GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Chinese Journal of Mechanical Engineering Vol. 35, No. 1 ( 2022-12)
    In: Chinese Journal of Mechanical Engineering, Springer Science and Business Media LLC, Vol. 35, No. 1 ( 2022-12)
    Abstract: With the development of modern technology and economy, environmental protection and sustainable development have become the focus of global attention. The promotion and development of electric vehicles (EVs) have bright prospects. However, many challenges need to be faced seriously. Under different operating conditions, various safety problems of electric vehicles emerge one after another, especially the hidden danger of battery overheating which threatens the performance of electric vehicles. This paper aims to design and optimize a new indirect liquid cooling system for cylindrical lithium-ion batteries. Various design schemes for different cooling channel structures and cooling liquid inlet directions are proposed, and the corresponding solid-fluid coupling model is established. COMSOL Multiphysics simulation software is adopted to simulate and analyze the cooling systems. An approximate model is constructed using the Kriging method, which is considered to optimize the battery cooling system and improve the optimization results. Sensitivity parameter analysis and the optimization design of system structure are performed through a set of influencing factors in the battery thermal management. The results indicate that the method used in this paper can effectively reduce the maximum core temperature and balance the temperature differences of the battery pack. Compared with the original design, the optimized design, which is based on the non-dominated sorting genetic algorithm (NSGA-II), has an excellent ability in the optimized thermal management system to dissipate thermal energy and keep the overall cooling uniformity of the battery and thermal management system. Furthermore, the optimized system can also prevent thermal runaway propagation under thermal abuse conditions. In summary, this research can provide some practical suggestions and ideas for the engineering and production applications and structural optimization design carried by electric vehicles.
    Type of Medium: Online Resource
    ISSN: 1000-9345 , 2192-8258
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2093153-0
    SSG: 6,25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Journal of Forestry Research Vol. 33, No. 4 ( 2022-08), p. 1209-1217
    In: Journal of Forestry Research, Springer Science and Business Media LLC, Vol. 33, No. 4 ( 2022-08), p. 1209-1217
    Abstract: Determining climatic and physiographic variables in Mexico's major ecoregions that are limiting to biodiversity and species of high conservation concern is essential for their conservation. Yet, at the national level to date, few studies have been performed with large data sets and cross-confirmation using multiple statistical analyses. Here, we used 25 endemic, rare and endangered species from 3610 sampling points throughout Mexico and 25 environmental attributes, including average precipitation for different seasons of the year, annual dryness index, slope of the terrain; and maximum, minimum and average temperatures to test our hypothesis that these species could be assessed with the same weight among all variables, showing similar indices of importance. Our results using principal component analysis, covariation analysis by permutations, and random forest regression showed that summer precipitation, length of the frost-free period, spring precipitation, winter precipitation and growing season precipitation all strongly influence the abundance of tropical species. In contrast, annual precipitation and the balance at different seasons (summer and growing season) were the most relevant variables on the temperate region species. For dry areas, the minimum temperature of the coldest month and the maximum temperature of the warmest month were the most significant variables. Using these different associations in different climatic regions could support a more precise management and conservation plan for the preservation of plant species diversity in forests under different global warming scenarios.
    Type of Medium: Online Resource
    ISSN: 1007-662X , 1993-0607
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2299615-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Journal of Forestry Research Vol. 32, No. 1 ( 2021-02), p. 7-14
    In: Journal of Forestry Research, Springer Science and Business Media LLC, Vol. 32, No. 1 ( 2021-02), p. 7-14
    Abstract: Carbon sequestration and water conservation are two of the key ecosystem services that forests provide for societal need to address environmental issues. Optimization of the dual services is the ultimate goal in forest management for mitigating global climate change and safeguarding terrestrial water balance. However, there are some tradeoffs between gain in forest productivity and ecosystem water balance. We conducted literature review based on published articles for learned knowledge on forest carbon fixation and hydrological regulations. Some knowledge gaps and research needs are identified by examining the inter-connections between forest carbon sequestration and water conservation. Past researches have helped gain basic understanding of the mechanisms and controls of forest carbon fixation and hydrological regulations as two separate issues. Tools and approaches are well established for quantifying and monitoring forest carbon and hydrological issues, operating at different spatial and temporal scales. There are knowledge gaps on how to design afforestation schemes facilitating enhanced ecosystem services in forest carbon sequestration and water conservation. For the top-down planning of afforestation in regions where water availability is anticipated to be problematic, the questions of how much and where to plant for given land availability, known environmental implications, and sustained regional development and livelihood need to be addressed. For local management considerations, the questions of what and how to plant prevail. Efforts are needed in joint studies of forest carbon sequestration and water conservation functionalities, specifically in relation to establishment and management of planted forests aiming for delivering regulatory ecosystem services in carbon sequestration, water conservation and other social values. We propose an integrated framework with dual consideration of carbon sequestration and water conservation in forest management for future research pursue.
