GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (288)
  • 2015-2019  (288)
  • 2015  (288)
Document type
  • Articles  (288)
Source
Publisher
Years
  • 2015-2019  (288)
Year
Topic
  • 1
    Publication Date: 2015-10-11
    Description: Publication date: 15 January 2016 Source: Icarus, Volume 264 Author(s): Imke de Pater, Conor Laver, Ashley Gerard Davies, Katherine de Kleer, David A. Williams, Robert R. Howell, Julie A. Rathbun, John R. Spencer Observations obtained with the near-infrared camera NIRC2, coupled to the adaptive optics system on the 10-m W.M. Keck II telescope on Mauna Kea, Hawaii, on 14 August 2007 revealed an active and highly-energetic eruption at Pillan at 245.2 ± 0.7°W and 8.5 ± 0.5°S. A one-temperature blackbody fit to the data revealed a (blackbody) temperature of 840 ± 40 K over an area of 17 km 2 , with a total power output of ∼500 GW. Using Davies’ (Davies, A.G. [1996]. Icarus 124(1), 45–61) Io Flow Model, we find that the oldest lava present is less than 1-2 h old, having cooled down from the eruption temperature of >1400 K to ∼710 K; this young hot lava suggests that an episode of lava fountaining was underway. In addition to an examination of this eruption, we present data of the Pele and Pillan volcanoes obtained with the same instrument and telescope from 2002 through 2015. These data reveal another eruption at Pillan on UT 28 June 2010. Model fits to this eruption yield a blackbody temperature of 600–700 K over an area of ∼60 km 2 , radiating over 600 GW. On UT 18 February 2015 an energetic eruption was captured by the InfraRed Telescope Facility (IRTF) via mutual event occultations. The eruption took place at 242.7 ± 1°W and 12.4 ± 1°S, i.e., in the eastern part of Pillan Patera. Subsequent observations showed a gradual decrease in the intensity of the eruption. Images obtained with the Keck telescope on 31 March and 5 May 2015 revealed that the locations of the eruption had shifted by 120–160 km to the NW. In contrast to the episodicity of Pillan, Pele has been persistent, observed in every appropriate 4.7 μm observation. Pele was remarkably consistent in its thermal emission from the Galileo era through February 2002, when a blackbody temperature of 940 ± 40 K and an area of 6.5 km 2 was measured. Since that time, however, the radiant flux from what is likely a apparently large, overturning lava lake has gradually subsided over the next decade by a factor of ∼4, while the location of the thermal source was moving back and forth between areas roughly ∼100 km to the W of the 2002 location and an area roughly ∼100 km to the SE of the 2002 location.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-11
    Description: Publication date: 15 January 2016 Source: Icarus, Volume 264 Author(s): Joseph S. Levy, Caleb I. Fassett, James W. Head Observations of Mars from the surface and from orbit suggest that erosion rates over the last ∼3 Gyr (the Amazonian) have been as slow as 10 −5 m/Myr and have been dominated by aeolian processes, while ancient (Noachian) erosion rates may have been orders of magnitude higher due to impact bombardment and fluvial activity. Amazonian-aged glacial deposits are widespread on Mars, but rates of erosion responsible for contributing debris to these remnant glacial deposits have not been constrained. Here, we calculate erosion rates during Amazonian glaciations using a catalog of mid-latitude glacial landforms coupled with observational and theoretical constraints on the duration of glaciation. These calculations suggest that erosion rates for scarps that contributed debris to glacial landforms are 4–7 orders of magnitude higher than average Amazonian rates in non-glaciated, low-slope regions. These erosion rates are similar to terrestrial cold-based glacier erosion and entrainment rates, consistent with cold-based glacier modification of parts of Mars.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-11
