GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (39)
  • 2015-2019  (39)
  • 2015  (39)
Document type
  • Articles  (39)
Source
Publisher
Years
  • 2015-2019  (39)
Year
Topic
  • 1
    Publication Date: 2015-12-19
    Description: Detection of seasonal erosion processes at the scale of an elementary black marl gully from time series of Hi-Resolution DEMs Earth Surface Dynamics Discussions, 3, 1555-1586, 2015 Author(s): J. Bechet, J. Duc, A. Loye, M. Jaboyedoff, N. Mathys, J.-P. Malet, S. Klotz, C. Le Bouteiller, B. Rudaz, and J. Travelletti The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps) is situated in Callovo-Oxfordian black marls, a lithology particularly prone to weathering processes. Since 30 years, this small watershed (0.13 ha) has been monitored for analysing hillslope erosion processes at the scale of elementary gullies. Since 2007, a monitoring of surface changes has been performed by comparing of high-resolution digital elevation models (HR-DEMs) produced from Terrestrial Laser Scanner (TLS). The objectives are (1) to detect and (2) to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the DEM at the centimetre scale. The topographic changes over a time span of 4 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes contributing to the recharge of tributary gullies and rills are presented. According to the transport capacity generated by runoff, loose regolith soil sources are eroded at different periods of the year. These are forming transient deposits in the main reach when routed downstream, evolving from a transport-limited to a supply-limited regime through the year. The monitoring allows a better understanding of the seasonal pattern of erosion processes for black marls badland-type slopes and illustrates the mode of sediment production and the temporal storage/entrainment in similar slopes. The observed surface changes caused by erosion (ablation/deposition) are quantified for the complete TLS time-series, and sediment budget maps are presented for each season. Comparisons of the TLS sediment budget map with the in situ sediment monitoring (limnigraph and sedigraph) in the stream are discussed. Intense and long duration rainfall events are the triggering factor of the major erosive events.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-18
    Description: Coarse bedload routing and dispersion through tributary confluences Earth Surface Dynamics Discussions, 3, 1509-1553, 2015 Author(s): K. S. Imhoff and A. C. Wilcox Sediment routing fundamentally influences channel morphology and propagation of disturbances. However, the transport and storage of bedload particles in headwater channel confluences, which may be significant nodes of the channel network in terms of sediment routing, morphology, and habitat, is poorly understood. To characterize routing processes through confluences of headwater channels, we investigate how sediment routing patterns through headwater confluences compare to those described in low-gradient gravel bed river systems, and how confluences affect the dispersive behavior of coarse bedload particles compared to non-confluence reaches. We address these questions with a field tracer experiment using passive-integrated transponder and radio-frequency identification technology in the East Fork Bitterroot River basin, Montana, USA. Within the confluence zone, transport occurs along scour hole margins in narrow, efficient transport corridors that mirror those observed in finer-grained experiments and field studies. Coarse particles entering confluences experience reduced depositional probabilities, in contrast to the size-selective transport observed in a control reach. Stochastic transport modeling, tail analysis, and use of a dimensionless impulse ( I * ) suggest that transport distance and variance growth are enhanced through confluences for a given flow strength. We suggest that confluences absent of disturbances enhance sediment transport and dispersive growth through headwater networks.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-16
    Description: Image-based surface reconstruction in geomorphometry – merits, limits and developments of a promising tool for geoscientists Earth Surface Dynamics Discussions, 3, 1445-1508, 2015 Author(s): A. Eltner, A. Kaiser, C. Castillo, G. Rock, F. Neugirg, and A. Abellan Photogrammetry and geosciences are closely linked since the late 19th century. Today, a wide range of commercial and open-source software enable non-experts users to obtain high-quality 3-D datasets of the environment, which was formerly reserved to remote sensing experts, geodesists or owners of cost-intensive metric airborne imaging systems. Complex tridimensional geomorphological features can be easily reconstructed from images captured with consumer grade cameras. Furthermore, rapid developments in UAV technology allow for high quality aerial surveying and orthophotography generation at a relatively low-cost. The increasing computing capacities during the last decade, together with the development of high-performance digital sensors and the important software innovations developed by other fields of research (e.g. computer vision and visual perception) has extended the rigorous processing of