    Type of Medium: Online Resource
    ISSN: 1007-662X , 1993-0607
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2299615-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Journal of Forestry Research Vol. 34, No. 4 ( 2023-08), p. 1175-1194
    In: Journal of Forestry Research, Springer Science and Business Media LLC, Vol. 34, No. 4 ( 2023-08), p. 1175-1194
    Abstract: Innovation in forestry education is needed to address changing contexts of the positionality of forests. This is particularly significant in the Asia–Pacific region, where deforestation and degradation are high. However, the accessibility of high-quality forestry education to address changing regional and global contexts is lacking. A series of innovative sustainable forest management (SFM) open education resource (OER) courses were developed and implemented to improve the accessibility of SFM education to enhance teaching quality, curriculum, and research capacity of universities in the Asia-Pacific Region. To evaluate the SFM-OER program in terms of student experiences, this study investigated student achievement, perceived success of the pedagogical approach and instructional design, and perceived effectiveness of the learning activities in promoting active and transformative learning through the assessment of a 1,191-course feedback survey between 2018 and 2020, including the global pandemic. This study revealed that the program attracted diverse student demographics, including a higher proportion of female students majoring in forestry, ecology, and other environmental studies. Their primary motivation to participate in the courses was to gain international experience, followed by the flexibility of online learning, mandatory course requirements, and earning course credits. Students were satisfied with the Canvas learning management system. Most students spent less than 5 to 10 h of their weekly time in the course and agreed or strongly agreed that the workloads were manageable. Students reflected positively on various learning activities and assignments, such as watching lecture videos, taking quizzes, reading and summarizing, having discussions, and peer review writing. However, they did not clearly prefer specific learning activities, signifying the importance of using diverse learning activities to satisfy diverse individual learning styles in online settings. This analysis contributes to the further development of student-centered pedagogical development for online learning and provides insight into the ways forward for online higher forestry education, while repurposing existing OER courses in a post-Covid-19 era.
    Type of Medium: Online Resource
    ISSN: 1007-662X , 1993-0607
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2299615-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications) ; 2018
    In:  VIETNAM JOURNAL OF EARTH SCIENCES Vol. 40, No. 2 ( 2018-01-19), p. 127-153
    In: VIETNAM JOURNAL OF EARTH SCIENCES, Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications), Vol. 40, No. 2 ( 2018-01-19), p. 127-153
    Abstract: Climate change induced sea-level rise (SLR) is on its increase globally. Regionally the lowlands of China, Vietnam, Bangladesh, and islands of the Malaysian, Indonesian and Philippine archipelagos are among the world’s most threatened regions. Sea-level rise has major impacts on the ecosystems and society. It threatens coastal populations, economic activities, and fragile ecosystems as mangroves, coastal salt-marches and wetlands. This paper provides a summary of the current state of knowledge of sea level-rise and its effects on both human and natural ecosystems. The focus is on coastal urban areas and low lying deltas in South-East Asia and Vietnam, as one of the most threatened areas in the world. About 3 mm per year reflects the growing consensus on the average SLR worldwide. The trend speeds up during recent decades. The figures are subject to local, temporal and methodological variation. In Vietnam the average values of 3.3 mm per year during the 1993-2014 period