    Description: Publication date: 15 January 2016 Source: Icarus, Volume 264 Author(s): P. Borin, G. Cremonese, M. Bruno, F. Marzari The planet Mercury has an extended and tenuous exosphere made up of atoms that are ejected from the surface by energetic processes, including hypervelocity micrometeoritic impacts, photon-stimulated desorption by UV radiation, and ion sputtering. Meteoroid impacts of particles smaller than 1 cm, which are important for replenishing the exosphere daily, are not well-studied. We present a systematic investigation of spatial asymmetries in the impactor rate of micrometeoroids over Mercury’s surface as a function of planetary true anomaly (TAA). Since the orbit of Mercury is quite eccentric a seasonal variation of the impact rate is to be expected. We find that the source peaks near the planetary equator for most TAA. Contrary to previous assumptions, we find the source to be non-uniform in local time. Only certain regions of Mercury are exposed to dust as a result of the orbital elements of Mercury and of the Main Belt particles (inclination less than 20°). Our results offer important constraints on transport models used for interpreting measurements of this exosphere, but also inform studies of space weathering of Mercury’s surface.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-11
    Description: Publication date: 15 January 2016 Source: Icarus, Volume 264 Author(s): R.J. Soare, S.J. Conway, C. Gallagher, J.M. Dohm The Argyre basin and associated rim-materials in the southern highlands of Mars are ancient, having been formed by the impact of a large body ∼3.9 Gya. Despite its age, the regional landscape exhibits a wide range of geological/geomorphological modifications and/or features, e.g. fluvial, lacustrine, aeolian, glacial and periglacial. Collectively, this bears witness to the dynamic evolution of the Argyre region from the deep past through to, perhaps, the present day. Here, we present three principal findings that point to at least two distinct episodes of periglaciation, separated by a possible glacial-interval, during the very Late Amazonian Epoch in eastern Aonia Terra ( AT ), i.e. on the western flank of the Argyre basin. These findings are the product of our circum-Argyre study of all HiRISE images (∼35–65°S and ∼290–350°E). (1) (a) The first periglacial episode involves the development of small-sized (∼15–25 m in diam.) and clastically-“sorted polygons” ( SPs ). The SPs are observed at eighteen locations within eastern AT . Hitherto, the presence of SPs in this region has been reported at one location alone. No other observations of SPs in the southern hemisphere of Mars have been documented. Morphologically similar landforms develop in cold-climate (permafrost) landscapes on Earth by means of periglacial processes, i.e. freeze–thaw cycling, segregated-ice formation, cryoturbation and frost heave. (b) We ascribe a periglacial origin to the SPs in eastern AT on the basis of this similarity of form and, no less importantly, on the close spatial-association of the SPs with blockfields (whose weathered “clastic” products are the building blocks of periglacial sorting on Earth), gelifluction-like lobes and possible “wet” gullies. Where similar assemblages occur in terrestrial permafrost-landscapes, the presence of liquid water and of boundary conditions tolerant of freeze–thaw cycling, are observed or inferred. (c) Fifteen of the eighteen SP locations are clustered longitudinally (44.4–57.5°S; 289.9–302.4°E). This is inconsistent with the latitudinal- and (obliquity-driven) dependency of freeze–thaw cycling in the Late Amazonian Epoch hypothesised by many workers in the discipline. (2) The second periglacial episode is highlighted by the development of small-sized and clastically non-sorted polygons ( NSPs ). These polygons could have formed by means of a “dry” cryotic process, i.e. thermal-contraction cracking. (3) The NSPs incise (and thus postdate) a light-toned mantle, thought by numerous workers to comprise an “ice-dust” admixture. At some of the locations where the putatively icy-mantle has undergone apparent ablation, underlying SPs are observed. This suggests that the SPs predate the mantle and, derivatively, the NSPs as well. The proposed geochronology of “wet-based SP – icy mantle – dry-based NSP ” (periods and interval) is entirely new to the community. Moreover, it underlines the possibility that periglacial and glacial boundary-conditions, at least in our study area, may have oscillated much more substantially in the very Late Amazonian Epoch than many workers have thought possible.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-10