stereoscopic image data to a 3-D point cloud generation from a series of non-calibrated images. Structure from motion methods offer algorithms, e.g. robust feature detectors like the scale-invariant feature transform for 2-D imagery, which allow for efficient and automatic orientation of large image sets without further data acquisition information. Nevertheless, the importance of carrying out correct fieldwork strategies, using proper camera settings, ground control points and ground truth for understanding the different sources of errors still need to be adapted in the common scientific practice. This review manuscript intends not only to summarize the present state of published research on structure-from-motion photogrammetry applications in geomorphometry, but also to give an overview of terms and fields of application, to quantify already achieved accuracies and used scales using different strategies, to evaluate possible stagnations of current developments and to identify key future challenges. It is our belief that the identification of common errors, "bad practices" and some other valuable information in already published articles, scientific reports and book chapters may help in guiding the future use of SfM photogrammetry in geosciences.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-11
    Description: Topography-based flow-directional roughness: potential and challenges Earth Surface Dynamics Discussions, 3, 1399-1444, 2015 Author(s): S. Trevisani and M. Cavalli Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) is a promising approach for extracting useful fine-scale morphological information. Surface roughness, considered here as a synonym of surface texture, can have a discriminant role in the detection of different geomorphic processes and factors. Very often, the local morphology presents, at different scales, anisotropic characteristics that could be taken into account when calculating or measuring surface roughness. The high morphological detail of HRDTMs permits the description of different aspects of surface roughness, beyond an evaluation limited to isotropic measures of surface roughness. The generalization of the concept of roughness implies the need to refer to a family of specific roughness indices capable of capturing specific multi-scale and anisotropic aspects of surface morphology. An interesting set of roughness indices is represented by directional measures of roughness that can be meaningful in the context of analyzed and modeled flow processes. Accordingly, we test the application of a flow-oriented directional measure of roughness based on the geostatistical bivariate index MAD (median of absolute directional differences), which is computed considering surface gravity-driven flow direction. MAD is derived from a modification of a variogram and is specifically designed for the geomorphometric analysis of HRDTMs. The presented approach shows the potential impact of considering directionality in the calculation of roughness indices. The results demonstrate that the use of flow directional roughness can improve geomorphometric modeling (e.g., sediment connectivity and surface texture modeling) and the interpretation of landscape morphology.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-01
    Description: Analysis of glacial and periglacial processes using structure from motion Earth Surface Dynamics Discussions, 3, 1345-1398, 2015 Author(s): L. Piermattei, L. Carturan, F. de Blasi, P. Tarolli, G. Dalla Fontana, A. Vettore, and N. Pfeifer Close-range photo-based surface reconstruction from the ground is rapidly emerging as an alternative to lidar (light detection and ranging), which today represents the main survey technique in many fields of geoscience. The recent evolution of photogrammetry, incorporating computer vision algorithms such as Structure from Motion (SfM) and dense image matching such as Multi-View Stereo (MVS), allows the reconstruction of dense 3-D point clouds for the photographed object from a sequence of overlapping images taken with a digital consumer camera. The objective of our work was to test the accuracy of the ground-based SfM-MVS approach in calculating the geodetic mass balance of a 2.1 km 2 glacier in the Ortles-Cevedale Group, Eastern Italian Alps. In addition, we investigated the feasibility of using the image-based approach for the detection of the surface displacement rate of a neighbouring active rock glacier. Airborne laser scanning (ALS) data were used as benchmarks to estimate the accuracy of the photogrammetric DTMs and the reliability of the method in this specific application. The glacial and periglacial analyses were performed using both range and image-based surveying techniques, and the results were then compared. The results were encouraging because the SfM-MVS approach enables the reconstruction of high-quality DTMs which provided estimates of glacial and periglacial processes similar to those achievable by ALS. Different resolutions and accuracies were obtained for the glacier and the rock glacier, given the different survey geometries, surface characteristics and areal extents. The analysis of the SfM-MVS DTM quality allowed us to highlight the limitations of the adopted expeditious method in the studied alpine terrain and the potential of this method in the multitemporal study of glacial and periglacial areas.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-19
