GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (23)
  • 2015-2019  (23)
  • 2016  (23)
Document type
  • Articles  (23)
Source
Publisher
Years
  • 2015-2019  (23)
Year
Topic
  • 1
    Publication Date: 2016-12-30
    Description: In this paper, an approach for robust matching shadow areas in autonomous visual navigation and planetary landing is proposed. The approach begins with detecting shadow areas, which are extracted by Maximally Stable Extremal Regions (MSER). Then, an affine normalization algorithm is applied to normalize the areas. Thirdly, a descriptor called Multiple Angles-SIFT (MA-SIFT) that coming from SIFT is proposed, the descriptor can extract more features of an area. Finally, for eliminating the influence of outliers, a method of improved RANSAC based on Skinner Operation Condition is proposed to extract inliers. At last, series of experiments are conducted to test the performance of the approach this paper proposed, the results show that the approach can maintain the matching accuracy at a high level even the differences among the images are obvious with no attitude measurements supplied.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-22
    Description: The article presents the description of possible activity from the comet 46P/Wirtanen meteor shower. The proximity of this comet to the Earth orbit in 1984–2042 increases probabily for the Earth to encounter meteoroid particles released by this comet. For the nearest years two cases of such activity are found—in 2017 and 2019 and their characteristics and circumstances are presented.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-25
    Description: We present the analysis and computational results for the inclination relative effect of moonlets of triple asteroidal systems. Perturbations on moonlets due to the primary’s non-sphericity gravity, the solar gravity, and moonlets’ relative gravity are discussed. The inclination vector for each moonlet follows a periodic elliptical motion; the motion period depends on the moonlet’s semi-major axis and the primary’s J2 perturbations. Perturbation on moonlets from the Solar gravity and moonlet’s relative gravity makes the motion of the x component of the inclination vector of moonlet 1 and the y component of the inclination vector of moonlet 2 to be periodic. The mean motion of x component and the y component of the inclination vector of each moonlet forms an ellipse. However, the instantaneous motion of x component and the y component of the inclination vector may be an elliptical disc due to the coupling effect of perturbation forces. Furthermore, the x component of the inclination vector of moonlet 1 and the y component of the inclination vector of moonlet 2 form a quasi-periodic motion. Numerical calculation of dynamical configurations of two triple asteroidal systems (216) Kleopatra and (153591) 2001 SN263 validates the conclusion.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-11-20
    Description: Web-based citizen science often involves the classification of image features by large numbers of minimally trained volunteers, such as the identification of lunar impact craters under the Moon Zoo project. Whilst such approaches facilitate the analysis of large image data sets, the inexperience of users and ambiguity in image content can lead to contamination from false positive identifications. We give an approach, using Linear Poisson Models and image template matching, that can quantify levels of false positive contamination in citizen science Moon Zoo crater annotations. Linear Poisson Models are a form of machine learning which supports predictive error modelling and goodness-of-fits, unlike most alternative machine learning methods. The proposed supervised learning system can reduce the variability in crater counts whilst providing predictive error assessments of estimated quantities of remaining true verses false annotations. In an area of research influenced by human subjectivity, the proposed method provides a level of objectivity through the utilisation of image evidence, guided by candidate crater identifications.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-25
    Description: We present lightcurves, shapes, and 3D convex spin-axis models for two main-belt asteroids: (3657) Ermolova and (5325) Silver. The photometric data were obtained at the Skalnaté Pleso Observatory (High Tatras, Slovakia) only. The models were obtained with the lightcurve inversion process using combined dense photometric data from the apparitions in 2006, 2010, and 2013 for Ermolova and in 2006, 2010, and 2013 for Silver. The analysis of the resulting data found sidereal periods and possible ecliptic pole solutions (J2000.0). Currently, only 1592 models are known for 907 asteroids. Knowledge of individual asteroid shapes and spin axes is vital for the understanding the Solar System.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-22
    Description: The outbursts of comets, sudden large increases in their luminosity, are still very interesting and mysterious signs of activity of this celestial bodies. Most of the cometary outbursts are taking place at heliocentric distances where sublimation of water ice plays an important role in the activity of comets. However, the phenomenon is also observed far away from the Sun (i.e. ≃5–20 au) where the sublimation of water ice is negligible and the activity of comets is dominated by more volatile chemicals. Not only typical comets show ‘cometary-like’ activity but also Centaurs. In addition to the long-term changes in brightness related to heliocentric distances and short-periodic variations connected with the rotation of the nucleus, they also exhibit a random variations in luminosity which are similar to the cometary outbursts. Paper presents an overview of the most likely hypotheses and models which try to explain this phenomenon.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-10-21