    Description: Publication date: 15 January 2016 Source: Icarus, Volume 264 Author(s): A. Garenne, P. Beck, G. Montes-Hernandez, O. Brissaud, B. Schmitt, E. Quirico, L. Bonal, C. Beck, K.T. Howard In this study, we measured bidirectional reflectance spectra (0.5–4.0 μm) of 24 CMs, five CRs, one CI, one CV, and one C2 carbonaceous chondrites. These meteorites are known to have experienced an important variability in their relative degrees of aqueous alteration degree (Rubin et al. [2007]. Geochim. Cosmochim. Acta 71, 2361–2382; Howard et al. [2009]. Geochim. Cosmochim. Acta 73, 4576–4589; Howard et al. [2011]. Geochim. Cosmochim. Acta 75, 2735–2751; Alexander et al. [2013]. Geochim. Cosmochim. Acta 123, 244–260). These measurements were performed on meteorite powders inside an environmental cell under a primary vacuum and heated at 60 °C in order to minimize adsorbed terrestrial water. This protocol allows controlling of atmospheric conditions (i.e. humidity) in order to avoid contamination by terrestrial water. We discuss various spectral metrics (e.g. reflectance, band depth, single-scattering albedo, …) in the light of recent bulk composition characterization (Howard et al. [2009]. Geochim. Cosmochim. Acta 73, 4576–4589; Howard et al. [2015]. Geochim. Cosmochim. Acta 149, 206–222; Alexander et al. [2012]. Science 337, 721; Beck et al. [2014]. Icarus 229, 263–277; Garenne et al. [2014]. Geochim. Cosmochim. Acta 137, 93–112). This study reveals variability of reflectance among meteorite groups. The reflectance is not correlated with carbon or hydrogen abundance neither with measured grain size distribution. We suggest that it is rather controlled by the nature of accreted components, in particular the initial matrix/chondrule proportion. Band depth, integrated band depth, mean optical path length, normalized optical path length, effective single-particle absorption thickness were calculated on the so called 3-μm band for reflectance spectra and for single scattering albedo spectra. They were compared with hydrated phase proportions from previous study on the same meteorites by thermogravimetric analyses and infrared spectroscopy in transmission. We find that normalized optical path length (NOPL) is the most appropriate to quantify water abundance, with an absolute error of about 5 wt.%. These datasets also reveal a variability of the band shape between 2.8 and 2.9 μm, which is interpreted as reflecting variation in the chemical composition and structure of phyllosilicates. This chemical variation could also be used to quantify the aqueous alteration degree between meteorite groups. The combination of reflectance at 2 μm and the depth of 3-μm band can be combined, to classify carbonaceous chondrites in reflectance in term of primary composition (e.g. matrix/chondrule ratio, carbon content) and secondary processes (e.g. aqueous alteration, thermal metamorphism). This could be used to decipher the nature of aqueous alteration in C-complex asteroids.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-03
    Description: Publication date: 15 January 2016 Source: Icarus, Volume 264 Author(s): Leigh N. Fletcher, P.G.J. Irwin, R.K. Achterberg, G.S. Orton, F.M. Flasar Far-IR 16–1000 μ m spectra of Saturn’s hydrogen–helium continuum measured by Cassini’s Composite Infrared Spectrometer (CIRS) are inverted to construct a near-continuous record of upper tropospheric (70–700 mbar) temperatures and para-H 2 fraction as a function of latitude, pressure and time for a third of a saturnian year (2004–2014, from northern winter to northern spring). The thermal field reveals evidence of reversing summertime asymmetries superimposed onto the belt/zone structure. The temperature structure is almost symmetric about the equator by 2014, with seasonal lag times that increase with depth and are qualitatively consistent with radiative climate models. Localised heating of the tropospheric hazes (100–250 mbar) create a distinct perturbation to the temperature profile that shifts in magnitude and location, declining in the autumn hemisphere and growing in the spring. Changes in the para-H 2 ( f p ) distribution are subtle, with a 0.02–0.03 rise over the spring hemisphere (200–500 mbar) perturbed by (i) low- f p air advected by both the springtime storm of 2010 and equatorial upwelling; and (ii) subsidence of high- f p air at northern high latitudes, responsible for a developing north–south asymmetry in f p . Conversely, the shifting asymmetry in the para-H 2 disequilibrium primarily reflects the changing temperature structure (and hence the equilibrium distribution of f p ), rather than actual changes in f p induced by chemical conversion or transport. CIRS results interpolated to the same point in the seasonal cycle as re-analysed Voyager-1 observations (early northern spring) show qualitative consistency from year to year (i.e., the same tropospheric asymmetries in temperature and f p ), with the exception of the tropical tropopause near the equatorial zones and belts, where downward propagation of a cool temperature anomaly associated with Saturn’s