    Description: Inter-annual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs Earth Surface Dynamics Discussions, 3, 1317-1344, 2015 Author(s): M. J. Westoby, S. A. Dunning, J. Woodward, A. S. Hein, S. M. Marrero, K. Winter, and D. E. Sugden Multi-temporal and fine resolution topographic data products are being increasingly used to quantify surface elevation change in glacial environments. In this study, we employ 3-D digital elevation model (DEM) differencing to quantify the topographic evolution of a blue-ice moraine complex in front of Patriot Hills, Heritage Range, Antarctica. Terrestrial laser scanning (TLS) was used to acquire multiple topographic datasets of the moraine surface at the beginning and end of the austral summer season in 2012/2013 and during a resurvey field campaign in 2014. A complementary topographic dataset was acquired at the end of season 1 through the application of Structure-from-Motion (SfM) photogrammetry to a set of aerial photographs taken from an unmanned aerial vehicle (UAV). Three-dimensional cloud-to-cloud differencing was undertaken using the Multiscale Model to Model Cloud Comparison (M3C2) algorithm. DEM differencing revealed net uplift and lateral movement of the moraine crests within season 1 (mean uplift ∼ 0.10 m), with lowering of a similar magnitude in some inter-moraine depressions and close to the current ice margin. Our results indicate net uplift across the site between seasons 1 and 2 (mean 0.07 m). This research demonstrates that it is possible to detect dynamic surface topographical change across glacial moraines over short (annual to intra-annual) timescales through the acquisition and differencing of fine-resolution topographic datasets. Such data offer new opportunities to understand the process linkages between surface ablation, ice flow, and debris supply within moraine ice.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-14
    Description: Morphology of meandering and braided gravel-bed streams from the Bayanbulak Grassland, Tianshan, China Earth Surface Dynamics Discussions, 3, 1289-1316, 2015 Author(s): F. Métivier, O. Devauchelle, H. Chauvet, E. Lajeunesse, P. Meunier, K. Blanckaert, Z. Zhang, Y. Fan, Y. Liu, Z. Dong, and B. Ye The Bayanbulak Grassland, Tianshan, China is located in an intramountane sedimentary basin where meandering and braided gravel-bed streams coexist under the same climatic and geological settings. We report on measurements of their discharge, width, depth, slope and grain size. Based on this data set, we compare the morphology of individual threads from braided and meandering streams. Both types of threads share statistically indistinguishable regime relations. Their depths and slopes compare well with the threshold theory, but they are wider than predicted by this theory. These findings are reminiscent of previous observations from similar gravel-bed streams. Using the scaling laws of the threshold theory, we detrend our data with respect to discharge to produce a homogeneous statistical ensemble of width, depth and slope measurements. The statistical distributions of these dimensionless quantities are similar for braided and meandering streams. This suggests that a braided river is a collection of intertwined channels, which individually resemble isolated streams. Given the environmental conditions in Bayanbulak, we furthermore hypothesize that bedload transport causes the channels to be wider than predicted by the threshold theory.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-11
    Description: 3-D models and structural analysis of analogue rock avalanche deposits: a kinematic analysis of the propagation mechanism Earth Surface Dynamics Discussions, 3, 1255-1288, 2015 Author(s): C. Longchamp, A. Abellan, M. Jaboyedoff, and I. Manzella Rock avalanches are extremely destructive and uncontrollable events that involve a great volume of material (〉 10 6 m 3 ), several complex processes and they are difficult to witness. For this reason the study of these phenomena using analogue modelling and the accurate analysis of deposit structures and features of laboratory data and historic events become of great importance in the understanding of their behavior. The main objective of this research is to analyze rock avalanche dynamics by means of a detailed structural analysis of the deposits coming from data of 3-D measurements of mass movements of different magnitudes, from decimeter level scale laboratory experiments to well-studied rock avalanches of several square kilometers magnitude. Laboratory experiments were performed on a tilting plane on which a certain amount of a well-defined granular material is released, propagates and finally stops on a horizontal surface. The 3-D geometrical model of the deposit is then obtained using either a scan made with a 3-D digitizer (Konica Minolta vivid 9i) either using a photogrammetric method called Structure-from-Motion (SfM) which requires taking several pictures from different point of view of the object to be modeled. In order to emphasize and better