GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Frontiers
    In:  EPIC3Frontiers in Marine Science, Frontiers, 10, pp. 1234776-1234776, ISSN: 2296-7745
    Publication Date: 2024-02-13
    Description: Collaborations between artists and ocean scientists are becoming increasingly frequent. As the UN Ocean Decade (2021-2030) stresses the importance of engaging with the public, there is a growing interest in using art as a tool for communication as well as for scientific exploration and experimentation. This mini-review charts the current academic research on art-science collaborations and the ocean, focusing on literature where artists and scientists work together to produce something based on scientific research. The study finds that these relationships are never apolitical, are complex and develop differently depending on each project. In sum the paper will highlight that although the academic literature is limited, its diversity has the potential to reach numerous academic disciplines and that focusing on process and engagement should be a direction for further research to help broaden the academic reach of these important oceanic knowledges.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-07
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The aim of this work is to present the food web models developed using the Ecopath with Ecosim (EwE) software tool to describe structure and functioning of various European marine ecosystems (eastern, central and western Mediterranean Sea; Black Sea; Bay of Biscay, Celtic Sea and Iberian coast; Baltic Sea; North Sea; English Channel, Irish Sea and west Scottish Sea; and Norwegian and Barents Seas). A total of 195 Ecopath models based on 168 scientific publications, which report original, updated and modified versions, were reviewed. Seventy models included Ecosim temporal simulations while 28 implemented Ecospace spatiotemporal dynamics. Most of the models and publications referred to the western Mediterranean Sea followed by the English Channel, Irish Sea and west Scottish Sea sub-regions. In the Mediterranean Sea, the western region had the largest number of models and publications, followed by the central and eastern regions; similar trends were observed in previous literature reviews. Most models addressed ecosystem functioning and fisheries-related hypotheses while several investigated the impact of climate change, the presence of alien species, aquaculture, chemical pollution, infrastructure, and energy production. Model complexity (i.e., number of functional groups) increased over time. Main forcing factors considered to run spatial and temporal simulations were trophic interactions, fishery, and primary production. Average scores of ecosystem indicators derived from the Ecopath summary statistics were compared. Uncertainty was also investigated based on the use of the Ecosampler plug-in and the Monte Carlo routine; only one third of the reviewed publications incorporated uncertainty analysis. Only a limited number of the models included the use of the ECOIND plug-in which provides the user with quantitative output of ecological indicators. We assert that the EwE modelling approach is a successful tool which provides a quantitative framework to analyse the structure and dynamics of ecosystems, and to evaluate the potential impacts of different management scenarios.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-19
    Description: 〈jats:p〉Human activities in coastal areas have intensified over the last 200 years, impacting also high-latitude regions such as the Baltic Sea. Benthic foraminifera, protists often with calcite shells (tests), are typically well preserved in marine sediments and known to record past bottom-water conditions. Morphological analyses of marine shells acquired by microcomputed tomography (µCT) have made significant progress toward a better understanding of recent environmental changes. However, limited access to data processing and a lack of guidelines persist when using open-source software adaptable to different microfossil shapes. This study provides a post-data routine to analyze the entire test parameters: average thickness, calcite volume, calcite surface area, number of pores, pore density, and calcite surface area/volume ratio. A case study was used to illustrate this method: 3D time series (i.e., 4D) of 〈jats:italic〉Elphidium clavatum〈/jats:italic〉 specimens recording environmental conditions in the Baltic Sea entrance from the period early industrial (the 1800s) to present-day (the 2010 s). Long-term morphological trends in the foraminiferal record revealed that modern specimens have ∼28% thinner tests and ∼91% more pores than their historic counterparts. However, morphological variability between specimens and the BFAR (specimens cm〈jats:sup〉−2〈/jats:sup〉 yr〈jats:sup〉−1〈/jats:sup〉) in 〈jats:italic〉E. clavatum〈/jats:italic〉 were not always synchronous. While the BFAR remained unchanged, morphological variability was linked to natural environmental fluctuations in the early industrial period and the consequences of anthropogenic climate change in the 21st century. During the period 1940–2000 s, the variations in BFAR were synchronous with morphological variability, revealing both the effects of the increase in human activities and major hydrographic changes. Finally, our interpretations, based on 〈jats:italic〉E. clavatum〈/jats:italic〉 morphological variations, highlight environmental changes in the Baltic Sea area, supporting those documented by the foraminiferal assemblages.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Frontiers
