveying the attachment of E. peruviana on artificial food containing the respective oxylipins. Both algae species are defended against this general herbivore by 7,8-dihydroxyeicosatetraenoic acid, whereas the prostaglandins and the novel oxylipins were inactive at naturally occurring concentrations. The role of different oxylipins in the invasive potential of Gracilaria spp. is discussed.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-21
    Description: We assessed the effects of light limitation and temperature shift on palatability and induced antiherbivore defense in the brown alga Fucus vesiculosus L. Incubation for 2 wk at light intensities above the compensation point of photosynthesis and in the absence of grazers increased the palatability of F. vesiculosus and its subsequent consumption by the omnivorous isopod Idotea baltica Pallas. This effect correlated with an increased C:N ratio and mannitol content in the algal tissue, presumably due to increased photosynthetic carbon fixation. Mannitol, the primary product of photosynthesis in F. vesiculosus, proved to be a feeding cue for I. baltica, and depletion of the mannitol pool may therefore account for the reduced palatability during light limitation. At light intensities above the compensation point of photosynthesis, F. vesiculosus responded with decreasing palatability when it was exposed to I. baltica grazing. Irrespective of the preceding light regime, such defense induction was prevented during incubation under light limitation. Thus, under low light, defense induction is not only inhibited, but also less necessary due to the relative absence of feeding cues. Upward or downward shifts in water temperature by approximately 10°C also inhibited inducible defense in F. vesiculosus. However, such shifts did not affect algal growth and were therefore the consequence of an impairment of specific defense-related components rather than of resource limitation, unless compensatory growth was given priority over defense.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Marine Biological Laboratory
    In:  The Biological Bulletin, 213 . pp. 290-302.
    Publication Date: 2019-01-21
    Description: Animals and vascular plants are known to defend themselves facultatively against pathogens, with innate receptors mediating their resistance. Macroalgal defense against microorganisms, in contrast, has until recently been regarded mainly as constitutive. Indeed, many macroalgae appear to be chemically defended at constantly high levels, and this is possibly one of the reasons why the first evidence of pathogen-aroused resistance in a macroalga was detected only a decade ago. Here, I summarize the results of studies that indicate the existence of pathogen-activated or pathogen-induced macroalgal defense. Most indications so far come from molecular investigations, which revealed major functional similarities among the defense systems of distant macroalgal clades and the innate immune systems of vascular plants and metazoans. Homologies exist in the primary and secondary defense-activating signals, as well as in the enzymes that are involved and the cellular responses that are activated. This strongly suggests that innate immunity also exists in relatively distinct macroalgal clades. However, a macroalgal receptor still needs to be isolated and characterized, and the molecular concept of macroalgal receptor-mediated immunity needs to be complemented with an ecological perspective on pathogen-induced defense, to develop a joint neuroecological perspective on seaweed-microbe interactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Regional Euro-Asian Biological Invasions Centre - REABIC
    In:  Aquatic Invasions, 8 (2). pp. 121-132.
    Publication Date: 2019-09-23
    Description: The perennial red macroalga Gracilaria vermiculophylla (Ohmi) Papenfuss has recently been introduced to the Baltic Sea and is a potential competitor to Fucus vesiculosus, the most common native perennial alga in large parts of the Baltic Sea. Gracilaria might interfere with Fucus through direct competition for resources. In addition, Gracilaria is a favoured refuge for mesograzers, which prefer to feed on Fucus. Mesocosm-experiments were conducted over one year in the Kiel Fjord in order to test the direct and indirect effects of Gracilaria on Fucus. Fucus was incubated with Gracilaria at three different densities and grazers in high or low abundances. High densities of Gracilaria inhibited the growth of Fucus adults and also reduced the half-life-time of Fucus germlings. Associated grazers also had a negative effect on Fucus adults. Our results suggest that Gracilaria is able to influence Fucus in the Baltic Sea through direct competition for resources and by exposing it to higher grazer pressure
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-25
    Description: Differences with respect to anti-herbivore defense were investigated in invasive and native populations of the seaweed Gracilaria vermiculophylla. Specimens from 6 native populations in East Asia and from 8 populations invasive in Europe and the Mexican Pacific coast were maintained under identical conditions and offered to herbivorous snails from both the native range (Littorina brevicula) and Europe (L. littorea) in no-choice feeding assays. L. brevicula consumed in total significantly larger amounts of G. vermiculophylla tissue than did L. littorea. Further, both snail species least consumed the seaweed specimens originating from either non-native populations or from populations native to the Korean East Sea/Sea of Japan. The Korean East Sea/Sea of Japan had previously been identified as putative donor region of all the invasive populations of G. vermiculophylla. Thus, populations in the donor region as well as non-native populations in different invaded realms feature an increased capacity to resist feeding pressure. Differences in nutrient content did not account for the observed patterns of consumption, as palatability and carbon to nitrogen (C:N) ratio were not significantly correlated. Thus, mechanical or chemical defenses or the content of feeding cues influenced the behavior of the snails. We suggest that low palatability contributed to the invasion success of the species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    IFM-GEOMAR
    In:  IFM-GEOMAR Annual Report, 2007 . pp. 35-36.
