GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-01-14
    Description: Purpose   Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Results and discussion   Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil–air exchange. Soil–air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. Conclusions and perspectives   There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further study is needed to explore the coupling mechanisms of POP environmental fate and C biogeochemical cycle by using the integrated techniques under GCC scenario and develop biological and ecological management strategies to mitigate GCC and environmental stressors. Content Type Journal Article Category SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • REVIEW ARTICLE Pages 1-9 DOI 10.1007/s11368-011-0462-0 Authors Ying Teng, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China Zhihong Xu, Environmental Futures Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111, Australia Yongming Luo, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China Frédérique Reverchon, Environmental Futures Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111, Australia Journal Journal of Soils and Sediments Online ISSN 1614-7480 Print ISSN 1439-0108
    Print ISSN: 1439-0108
    Electronic ISSN: 1614-7480
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-18
    Description: Purpose   Managing declining nutrient use efficiency in crop production has been a global priority to maintain high agricultural productivity with finite non-renewable nutrient resources, in particular phosphorus (P). Rapid spectroscopic methods increase measurement density of soil nutrients and improve the accuracy of rates of additional P inputs. Materials and methods   Soil P was measured by a multi-element energy-dispersive X-ray fluorescence spectroscopic (XRFS) method to estimate the spatial distribution of soil total (XRFS-P) and bioavailable P in a Fluvisol occurring on a 20-ha contiguous area comprised of seven elongated field strips under a wheat–maize rotation near the Quzhou Agricultural Experiment Station in the North China Plain. Results and discussion   Soil XRFS-P was highly variable along the length of the field strips and across the entire area after decades of continuous cultivation. A linear relationship existed between XRFS-P and bicarbonate-extractable P or Mehlich 3-extractable P, allowing a description of the spatial distribution of bioavailable P based on XRFS, in both directions of a two-dimensional grid covering the entire area ( p  〈 0.05). Distinct management zones were identified for more precise placement of additional P. Conclusions   Direct element-specific analysis and a high sample throughput make XRFS an indispensable component of a new approach to sustainably manage P, and other macronutrients of low atomic number Z such as K, Ca, or Cl in production fields, based on their site-specific variations in the soil. Concerning P, this rapid precision approach provides a promising avenue to manage soil P as a regionalized variable while preventing zones of deficiency or surplus P that can affect plant productivity or potential loss from a field, respectively. Content Type Journal Article Pages 1-12 DOI 10.1007/s11368-011-0347-2 Authors Thanh H. Dao, USDA-ARS Environmental Management and ByProducts Utilization Laboratory, BARC-East Bldg. 306, Beltsville, MD 20705, USA Yuxin X. Miao, College of Resources and Environmental Science, China Agricultural University, Beijing, People’s Republic of China Fusuo S. Zhang, College of Resources and Environmental Science, China Agricultural University, Beijing, People’s Republic of China Journal Journal of Soils and Sediments Online ISSN 1614-7480 Print ISSN 1439-0108
    Print ISSN: 1439-0108
    Electronic ISSN: 1614-7480
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-30
    Description:    Agroforestry systems are widely practiced in tropical forests to recover degraded and deforested areas and also to balance the global carbon budget. However, our understanding of difference in soil respiration rates between agroforestry and natural forest systems is very limited. This study compared the seasonal variations in soil respiration rates in relation to fine root biomass, microbial biomass, and soil organic carbon between a secondary forest and two agroforestry systems dominated by Gmelina arborea and Dipterocarps in the Philippines during the dry and the wet seasons. The secondary forest had significantly higher ( p  〈 0.05) soil respiration rate, fine root biomass and soil organic matter than the agroforestry systems in the dry season. However, in the wet season, soil respiration and soil organic matter in the G. arborea dominated agroforestry system were as high as in the secondary forest. Whereas soil respiration was generally higher in the wet than in the dry season, there were no differences in fine root biomass, microbial biomass and soil organic matter between the two seasons. Soil respiration rate correlated positively and significantly with fine root biomass, microbial biomass, and soil organic C in all three sites. The results of this study indicate, to some degree, that different land use management practices have different effects on fine root biomass, microbial biomass and soil organic C which may affect soil respiration as well. Therefore, when introducing agroforestry system, a proper choice of species and management techniques which are similar to natural forest is recommended. Content Type Journal Article Pages 1-9 DOI 10.1007/s10457-012-9530-8 Authors Kikang Bae, Department of Forest and Natural Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA Don Koo Lee, Department of Forest Science, Seoul National University, Seoul, 151-742 Korea Timothy J. Fahey, Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA Soo Young Woo, Department of Environmental Horticulture, University of Seoul, Seoul, 130-743 Republic of Korea Amos K. Quaye, Department of Forest and Natural Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA Yong-Kwon Lee, Korea Forest Service, Government Complex-Daejeon, Bldg 1, 189 Cheongsa-ro, Seo-gu, Daejeon, 302-701 Republic of Korea Journal Agroforestry Systems Online ISSN 1572-9680 Print ISSN 0167-4366