    In:  EPIC3Frontiers in Environmental Science, Frontiers, 11, pp. 1210019-1210019, ISSN: 2296-665X
    Publication Date: 2024-05-23
    Description: Plastic production and plastic waste have increased to such an extent that it has become globally ubiquitous. Recent research has highlighted that it has also invaded remote Polar Regions including the Arctic, where it is expected to accumulate over time due to transport from distant sources, rising local anthropogenic activities and increasing fragmentation of existing ocean plastics to microplastics (plastic items 〈5 mm). While a growing body of research has documented microplastics in the atmosphere, cryosphere, sea surface, water column, sediments and biota, contamination levels on Arctic beaches are poorly known. To fill this knowledge gap, we engaged citizen scientists participating in tourist cruises to sample beach sediments during shore visits on Svalbard, Norway. Following drying, sieving, and visual inspection of samples under a binocular microscope, putative plastic particles ≥1 mm were analysed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Plastic particles ≥1 mm were found in two out of 53 samples from 23 beaches (mean: 196.3 particles kg−1 and 147.4 particles L−1). These pollution levels could be due to our focus on plastic particles ≥1 mm as well as the relatively small sample sizes used during this initial phase of the project. In addition, the coarse substrate on most beaches might retain fewer plastic particles. The two samples with plastic particles ≥1 mm contained six polyester-epoxide particles and 4920 polypropylene fibres. The latter likely originated from a fishing net and points to possibly accelerated plastic fragmentation processes on Arctic beaches. Since fisheries-related debris is an important source of plastic on Svalbard, a build-up of microplastic quantities can be expected to burden Arctic ecosystems in addition to climate change unless efficient upstream action is taken to combat plastic pollution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-08
    Description: Available information and potential data gaps for non-fish marine organisms (cnidarians, crustaceans, echinoderms, molluscs, sponges, mammals, reptiles, and seabirds) covered by the global database SeaLifeBase were reviewed for eight marine ecosystems (Adriatic Sea, Aegean Sea, Baltic Sea, Bay of Biscay/Celtic Sea/Iberian Coast, Black Sea, North Sea, western Mediterranean Sea, Levantine Sea) across European Seas. The review of the SeaLifeBase dataset, which is based on published literature, analyzed information coverage for eight biological characteristics (diet, fecundity, maturity, length-weight relationships, spawning, growth, lifespan, and natural mortality). These characteristics are required for the development of ecosystem and ecological models to evaluate the status of marine resources and related fisheries. Our analyses revealed that information regarding these biological characteristics in the literature was far from complete across all studied areas. The level of available information was nonetheless reasonably good for sea turtles and moderate for marine mammals in some areas (Baltic Sea, Bay of Biscay/Celtic Sea/Iberian Coast, Black Sea, North Sea and western Mediterranean Sea). Further, seven of the areas have well-studied species in terms of information coverage for biological characteristics of some commercial species whereas threatened species are generally not well studied. Across areas, the most well-studied species are the cephalopod common cuttlefish (Sepia officinalis) and the crustacean Norway lobster (Nephrops norvegicus). Overall, the information gap is narrowest for length-weight relationships followed by growth and maturity, and widest for fecundity and natural mortality. Based on these insights, we provide recommendations to prioritize species with insufficient or missing biological data that are common across the studied marine ecosystems and to address data deficiencies.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Over half a century ago, following the development and integration of the adequate technology, the deep sea transitioned from being the last frontier for exploration on our planet to the subject of industrial-level exploitation. While the main impacts in the deep sea are currently the product of large-scale fisheries and offshore energy production (mainly oil and gas), the expected transition of the global economy towards greener (or, in this case, bluer) solutions will likely include the use of the marine domain as a setting for renewable energy infrastructure (e.g., floating wind farms loosely anchored to the seabed) and seabed mining for rare minerals that are fundamental to the renewable energy technologies. Despite the risks posed by these impacts, the development of robust management guidelines for deep-sea habitats and resources has not kept pace with technological progress and growing economic forces. As a result, this highlights an opportunity to develop standardized methodologies, goals and overall strategies. To achieve this, it is imperative for scientists and managing authorities to reach a high level of consensus in both data acquisition and treatment, as well as in reliable ecological indicators to track both natural and human-induced ecosystem changes. (...)
