GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-12
    Description: The scope of this Science Plan is to describe the scientific background, applications, and activities related to the EnMAP mission. Primarily, the Science Plan addresses scientists and funding institutions, but it may also be of interest for environmental stakeholders and governmental bodies. It is conceived to be a living document that will be updated throughout the whole mission. Current global challenges call for interdisciplinary approaches. Hence, the science plan is not structured in the traditional disciplinary way. Instead, it builds on overarching research themes to which EnMAP can contribute. This Science Plan comprises the following five chapters presenting the significance, background, framework, applications, and strategy of the EnMAP mission: Chapter 2 highlights the need for EnMAP data with respect to major environmental issues and various stakeholders. This chapter states the mission’s main objectives and provides a list of research themes addressing global challenges to whose understanding and management EnMAP can contribute. Chapter 3 presents an overview of the EnMAP mission from a scientific point of view including a brief description of the mission parameters, data products and access, and calibration/validation issues. Chapter 4 provides an overview of hyperspectral remote sensing regarding its principles, development, and current state and synergies to other satellite missions. Chapter 5 describes current lines of research and EnMAP applications to address the research themes presented in Chapter 2. Finally, Chapter 6 outlines the scientific exploitation strategy, which includes the strategy for community building, dissemination of knowledge and increasing public awareness.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: This brochure is designed for scientists and engineers of upcoming drilling projects and explains the key steps and important challenges in planning and executing continental scientific drilling.
    Language: English
    Type: info:eu-repo/semantics/book
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: The scope of the Science Plan is to describe the scientific background, applications, and activities related to the Environmental Mapping and Analysis Program (EnMAP) mission. Primarily, the document addresses scientists and funding institutions, but it may also be of interest for environmental stakeholders and governmental bodies. It is conceived to be a living document that will be updated throughout the entire mission. Chapter 1 provides a brief overview of the principles and current state of imaging spectroscopy. This is followed by an introduction to the EnMAP mission, including its objectives and potential impact on international programs as well as major environmental and societal challenges to their understanding and management EnMAP can contribute. Chapter 2 describes the EnMAP system together with data products and access, calibration/validation issues, and synergies with other missions. Chapter 3 gives an overview of the relevance, current lines of research, and potential contributions of EnMAP for major fields of application, such as vegetation, geology and soils, coastal and inland waters, cryosphere, urban areas, atmosphere and hazards to address the environmental and societal challenges presented in Chapter 1. Finally, Chapter 4 outlines the scientific exploitation strategy, which includes the strategy for community building and training, preparatory flight campaigns and software developments. A list of abbreviations is provided in the annex to this document, while an extended glossary of terms and abbreviations is available at the EnMAP website.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: In my thesis, I studied marine and lacustrine sediment cores from different depositional provinces along the south-central Chilean margin with the overall objective to identify their records of paleoclimate and paleotectonics. First of all, I investigated sedimentary sequences that were recovered within the margin-parallel trench system (cp. Figure 1.2) and hence constitute long-term recorders [...] of the sediment transport between the continent and the abyssal zone of the lower plate.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-21