    Print ISSN: 0167-4366
    Electronic ISSN: 1572-9680
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-25
    Description: Purpose   The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods   The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km 2 covering a total area of 11,004 km 2 . Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion   SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg −1 , with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg −1 ). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm −3 . The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions   Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended. Content Type Journal Article Category SOILS, SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH ARTICLE Pages 1-13 DOI 10.1007/s11368-012-0617-7 Authors Juan Albaladejo, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Roque Ortiz, Agricultural Chemistry, Geology and Soil Science Department, Murcia University, Campus de Espinardo, 30100 Murcia, Spain Noelia Garcia-Franco, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Antonio Ruiz Navarro, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Maria Almagro, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Javier Garcia Pintado, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Maria Martínez-Mena, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Journal Journal of Soils and Sediments Online ISSN 1614-7480 Print ISSN 1439-0108
    Print ISSN: 1439-0108
    Electronic ISSN: 1614-7480
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-10
    Description:    Participatory research methods have helped scientists to understand how farmers experiment and to seek partnerships with farmers in developing technologies with enhanced relevance and adoption. This paper reports on the development of a participatory methodology to systematize long-term experimentation with agroforestry systems carried out in a hotspot of biodiversity by non-governmental organizations and local farmers. A methodological guide for systematization and techniques used for Participatory Rural Appraisal formed the basis of our work. We propose an analytical framework that recognizes systems of reflexive and learning interactions, in order to make the learned lessons explicit. At the process level, the main lessons and recommendations are as follows. It is important to establish partnerships to conduct innovative and complex experimentation with agroforest. Participatory systematization allows us to improve the methodological aspects of design, implementation and management of on-farm participatory experimentation. It also serves to synthesize the main findings and to extract lessons from agroforestry systems experiments. It fosters the technical improvement of agroforestry systems. It creates possibilities for reflection on agroforestry systems by farmers, extensionists and researchers, as well as their learning with respect to management of such systems. The findings are placed in the context of current theory on participatory experimentation in agriculture. Extractive and interactive approaches help to produce rich insights of mutual interest through collaboration by identifying local, regional and global convergences, complementarities, and conflicts of interest; which affect the advance of new eco-friendly technologies, to both improve the livelihoods and to reverse biodiversity loss and environmental degradation. Content Type Journal Article Pages 1-16 DOI 10.1007/s10457-012-9498-4 Authors Helton Nonato de Souza, Department of Soil Quality, Wageningen University, Wageningen, The Netherlands Irene Maria Cardoso, Soil Science Department, Federal University of Viçosa, Viçosa, Brazil Eduardo de Sá Mendonça, Plant Production Department, Federal University of Espírito Santo, Alegre, ES 29500-000, Brazil Anôr Fiorini Carvalho, Soil Science Department, Federal University of Viçosa, Viçosa, Brazil Gustavo Bediaga de Oliveira, Centre of Alternative Technologies of Zona da Mata (CTA-ZM), Sitio Alfa Violeira, Zona Rural, Caixa Postal 128, Cep, Viçosa, MG 36570 000, Brazil Davi Feital Gjorup, Centre of Alternative Technologies of Zona da Mata (CTA-ZM), Sitio Alfa Violeira, Zona Rural, Caixa Postal 128, Cep, Viçosa, MG 36570 000, Brazil Verônica Rocha Bonfim, Centre of Alternative Technologies of Zona da Mata (CTA-ZM), Sitio Alfa Violeira, Zona Rural, Caixa Postal 128, Cep, Viçosa, MG 36570 000, Brazil Journal Agroforestry Systems Online ISSN 1572-9680 Print ISSN 0167-4366
    Print ISSN: 0167-4366
    Electronic ISSN: 1572-9680
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...