stratospheric oscillation could potentially perturb tropopause temperatures, para-H 2 and winds. Quantitative differences between the Cassini and Voyager epochs suggest that the oscillation is not in phase with the seasonal cycle at these tropospheric depths (i.e., it should be described as quasi-periodic rather than ‘semi annual’). Variability in the zonal wind field derived from latitudinal thermal gradients is small (〈10 m/s per scale height near the tropopause) and mostly affects the broad retrograde jets, with the notable exception of large variability on the northern flank of the equatorial jet. The meridional potential vorticity (PV) gradient, and hence the ‘staircase of PV’ associated with spatial variations in the vigour of vertical mixing, has varied over the course of the mission but maintained its overall shape. PV gradients in latitude and altitude are used to estimate the atmospheric refractive index for the propagation of stationary planetary (Rossby) waves, predicting that such wave activity would be confined to regions of real refractivity (tropical regions plus bands at 35–45° in both hemispheres). The penetration depth of these regions into the upper troposphere is temporally variable (potentially associated with stratification changes), whereas the latitudinal structure is largely unchanged over time (associated with the zonal jet system).
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-03
    Description: Publication date: 15 January 2016 Source: Icarus, Volume 264 Author(s): David Parry Rubincam Drag from hydrogen in the interstellar cloud which formed Gould’s Belt may have sent interplanetary dust particle (IDPs) and small meteoroids with embedded helium to the Earth, perhaps explaining part the helium-3 flux increase seen in the sedimentary record near the Eocene–Oligocene transition. Assuming the Solar System passed through part of the cloud, IDPs in the inner Solar System may have been dragged to Earth, while dust and small meteoroids in the asteroid belt up to centimeter size may have been dragged to the resonances, where their orbital eccentricities were pumped up into Earth-crossing orbits; however, this hypotheses does not explain the Popigai and Chesapeake Bay impacts.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-10-03
    Description: Publication date: 15 January 2016 Source: Icarus, Volume 264 Author(s): Jordan K. Steckloff, Seth A. Jacobson Sublimating gas molecules scatter off of the surface of an icy body in the same manner as photons (Lambertian Scattering). This means that for every photon-driven body force, there should be a sublimation-driven analog that affects icy bodies. Thermal photons emitted from the surfaces of asymmetrically shaped bodies in the Solar System generate net torques that change the spin rates of these bodies over time. The long-term averaging of this torque is called the YORP effect. Here we propose a sublimation-driven analog to the YORP effect (Sublimation-YORP or SYORP), in which sublimating gas molecules emitted from the surfaces of icy bodies in the Solar System also generate net torques on the bodies. However, sublimating gas molecules carry ∼10 4 –10 5 times more momentum away from the body than thermal photons, resulting in much greater body torques. Previous studies of sublimative torques focused on emissions from highly localized sources on the surfaces of Jupiter Family Comet nuclei, and have therefore required extensive empirical observations to predict the resulting behavior of the body. By contrast, SYORP applies to non-localized emissions across the entire body, which likely dominates sublimation-drive torques on small icy chunks and dynamically young comets outside the Jupiter Family, and can therefore be applied without high-resolution spacecraft observations of their surfaces. Instead, we repurpose the well-tested mathematical machinery of the YORP effect to account for sublimation-driven torques. We show how an SYORP-driven mechanism best matches observations of the rarely observed, Sun-oriented linear features (striae) in the tails of comets, whose formation mechanism has remained enigmatic for decades. The SYORP effect naturally explains why striae tend to be observed between near-perihelion and ∼1 AU from the Sun for comets with perihelia less than 0.6 AU, and solves longstanding problems with moving enough material into the cometary tail to form visible striae. We show that the SYORP mechanism can form striae that match the striae of Comet West, estimate the sizes of the stria-forming chunks, and produce a power-law fit to these parent chunks with a power law index of - 1.4 - 0.6 + 0.3 . Lastly, we predict potential observables of this SYORP mechanism, which may appear as clouds or material that appear immediately prior to stria formation, or as a faint, wispy dust feature within the dust tail, between the nucleus and the striae.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-02