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-12
    Description: We present a comprehensive review of the current status of remotely sensed and in situ sea ice, ocean, and land parameters acquired over the Arctic and Antarctic and identify current data gaps through comparison with the portfolio of products provided by Copernicus services. While we include several land parameters, the focus of our review is on the marine sector. The analysis is facilitated by the outputs of the KEPLER H2020 project. This project developed a road map for Copernicus to deliver an improved European capacity for monitoring and forecasting of the Polar Regions, including recommendations and lessons learnt, and the role citizen science can play in supporting Copernicus’ capabilities and giving users ownership in the system. In addition to summarising this information we also provide an assessment of future satellite missions (in particular the Copernicus Sentinel Expansion Missions), in terms of the potential enhancements they can provide for environmental monitoring and integration/assimilation into modelling/forecast products. We identify possible synergies between parameters obtained from different satellite missions to increase the information content and the robustness of specific data products considering the end-users requirements, in particular maritime safety. We analyse the potential of new variables and new techniques relevant for assimilation into simulations and forecasts of environmental conditions and changes in the Polar Regions at various spatial and temporal scales. This work concludes with several specific recommendations to the EU for improving the satellite-based monitoring of the Polar Regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-14
    Description: Ocean Census is a new Large-Scale Strategic Science Mission aimed at accelerating the discovery and description of marine species. This mission addresses the knowledge gap of the diversity and distribution of marine life whereby of an estimated 1 million to 2 million species of marine life between 75% to 90% remain undescribed to date. Without improved knowledge of marine biodiversity, tackling the decline and eventual extinction of many marine species will not be possible. The marine biota has evolved over 4 billion years and includes many branches of the tree of life that do not exist on land or in freshwater. Understanding what is in the ocean and where it lives is fundamental science, which is required to understand how the ocean works, the direct and indirect benefits it provides to society and how human impacts can be reduced and managed to ensure marine ecosystems remain healthy. We describe a strategy to accelerate the rate of ocean species discovery by: 1) employing consistent standards for digitisation of species data to broaden access to biodiversity knowledge and enabling cybertaxonomy; 2) establishing new working practices and adopting advanced technologies to accelerate taxonomy; 3) building the capacity of stakeholders to undertake taxonomic and biodiversity research and capacity development, especially targeted at low- and middle-income countries (LMICs) so they can better assess and manage life in their waters and contribute to global biodiversity knowledge; and 4) increasing observational coverage on dedicated expeditions. Ocean Census, is conceived as a global open network of scientists anchored by Biodiversity Centres in developed countries and LMICs. Through a collaborative approach, including co-production of science with LMICs, and by working with funding partners, Ocean Census will focus and grow current efforts to discover ocean life globally, and permanently transform our ability to document, describe and safeguard marine species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-09-22
    Description: Introduction: Any measure of ecological stability scales with the spatial and temporal extent of the data on which it is based. The magnitude of stabilization effects at increasing spatial scale is determined by the degree of synchrony between local and regional species populations. Methods: We applied two recently developed approaches to quantify these stabilizing effects to time series records from three aquatic monitoring data sets differing in environmental context and organism type. Results and Discussion: We found that the amount and general patterns of stabilization with increasing spatial scale only varied slightly across the investigated species groups and systems. In all three data sets, the relative contribution of stabilizing effects via asynchronous dynamics across space was higher than compensatory dynamics due to differences in biomass fluctuations across species and populations. When relating the stabilizing effects of individual species and sites to species and site-specific characteristics as well as community composition and aspects of spatial biomass distribution patterns, however, we found that the effects of single species and sites showed large differences and were highly context dependent, i.e., dominant species can but did not necessarily have highly stabilizing or destabilizing effects on overall community biomass. The sign and magnitude of individual contributions depended on community structure and the spatial distribution of biomass and species in space. Our study therefore provides new insights into the mechanistic understanding of ecological stability patterns across scales in natural species communities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...