    Description: A set of 59 seismological stations was deployed in the Central Andes region at 21°S (Chile-Bolivia) along a profile ~600 km long and were operated between 2002 and 2004. The teleseismic tomographic images (from P- and S- waves) show low-velocity anomalies that are interpreted as the effects of melting or fluids at both flanks of the Altiplano plateau. Beneath the Central Volcanic Zone (CVZ) a low-velocity anomaly is interpreted to be caused by fluids that are the origin of the volcanic material from the CVZ. A low-velocity anomaly in the upper crust is interpreted as the Altiplano Low-Velocity Zone that appears to extend as far to the east as the Eastern Cordillera. A high-velocity body between 100 km and 150 km depth is interpreted as being part of the old cold lithosphere that detached from the base of the crust. The Brazilian Shield is thought to be responsible for the strong high-velocity anomaly on the eastern side of the Central Andes. In addition, another set of 19 stations was deployed in the southern Argentine Puna along a profile ~200 km long and were run over the same period of time (2002-2004). The intention was to study the crustal thickness at 25.5°S, where delamination of the lithosphere was proposed to explain the higher elevation of the Puna plateau. Beneath the plateau a negative velocity anomaly is observed and interpreted here as being the location of fluid transfer between the deeper and shallower portions of the crust, that emanate from the Benioff zone at depths of ~200 km. This anomaly clearly divides in two branches: one to the west towards the volcanic arc (CVZ) and the other to the east where the back-arc volcanoes are located. On their way to lower depths, the fluid paths are probably influenced by the presence of nearby isotherms. The bifurcation of the ascending path could be related to the presence of the lithosphere-asthenosphere boundary (LAB) at ~100-130 km. Based on our observations, the type and form of the anomaly, it is possible to propose the presence of a return-flow type model for fluid ascent in contraposition to the assumed corner-flow model usually proposed for the Andes. The fluids that cause the seismic anomalies beneath the Puna plateau are generated at deeper levels in the asthenosphere and ascend parallel to the oceanic slab in the manner of a return-flow. In the crust and beneath the Salar de Antofalla (SA), a high-velocity block with seismic activity is interpreted as part of the old and cold Palaeozoic magmatic arc (Faja Eruptiva de la Puna Occidental). The presence of this block is may be responsible for the distribution of volcanic activity localized at both sides of this anomaly. Eastern of the SA, it is possible to recognize a zone with low-velocities beneath the Galan volcano. A sharp limit imposed by high velocities, probably related to metamorphic rocks from the Paleozoic basement (Tacuil and Luracatao ranges) can be detected on the east of the profile. A high-velocity block with seismic activity is located in the crust beneath the Salar de Antofalla (SA) and interpreted as part of the old and cold Palaeozoic magmatic arc (Faja Eruptiva de la Puna Occidental). This block might be responsible for the distribution of volcanic activity localized at both sides of this anomaly. Beneath the Galan volcano and east of the SA, a zone with low-velocities can be recognized. A sharp limit towards high-velocities can be observed on the east of the profile, probably related to metamorphic rocks from the Palaeozoic basement (Tacuil and Luracatao ranges).
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Techncial Report STR
    Publication Date: 2020-02-12
    Description: This thesis summarizes the results of the WSM project’s second phase (1996‐2008). In particular it presents the major achievements that have been accomplished with the WSM 2008 database release that has been compiled under the guidance of the author. Furthermore, the thesis briefly presents three of the author’s numerical models that aim at quantification the temporal changes of the crustal stress field.
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report
    Publication Date: 2020-02-12
    Description: In order to analyze mineralogical-geochemical changes occurring in whole rock reservoir samples (Stuttgart Formation) from the Ketzin pilot CO2 storage site, Brandenburg/Germany as well as to investigate single fluid-mineral reactions laboratory experiments and geochemical modeling were performed. The whole rock core samples of the Stuttgart Formation were exposed to synthetic brine and pure CO2 at experimental P-T conditions and run durations of 5.5 MPa/40 °C/40 months for sandstone and 7.5 MPa/40 °C/6 months for siltstone, respectively. Mineralogical changes in both sets of experiments are generally minor making it difficult to differentiate the natural variability of the whole rock samples from CO2-induced alterations. Results of sandstone experiments suggest dissolution of analcime, anhydrite, the anorthite component of plagioclase, chlorite + biotite, hematite and K-feldspar. Dissolution of anhydrite, the anorthite component of plagioclase and K-feldspar is also observed in siltstone experiments. During equilibrium simulations best matching models were ranked based on a mathematical statistical dispersion relation. The best matching model comprises a mineral combination of the albite component of plagioclase, anhydrite, dolomite, hematite, and illite. The equilibrium modeling showed that it is difficult to match K+, Fe2+ and SO4 2- brine concentrations simultaneously. The best matching subsets of the equilibrium models were finally run including kinetic rate