detect the fault structures present in the deposits, we applied a median filter with different moving windows sizes (from 3 × 3 to 9 × 9 nearest neighbors) to the 3-D datasets and a gradient operator along the direction of propagation. The application of these filters on the datasets results in: (1) a precise mapping of the longitudinal and transversal displacement features observed at the surface of the deposits; and (2) a more accurate interpretation of the relative movements along the deposit (i.e. normal, strike-slip, inverse faults) by using cross-sections. Results shows how the use of filtering techniques reveal disguised features in the original point cloud and that similar displacement patterns are observable both in the laboratory simulation and in the real scale avalanche, regardless the size of the avalanche. Furthermore, we observed how different structural features including transversal fractures and folding patterns tend to show a constant wavelength proportional to the size of the avalanche event.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-15
    Description: Modelling sediment clasts transport during landscape evolution Earth Surface Dynamics Discussions, 3, 1221-1254, 2015 Author(s): S. Carretier, P. Martinod, M. Reich, and Y. Godderis Over thousands to millions of years, the landscape evolution is predicted by models based on fluxes of eroded, transported and deposited material. The laws describing these fluxes, corresponding to averages over many years, are difficult to prove with the available data. On the other hand, sediment dynamics are often tackled by studying the distribution of certain grain properties in the field (e.g. heavy metals, detrial zircons, 10 Be in gravel, magnetic tracers, etc.). There is a gap between landscape evolution models based on fluxes and these field data on individual clasts, which prevent the latter from being used to calibrate the former. Here we propose an algorithm coupling the landscape evolution with mobile clasts. Our landscape evolution model predicts local erosion, deposition and transfer fluxes resulting from hillslope and river processes. Clasts of any size are initially spread in the basement and are detached, moved and deposited according to probabilities using these fluxes. Several river and hillslope laws are studied. Although the resulting mean transport rate of the clasts does not depend on the time step or the model cell size, our approach is limited by the fact that their scattering rate is cell-size dependent. Nevertheless, both their mean transport rate and the shape of the scattering-time curves fit the predictions. Different erosion-transport laws generate different clast movements. These differences show that studying the tracers in the field may provide a way to establish these laws on the hillslopes and in the rivers. Possible applications include the interpretation of cosmogenic nuclides in individual gravel deposits, provenance analyses, placers, sediment coarsening or fining, the relationship between magnetic tracers in rivers and the river planform, and the tracing of weathered sediment.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-10-13
    Description: Reduced fine sediment flux in response to the managed diversion of an upland river channel Earth Surface Dynamics Discussions, 3, 1179-1220, 2015 Author(s): M. T. Perks and J. Warburton This paper describes the implementation of a novel mitigation approach and subsequent adaptive management, designed to reduce the transfer of fine sediment in Glaisdale Beck; a small upland catchment in the UK. Hydro-meteorological and suspended sediment datasets are collected over a two year period spanning pre- and post-diversion periods in order to assess the impact of the channel reconfiguration scheme on the fluvial suspended sediment dynamics. Analysis of the river response demonstrates that the fluvial sediment system has become more restrictive with reduced fine sediment transfer. This is characterised by reductions in flow-weighted mean suspended sediment concentrations from 77.93 mg L −1 prior to mitigation, to 74.36 mg L −1 following the diversion. A Mann–Whitney U test found statistically significant differences ( p 〈 0.001) between the pre- and post-monitoring median SSCs. Whilst application of one-way analysis of covariance (ANCOVA) on the coefficients of sediment rating curves developed before and after the diversion found statistically significant differences ( p 〈 0.001), with both Log a and b coefficients becoming smaller following the diversion. Non-parametric analysis indicates a reduction in residuals through time ( p 〈 0.001), with the developed LOWESS model over-predicting sediment concentrations as the channel stabilises. However, the channel is continuing to adjust to the reconfigured morphology, with evidence of a headward propagating knickpoint which has migrated 120 m at an exponentially decreasing rate over the last 7 years since diversion. The study demonstrates that channel reconfiguration can be effective in mitigating fine sediment flux in upland streams but the full value of this may take many years to achieve whilst the fluvial system, slowly readjusts.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...