are above the worldwide average. Although a basic conceptual understanding exists that the increasing global frequency of the strongest tropical cyclones is related with the increasing temperature and SLR, this relationship is insufficiently understood. Moreover the precise, complex environmental, economic, social, and health impacts are currently unclear. SLR, storms and changing precipitation patterns increase flood risks, in particular in urban areas. Part of the current scientific debate is on how urban agglomeration can be made more resilient to flood risks. Where originally mainly technical interventions dominated this discussion, it becomes increasingly clear that proactive special planning, flood defense, flood risk mitigation, flood preparation, and flood recovery are important, but costly instruments. Next to the main focus on SLR and its effects on resilience, the paper reviews main SLR associated impacts: Floods and inundation, salinization, shoreline change, and effects on mangroves and wetlands. The hazards of SLR related floods increase fastest in urban areas. This is related with both the increasing surface major cities are expected to occupy during the decades to come and the increasing coastal population. In particular Asia and its megacities in the southern part of the continent are increasingly at risk. The discussion points to complexity, inter-disciplinarity, and the related uncertainty, as core characteristics. An integrated combination of mitigation, adaptation and resilience measures is currently considered as the most indicated way to resist SLR today and in the near future.References Aerts J.C.J.H., Hassan A., Savenije H.H.G., Khan M.F., 2000. Using GIS tools and rapid assessment techniques for determining salt intrusion: Stream a river basin management instrument. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25, 265-273. Doi: 10.1016/S1464-1909(00)00014-9. Alongi D.M., 2002. Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331-349. Doi: 10.1017/S0376892902000231 Alongi D.M., 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep., 1, 30-39. Doi: 10.1007/s404641-015-0002-x. Anderson F., Al-Thani N., 2016. Effect of sea level rise and groundwater withdrawal on seawater intrusion in the Gulf Coast aquifer: Implications for agriculture. Journal of Geoscience and Environment Protection, 4, 116-124. Doi: 10.4236/gep.2016.44015. Anguelovski I., Chu E., Carmin J., 2014. Variations in approaches to urban climate adaptation: Experiences and experimentation from the global South. Global Environmental Change, 27, 156-167.  Doi: 10.1016/j.gloenvcha.2014.05.010. Arustienè J., Kriukaitè J., Satkunas J., Gregorauskas M., 2013. Climate change and groundwater - From modelling to some adaptation means in example of Klaipèda region, Lithuania. In: Climate change adaptation in practice. P. Schmidt-Thomé, J. Klein Eds. John Wiley and Sons Ltd., Chichester, UK., 157-169. Bamber J.L., Aspinall W.P., Cooke R.M., 2016. A commentary on “how to interpret expert judgement assessments of twenty-first century sea-level rise” by Hylke de Vries and Roderik S.W. Van de Wal. Climatic Change, 137, 321-328. Doi: 10.1007/s10584-016-1672-7. Barnes C., 2014. Coastal population vulnerability to sea level rise and tropical cyclone intensification under global warming. BSc-thesis. Department of Geography, University of Lethbridge, Alberta Canada. Be T.T., Sinh B.T., Miller F., 2007. Challenges to sustainable development in the Mekong Delta: Regional and national policy issues and research needs. The Sustainable Mekong Research Network, Bangkok, Thailand, 1-210. Bellard C., Leclerc C., Courchamp F., 2014. Impact of sea level rise on 10 insular biodiversity hotspots. Global Ecology and Biogeography, 23, 203-212. Doi: 10.1111/geb.12093. Berg H., Söderholm A.E., Sönderström A.S., Nguyen Thanh Tam, 2017. Recognizing wetland ecosystem services for sustainable rice farming in the Mekong delta, Vietnam. Sustainability Science, 12, 137-154. Doi: 10.1007/s11625-016-0409-x. Bilskie M.V., Hagen S.C., Medeiros S.C., Passeri D.L., 2014. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophysical Research Letters, 41, 927-934. Doi: 10.1002/2013GL058759. Binh T.N.K.D., Vromant N., Hung N.T., Hens L., Boon E.K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau penisula, Vietnam. Environment, Development and Sustainability, 7, 519-536. Doi: 10.1007/s10668-004-6001-z. Blankespoor B., Dasgupta S., Laplante B., 2014. Sea-level rise and coastal wetlands. Ambio, 43, 996- 005.Doi: 10.1007/s13280-014-0500-4. Brockway R., Bowers D., Hoguane A., Dove V., Vassele V., 2006. A note on salt intrusion in funnel shaped estuaries: Application to the Incomati estuary, Mozambique.Estuarine, Coastal and Shelf Science, 66, 1-5. Doi: 10.1016/j.ecss.2005.07.014. Cannaby H., Palmer M.D., Howard T., Bricheno L., Calvert D., Krijnen J., Wood R., Tinker J., Bunney C., Harle J., Saulter A., O’Neill C., Bellingham C., Lowe J., 2015. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore. Ocean Sci. Discuss, 12, 2955-3001. Doi: 10.5194/osd-12-2955-2015. Carraro C., Favero A., Massetti E., 2012. Investment in public finance in a green, low carbon economy. Energy Economics, 34, S15-S18. Castan-Broto V., Bulkeley H., 2013. A survey ofurban climate change experiments in 100 cities. Global Environmental Change, 23, 92-102. Doi: 10.1016/j.gloenvcha.2012.07.005. Cazenave A., Le Cozannet G., 2014. Sea level rise and its coastal impacts. GeoHealth, 2, 15-34. Doi: 10.1002/2013EF000188. Chu M.L., Guzman J.A., Munoz-Carpena R., Kiker G.A., Linkov I., 2014. A simplified approach for simulating changes in beach habitat due to the combined effects of long-term sea level rise, storm erosion and nourishment. Environmental modelling and software, 52, 111-120. Doi.org/10.1016/j.envcsoft.2013.10.020. Church J.A. et al., 2013. Sea level change. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of Intergovernmental Panel on Climate Change. Eds: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Cambridge University Press, Cambridge, UK. Connell J., 2016. Last days of the Carteret Islands? Climate change, livelihoods and migration on coral atolls. Asia Pacific Viewpoint, 57, 3-15. Doi: 10.1111/apv.12118. Dasgupta S., Laplante B., Meisner C., Wheeler, Yan J., 2009. The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379-388. Doi: 10.1007/s 10584-008-9499-5. Delbeke J., Vis P., 2015. EU climate policy explained, 136p. Routledge, Oxon, UK. DiGeorgio M., 2015. Bargaining with disaster: Flooding, climate change, and urban growth ambitions in QuyNhon, Vietnam. Public Affairs, 88, 577-597. Doi: 10.5509/2015883577. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, 2015. Enhancement of coastal protection under the context of climate change: A case study of Hai Hau coast, Vietnam. Proceedings of the 10th Asian Regional Conference of IAEG, 1-8. Do Minh Duc, Yasuhara K., Nguyen Manh Hieu, Lan Nguyen Chau, 2017. Climate change impacts on a large-scale erosion coast of Hai Hau district, Vietnam and the adaptation. Journal of Coastal Conservation, 21, 47-62. Donner S.D., Webber S., 2014. Obstacles to climate change adaptation decisions: A case study of sea level rise; and coastal protection measures in Kiribati. Sustainability Science, 9, 331-345. Doi: 10.1007/s11625-014-0242-z. Driessen P.P.J., Hegger D.L.T., Bakker M.H.N., Van Renswick H.F.M.W., Kundzewicz Z.W., 2016. Toward more resilient flood risk governance. Ecology and Society, 21, 53-61. Doi: 10.5751/ES-08921-210453. Duangyiwa C., Yu D., Wilby R., Aobpaet A., 2015. Coastal flood risks in the Bangkok Metropolitan region, Thailand: Combined impacts on land subsidence, sea level rise and storm surge. American Geophysical Union, Fall meeting 2015, abstract#NH33C-1927. Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marba N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968. Doi: 10.1038/nclimate1970. Erban L.E., Gorelick S.M., Zebker H.A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environmental Research Letters, 9, 1-20. Doi: 10.1088/1748-9326/9/8/084010. FAO - Food and Agriculture Organisation, 2007.The world’s mangroves 1980-2005. FAO Forestry Paper, 153, Rome, Italy. Farbotko C., 2010. Wishful sinking: Disappearing islands, climate refugees and cosmopolitan experimentation. Asia Pacific Viewpoint, 51, 47-60. Doi: 10.1111/j.1467-8373.2010.001413.x. Goltermann D., Ujeyl G., Pasche E., 2008. Making coastal cities flood resilient in the era of climate change. Proceedings of the 4th International Symposium on flood defense: Managing flood risk, reliability and vulnerability, 148-1-148-11. Toronto, Canada. Gong W., Shen J., 2011. The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China.Continental Shelf Research, 31, 769-788. Doi: 10.1016/j.csr.2011.01.011. Gosian L., 2014. Protect the world’s deltas. Nature, 516, 31-34. Graham S., Barnett J., Fincher R., Mortreux C., Hurlimann A., 2015. Towards fair outcomes in adaptation to sea-level rise. Climatic Change, 130, 411-424. Doi: 10.1007/s10584-014-1171-7. COASTRES-D-12-00175.1. Güneralp B., Güneralp I., Liu Y., 2015. Changing global patterns of urban expoàsure to flood and drought hazards. Global Environmental Change, 31, 217-225. Doi: 10.1016/j.gloenvcha.2015.01.002. Hallegatte S., Green C., Nicholls R.J., Corfee-Morlot J., 2013. Futu re flood losses in major coastal cities. Nature Climate Change, 3, 802-806. Doi: 10.1038/nclimate1979. Hamlington B.D., Strassburg M.W., Leben R.R., Han W., Nerem R.S., Kim K.-Y., 2014. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Climate Change, 4, 782-785. Doi: 10.1038/nclimate2307. Hashimoto T.R., 2001. Environmental issues and recent infrastructure development in the Mekong Delta: Review, analysis and recommendations with particular reference to large-scale water control projects and the development of coastal areas. Working paper series (Working paper No. 4). Australian Mekong Resource Centre, University of Sydney, Australia, 1-70. Hibbert F.D., Rohling E.J., Dutton A., Williams F.H., Chutcharavan P.M., Zhao C., Tamisiea M.E., 2016. Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1-56. Doi: 10.1016/j.quascirev.2016.04.019. Hinkel J., Lincke D., Vafeidis A., Perrette M., Nicholls R.J., Tol R.S.J., Mazeion B., Fettweis X., Ionescu C., Levermann A., 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292-3297. Doi: 10.1073/pnas.1222469111. Hinkel J., Nicholls R.J., Tol R.S.J., Wang Z.B., Hamilton J.M., Boot G., Vafeidis A.T., McFadden L., Ganapolski A., Klei R.J.Y., 2013. A global analysis of erosion of sandy beaches and sea level rise: An application of DIVA. Global and Planetary Change, 111, 150-158. Doi: 10.1016/j.gloplacha.2013.09.002. Huong H.T.L., Pathirana A., 2013. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci., 17, 379-394. Doi: 10.5194/hess-17-379-2013. Hurlimann A., Barnett J., Fincher R., Osbaldiston N., Montreux C., Graham S., 2014. Urban planning and sustainable adaptation to sea-level rise. Landscape and Urban Planning, 126, 84-93. Doi: 10.1016/j.landurbplan.2013.12.013. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, 2011. Climate change vulnerability and risk assessment study for Ca Mau and KienGiang provinces, Vietnam. Hanoi, Vietnam Institute of Meteorology, Hydrology and Environment (IMHEN), 250p. IMHEN-Vietnam Institute of Meteorology, Hydrology and Environment, Ca Mau PPC, 2011. Climate change impact and adaptation study in The Mekong Delta - Part A: Ca Mau Atlas. Hanoi, Vietnam: Institute of Meteorology, Hydrology and Environment (IMHEN), 48p. IPCC-Intergovernmental Panel on Climate Change, 2014. Fifth assessment report. Cambridge University Press, Cambridge, UK. Jevrejeva S., Jackson L.P., Riva R.E.M., Grinsted A., Moore J.C., 2016. Coastal sea level rise with warming above 2°C. Proceedings of the National Academy of Sciences, 113, 13342-13347. Doi: 10.1073/pnas.1605312113. Junk W.J., AN S., Finlayson C.M., Gopal B., Kvet J., Mitchell S.A., Mitsch W.J., Robarts R.D., 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Science, 75, 151-167. Doi: 10.1007/s00027-012-0278-z. Jordan A., Rayner T., Schroeder H., Adger N., Anderson K., Bows A., Le Quéré C., Joshi M., Mander S., Vaughan N., Whitmarsh L., 2013. Going beyond two degrees? The risks and opportunities of alternative options. Climate Policy, 13, 751-769. Doi: 10.1080/14693062.2013.835705. Kelly P.M., Adger W.N., 2000. Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Climatic Change, 47, 325-352. Doi: 10.1023/A:1005627828199. Kirwan M.L., Megonigal J.P., 2013. Tidal wetland stability in the face of human impacts and sea-level rice. Nature, 504, 53-60. Doi: 10.1038/nature12856. Koerth J., Vafeidis A.T., Hinkel J., Sterr H., 2013. What motivates coastal households to adapt pro actively to sea-level rise and increased flood risk? Regional Environmental Change, 13, 879-909. Doi: 10.1007/s10113-12-399-x. Kontgis K., Schneider A., Fox J;,Saksena S., Spencer J.H., Castrence M., 2014. Monitoring peri urbanization in the greater Ho Chi Minh City metropolitan area. Applied Geography, 53, 377-388. Doi: 10.1016/j.apgeogr.2014.06.029. Kopp R.E., Horton R.M., Little C.M., Mitrovica J.X., Oppenheimer M., Rasmussen D.J., Strauss B.H., Tebaldi C., 2014. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future, 2, 383-406. Doi: 10.1002/2014EF000239. Kuenzer C., Bluemel A., Gebhardt S., Quoc T., Dech S., 2011. Remote sensing of mangrove ecosystems:  A review.Remote Sensing, 3, 878-928. Doi: 10.3390/rs3050878. Lacerda G.B.M., Silva C., Pimenteira C.A.P., Kopp Jr. R.V., Grumback R., Rosa L.P., de Freitas M.A.V., 2013. Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: Adaptive measures to the impacts of sea level rise. Mitigation and Adaptation Strategies for Global Change, 19, 104-1062. Doi: 10.1007/s11027-013-09459-x. Lam Dao Nguyen, Pham Van Bach, Nguyen Thanh Minh, Pham Thi Mai Thy, Hoang Phi Hung, 2011. Change detection of land use and river bank in Mekong Delta, Vietnam using time series remotely sensed data. Journal of Resources and Ecology, 2, 370-374. Doi: 10.3969/j.issn.1674-764x.2011.04.011. Lang N.T., Ky B.X., Kobayashi H., Buu B.C., 2004. Development of salt tolerant varieties in the Mekong delta. JIRCAS Project, Can Tho University, Can Tho, Vietnam, 152. Le Cozannet G., Rohmer J., Cazenave A., Idier D., Van de Wal R., de Winter R., Pedreros R., Balouin Y., Vinchon C., Oliveros C., 2015. Evaluating uncertainties of future marine flooding occurrence as sea-level rises. Environmental Modelling and Software, 73, 44-56. Doi: 10.1016/j.envsoft.2015.07.021. Le Cozannet G., Manceau J.-C., Rohmer J., 2017. Bounding probabilistic sea-level projections with the framework of the possible theory. Environmental Letters Research, 12, 12-14. Doi.org/10.1088/1748-9326/aa5528.Chikamoto Y., 2014. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888-892. Doi: 10.1038/nclimate2330. Lovelock C.E., Cahoon D.R., Friess D.A., Gutenspergen G.R., Krauss K.W., Reef R., Rogers K., Saunders M.L., Sidik F., Swales A., Saintilan N., Le Xuan Tuyen, Tran Triet, 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 526, 559-563. Doi: 10.1038/nature15538. MA Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Current state and trends. Island Press, Washington DC, 266p. Masterson J.P., Fienen M.N., Thieler E.R., Gesch D.B., Gutierrez B.T., Plant N.G., 2014. Effects of sea level rise on barrier island groundwater system dynamics - ecohydrological implications. Ecohydrology, 7, 1064-1071. Doi: 10.1002/eco.1442. McGanahan G., Balk D., Anderson B., 2007. The rising tide: Assessing the risks of climate changes and human settlements in low elevation coastal zones.Environment and urbanization, 19, 17-37. Doi: 10.1177/095624780707960. McIvor A., Möller I., Spencer T., Spalding M., 2012. Reduction of wind and swell waves by mangroves. The Nature Conservancy and Wetlands International, 1-27. Merryn T., Pidgeon N., Whitmarsh L., Ballenger R., 2016. Expert judgements of sea-level rise at the local scale. Journal of Risk Research, 19, 664-685. Doi.org/10.1080/13669877.2015.1043568. Monioudi I.N., Velegrakis A.F., Chatzipavlis A.E., Rigos A., Karambas T., Vousdoukas M.I., Hasiotis T., Koukourouvli N., Peduzzi P., Manoutsoglou E., Poulos