laws. These kinetic simulations reveal that experimentally determined brine data was well matched, but reactions involving K+ and Fe2+ were not completely covered. Generally larger mismatches for dissolved Al3+ and Si4+ in all the completed simulations are most likely related to the sampling strategy and respective inaccuracies in the measured concentrations of dissolved Al3+ and Si4+. The kinetic simulation suppressing mineral precipitation yields best matches with experimental observations. The modeling shows acceptably well matches with measured brine ion concentrations, and the modeling results identified primary minerals as well as key chemical processes. It was also shown that the modeling approach is not capable of completely covering complex natural systems. Experiments on mineral separates were conducted with 2 M NaCl brine and pure CO2 using siderite, illite and labradorite samples. Experimental P-T conditions were 20 (30) MPa and 80 °C; run durations were one (siderite), two (illite) and three weeks (labradorite), respectively. Based on the acquired set of mineralogical-geochemical data the distinct experiments show: (i) dissolution of ankerite and stable siderite, which is therefore interpreted to be a potential CO2 trapping phase, (ii) preferred dissolution of the Ca-smectite component out of the illite-smectite mixed-layer mineral and (iii) dissolution of labradorite, respectively. No mineral precipitates (e.g. carbonate phases) were detected in any of the conducted laboratory experiments, and only one single kinetic simulation predicts the formation of minute amounts of dolomite. Based on the data acquired during this dissertation the mineralogical-geochemical effects of CO2 are minor, and the (chemical) integrity of the Ketzin reservoir system is not significantly affected by injected CO2.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2021-08-21
    Description: This study focuses on tectonics at the Neogene and late Quaternary time scales in the Main Cordillera and coastal forearc of the south-central Andes. For both domains I document the existence of previously unrecognized active faults and present estimates of deformation rates and fault kinematics. Furthermore these data are correlated to address fundamental mountain building processes like strain partitioning and largescale segmentation.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: The ability of any satellite gravity mission concept to monitor mass transport processes in the Earth system is typically tested well ahead of its implementation by means of various simulation studies. Those studies often extend from the simulation of realistic orbits and instrumental data all the way down to the retrieval of global gravity field solution time-series. Basic requirement for all these simulations are realistic representations of the spatio-temporal mass variability in the different sub-systems of the Earth, as a source model for the orbit computations. For such simulations, a suitable source model is required to represent (i) high-frequency (i.e., subdaily to weekly) mass variability in the atmosphere and oceans, in order to realistically include the effects of temporal aliasing due to non-tidal high-frequency mass variability into the retrieved gravity fields. In parallel, (ii) low-frequency (i.e., monthly to interannual) variability needs to be modelled with realistic amplitudes, particularly at small spatial scales, in order to assess to what extent a new mission concept might provide further insight into physical processes currently not observable. The new source model documented here attempts to fulfil both requirements: Based on ECMWF’s recent atmospheric reanalysis ERA-Interim and corresponding simulations from numerical models of the other Earth system components, it offers spherical harmonic coefficients of the time-variable global gravity field due to mass variability in atmosphere, oceans, the terrestrial hydrosphere including the ice-sheets and glaciers, as well as the solid Earth. Simulated features range from sub-daily to multiyear periods with a spatial resolution of spherical harmonics degree and order 180 over a period of 12 years. In addition to the source model, a de-aliasing model for atmospheric and oceanic high-frequency variability with augmented systematic and random noise is required for a realistic simulation of the gravity field retrieval process, whose necessary error characteristics are discussed. The documentation of the updated ESA Earth System Model (updated ESM) for gravity mission simulation studies is organized as follows: The characteristics of the updated ESM along with some basic validation is presented in Volume 1. A detailed comparison to the original ESA ESM (Gruber et al., 2011) is provided in Volume 2, while Volume 3 contains the description of a strategy to derive realistic errors for the de-aliasing model of high-frequency mass variability in atmosphere and ocean.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...