    Description: Publication date: 15 January 2016 Source: Icarus, Volume 264 Author(s): B. Jost, A. Pommerol, O. Poch, B. Gundlach, M. Leboeuf, M. Dadras, J. Blum, N. Thomas We measured the bidirectional reflectance in the VIS–NIR spectral range of different surfaces prepared from small-grained spherical water–ice particles over a wide range of incidence and emission geometries, including opposition. We show that coherent backscattering is dominating the opposition effect on fresh sample material, but its contribution decreases when particles become more irregularly shaped and the bulk porosity increases. Strong temporal evolution of the photometric properties of icy samples, caused by particle sintering and resulting in a decrease of backscattering, is shown. The sintering of the ice particles is documented using cryo-SEM micrographs of fresh and evolved samples. To complement the photometric characterization of ices, multiple high albedo laboratory analogs were investigated to study the effects of shape, grain size distribution, wavelength and surface roughness. In addition to the main backscattering peak, the phase curves also display the effect of glory in the case of surfaces of granular surfaces formed by either spherical ice or glass particles. We show that the angular position of the glory can be used to determine accurately the average size of the particles. Reflectance data are fitted by the Hapke photometric model, the Minnaert model and three morphological models. The resulting parameters can be used to reproduce our data and compare them to the results of other laboratory experiments and astronomical observations.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-10-01
    Description: Publication date: December 2015 Source: Icarus, Volume 262 Author(s): Frances Rivera-Hernandez, Joshua L. Bandfield, Steven W. Ruff, Michael J. Wolff A spectral contribution different from that observed for thick dust mantles has been identified in many of the in situ measurements of rocks and regolith acquired by the Miniature Thermal Emission Spectrometer (Mini-TES) instruments on the Mars Exploration Rovers (MER). This spectral contribution is thought to be caused by optically thin surface dust and if not corrected can greatly hinder the mineralogical interpretation of rock surfaces. The focus of this study is the characterization of key radiative processes that are necessary to understand the spectral contributions produced by optically thin surface dust. An understanding of these radiative processes is important to be able to reproduce, predict, and correct their contribution in thermal infrared (TIR; ∼200–2000 cm − 1 ; 5–50 μm) datasets. By combining TIR spectroscopic laboratory measurements and radiative transfer (RT) modeling, we have reproduced and quantified the spectral contributions produced by optically thin surface dust in the TIR spectral range. TIR laboratory measurements were acquired of basaltic rocks and gold diffuse reflectors (GDR) mantled with varying amounts of optically thin dust. The spectral contributions of optically thin dust as observed by Mini-TES were not observed in the laboratory measurements of the dusty basaltic rocks, but were observed in the measurements of the dusty GDR’s. For the dust to contribute spectral features the dust must maintain a thermal contrast with the underlying surface. This thermal contrast was not achieved for the dusty basaltic rocks. Using our RT model, laboratory spectra of the dusty basaltic rocks and GDR’s were reproduced. Our RT model appears to reproduce the spectral features attributed to the dust in the laboratory measurements to first order and can quantify the relationship between dust coatings and measured radiance. After validating the RT model against the TIR laboratory measurements, it was then used in an initial application to reproduce measurements acquired by the Mini-TES. By characterizing the spectral behavior of the dust, including the potential for thermal contrast between the dust and the substrate, it is possible to better understand and interpret TIR spectra of dust mantled surfaces.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...