    Description: The Moon is an archive of impact cratering in the Solar System throughout the past 4.5 billion years. It preserves this record better than larger, more complex planets like the Earth, Mars and Venus, which have largely lost their ancient crusts through geological reprocessing and hydrospheric/atmospheric weathering. Identifying the parent bodies of impactors (i.e. asteroid bodies, comets from the Kuiper belt or the Oort Cloud) provides geochemical and chronological constraints for models of Solar System dynamics, helping to better inform our wider understanding of the evolution of the Solar System and the transfer of small bodies between planets. In this review article, we discuss the evidence for populations of impactors delivered to the Moon at different times in the past. We also propose approaches to the identification and characterisation of meteoritic material on the Moon in the context of future lunar exploration efforts.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-21
    Description: Lunar white light flashes associated with meteoroid impacts are now regularly observed using modest optical instrumentation. In this paper, we hypothesize that the developing, optically-dense hot ejecta cloud associated with these hypervelocity impacts also produce an associated complex plasma component that rapidly evolves resulting in a highly-transient electro magnetic pulse (EMP) in the VHF/UHF spectral region. Discovery of the characteristics and event frequency of impact EMPs would prove interesting to meteoroid flux and complex plasma physics studies especially if EMPs from the same event are detected from at least two locations on the Earth with relative delays appropriate to the propagation paths. We describe a prototype observational search, conducted in May 2014, for meteoroid lunar-impact EMPs that was conducted using simultaneous, overlapping-band, UHF radio observations at the Arecibo (AO; Puerto Rico) and Haystack (HO, Massachusetts, USA) Observatories. Monostatic/bistatic lunar radar imaging observations were also performed with HO transmitting and HO/AO receiving to confirm tracking, the net delay, and the pointing/timing ephemeris at both observatories. Signal analysis was performed using time–frequency signal processing techniques. Although, we did not conclusively identify EMP returns, this search detected possible EMPs and we have confirmed the search paradigm and established the sensitivity of the AO–HO system in detecting the hypothesized events. We have also characterized the difficult radio-frequency interference environment surrounding these UHF observations. We discuss the wide range of terrestrial-origin, Moon-bounce signals that were observed which additionally validate the observational technique. Further observations are contemplated.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2016-09-09
    Description: Saturn’s rings are known to show remarkable real time variability in their structure. Many of which can be associated to interactions with nearby moons and moonlets. Possibly the most interesting and dynamic place in the rings, probably in the whole Solar System, is the F ring. A highly disrupted ring with large asymmetries both radially and azimuthally. Numerically non-zero components to the curl of the velocity vector field (vorticity) in the perturbed area of the F ring post encounter are witnessed, significantly above the background vorticity. Within the perturbed area rich distributions of local rotations is seen located in and around the channel edges. The gravitational scattering of ring particles during the encounter causes a significant elevated curl of the vector field above the background F ring vorticity for the first 1–3 orbital periods post encounter. After 3 orbital periods vorticity reverts quite quickly to near background levels. This new found dynamical vortex life of the ring will be of great interest to planet and planetesimals in proto-planetary disks where vortices and turbulence are suspected of having a significant role in their formation and migrations. Additionally, it is found that the immediate channel edges created by the close passage of Prometheus actually show high radial dispersions in the order ~20–50 cm/s, up to a maximum of 1 m/s. This is much greater than the value required by Toomre for a disk to be unstable to the growth of axisymmetric oscillations. However, an area a few hundred km away from the edge shows a more promising location for the growth of coherent objects.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-07-21
    Description: Natural electromagnetic (EM) signals of extremely low frequencies (ELF, 3 Hz–3 kHz) can be used to study many of the electromagnetic processes and properties occurring in the Martian environment. Sources of these signals, related to electrical activity in the atmosphere, are very significant since they can influence radio wave propagation on the planet, the atmospheric composition, and the ionospheric structure. In addition, such EM signals can be employed in many purposes such as: surveying the subsurface of Mars or studying the impact of the space weather on the Martian ionosphere. As ELF waves propagate on very long distances, it is possible to explore properties of the entire planet using single-station recordings. In this study, we propose an experiment that allows measuring ELF signals from the Martian surface. Such measurements can be used for detection of electric discharges in the atmosphere and water reservoirs in the planetary subsurface.
    Print ISSN: 0167-9295
    Electronic ISSN: 1573-0794
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...