    Publication Date: 2018-10-09
    Description: As a measure against the adaptive potential of enemies and for reduction of metabolic costs, defense in multicellular organisms is often regulated. The regulation usually involves molecular perception of enemy presence or activity, followed by activation or induction – either local or systemic - of defense-related proteins. Animals and vascular plants are known since more than a century to defend themselves facultatively against pathogens and grazers. Macroalgal defense, in contrast, has until recently mainly been regarded as “constitutive” in the sense of “permanent” or “unregulated”. Indeed, many macroalgae appear to be chemically defended at constantly high levels and this is possibly one of the reasons why the first evidence of enemy-aroused resistance in a macroalga was only detected a few years ago.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-01-22
    Description: In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling involved pathways using metabolomics this work contributes significantly to the understanding of activated and inducible defences for marine macroalgae.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-09-06
    Description: The recent introduction of Gracilaria vermiculophylla (Rhodophyta) to the Kiel Fjord area was a reason for concern, since this red macroalga performs best under mesohaline conditions and thus appears well adapted to thrive and spread in the Baltic Sea environment, A systematic survey on a coastal range of 500 km in 2006 and 2007 indicated considerable Multiplication and spreading of G. vermiculophylla within Kiel Fjord, but provided little evidence of long-distance transport. Nonetheless, flow-through growth experiments conducted at a range of salinities under ambient light showed that G. vermiculophylla should be able to grow in most of the Baltic Sea. Growth declined only below a salinity of 5.5. High water temperatures in summer seem to reduce resistance against low salinity. Growth of G, vermiculophylla in the SW Baltic is limited by light and is only possible during summer and above a depth of 3 m. Drifting fragments are dispersed by currents. Either they sink to deeper waters, where they degrade, or they accumulate in shallow and sheltered waters, where they form perennial mats. These overgrow not only soft bottom sediments, but also stones, which are an important habitat to Fucus vesiculosus, the main native perennial alga in the Baltic Sea. As compared to F. vesiculosus, G. vermiculophylla seems to represent a preferred refuge for mesograzers and other invertebrates, particularly in winter. Nonetheless, feeding trials showed that potential grazers avoided G. vermiculophylla relative to F vesiculosus. Daily biomass uptake by grazers associated with G. vermiculophylla in nature did not exceed 2 g kg(-1) and is 〈11% of average daily net growth (18.5 g kg(-1)) in the first 2 m below sea level. Consequently, feeding may not be sufficient to control the spread of G. vermiculophylla in the SW Baltic. Our study suggests that absence of feeding enemies and adaptation to brackish water may allow G. vermiculophylla to invade most shallow coastal waters of the inner Baltic Sea despite light limitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: The goals of this study were (1) to investigate whether Fucus vesiculosus regulates the production of its antifouling defence chemicals against epibacteria in response to light limitation and temperature shifts and (2) to investigate if different surface concentrations of defence compounds shape epibacterial communities. F. vesiculosus was incubated in indoor mesocosms at five different temperature conditions (5 to 25°C) and in outdoor mesocosms under six differently reduced sunlight conditions (0 to 100%), respectively. Algal surface concentrations of previously identified antifouling compounds - dimethylsulphopropionate (DMSP), fucoxanthin and proline – were determined and the bacterial community composition was characterized by in-depth sequencing of the 16S-rRNA gene. Altogether, the effect of different treatment levels upon defence compound concentrations was limited. Under all conditions DMSP alone appeared to be sufficiently concentrated to warrant for at least a partial inhibitory action against epibiotic bacteria of F. vesiculosus. In contrast, proline and fucoxanthin rarely reached the necessary concentration ranges for self-contained inhibition. Nonetheless, in both experiments along with the direct influence of temperature and light, all three compounds apparently affected the overall bacterial community composition associated with F. vesiculosus since tendencies for insensitivity towards all three compounds were observed among bacterial taxa that typically dominate those communities. Given that the concentrations of at least one of the compounds (in most cases DMSP) were always high enough to inhibit bacterial settlement, we conclude that the capacity of F. vesiculosus for such defence will hardly be compromised by shading or warming to temperatures up to 25°C.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...