S.E., Collins M.B., 2017. Assessment of island beach erosion due to sea level rise: The case of the Aegean archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci., 17, 449-466. Doi: 10.5194/nhess-17-449-2017. MONRE - Ministry of Natural Resources and Environment, 2016. Scenarios of climate change and sea level rise for Vietnam. Publishing House of Environmental Resources and Maps Vietnam, Hanoi, 188p. Montz B.E., Tobin G.A., Hagelman III R.R., 2017. Natural hazards. Explanation and integration. The Guilford Press, NY, 445p. Morgan L.K., Werner A.D., 2014. Water intrusion vulnerability for freshwater lenses near islands. Journal of Hydrology, 508, 322-327. Doi: 10.1016/j.jhydrol.2013.11.002. Muis S., Güneralp B., Jongman B., Aerts J.C.H.J., Ward P.J., 2015. Science of the Total Environment, 538, 445-457. Doi: 10.1016/j.scitotenv.2015.08.068. Murray N.J., Clemens R.S., Phinn S.R., Possingham H.P., Fuller R.A., 2014. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and Environment, 12, 267-272. Doi: 10.1890/130260. Neumann B., Vafeidis A.T., Zimmermann J., Nicholls R.J., 2015a. Future coastal population growth and exposure to sea-level rise and coastal flooding. A global assessment. Plos One, 10, 1-22. Doi: 10.1371/journal.pone.0118571. Nguyen A. Duoc, Savenije H. H., 2006. Salt intrusion in multi-channel estuaries: a case study in the Mekong Delta, Vietnam. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 10, 743-754. Doi: 10.5194/hess-10-743-2006. Nguyen An Thinh, Nguyen Ngoc Thanh, Luong Thi Tuyen, Luc Hens, 2017. Tourism and beach erosion: Valuing the damage of beach erosion for tourism in the Hoi An, World Heritage site. Journal of Environment, Development and Sustainability. Nguyen An Thinh, Luc Hens (Eds.), 2018. Human ecology of climate change associated disasters in Vietnam: Risks for nature and humans in lowland and upland areas. Springer Verlag, Berlin.Nguyen An Thinh, Vu Anh Dung, Vu Van Phai, Nguyen Ngoc Thanh, Pham Minh Tam, Nguyen Thi Thuy Hang, Le Trinh Hai, Nguyen Viet Thanh, Hoang Khac Lich, Vu Duc Thanh, Nguyen Song Tung, Luong Thi Tuyen, Trinh Phuong Ngoc, Luc Hens, 2017. Human ecological effects of tropical storms in the coastal area of Ky Anh (Ha Tinh, Vietnam). Environ Dev Sustain, 19, 745-767. Doi: 10.1007/s/10668-016-9761-3. Nguyen Van Hoang, 2017. Potential for desalinization of brackish groundwater aquifer under a background of rising sea level via salt-intrusion prevention river gates in the coastal area of the Red River delta, Vietnam. Environment, Development and Sustainability. Nguyen Tho, Vromant N., Nguyen Thanh Hung, Hens L., 2008. Soil salinity and sodicity in a shrimp farming coastal area of the Mekong Delta, Vietnam. Environmental Geology, 54, 1739-1746.  Doi: 10.1007/s00254-007-0951-z. Nguyen Thang T.X., Woodroffe C.D., 2016. Assessing relative vulnerability to sea-level rise in the western part of the Mekong River delta. Sustainability Science, 11, 645-659. Doi: 10.1007/s11625-015-0336-2. Nicholls N.N., Hoozemans F.M.J., Marchand M., Analyzing flood risk and wetland losses due to the global sea-level rise:  Regional and global analyses.Global Environmental Change, 9, S69-S87. Doi: 10.1016/s0959-3780(99)00019-9. Phan Minh Thu, 2006. Application of remote sensing and GIS tools for recognizing changes of mangrove forests in Ca Mau province. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Ho Chi Minh City, Vietnam, 9-11 November, 1-17. Reise K., 2017. Facing the third dimension in coastal flatlands.Global sea level rise and the need for coastal transformations. Gaia, 26, 89-93. Renaud F.G., Le Thi Thu Huong, Lindener C., Vo Thi Guong, Sebesvari Z., 2015. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre province, Mekong Delta. Climatic Change, 133, 69-84. Doi: 10.1007/s10584-014-1113-4. Serra P., Pons X., Sauri D., 2008. Land cover and land use in a Mediterranean landscape. Applied Geography, 28, 189-209. Shearman P., Bryan J., Walsh J.P., 2013.Trends in deltaic change over three decades in the Asia-Pacific Region. Journal of Coastal Research, 29, 1169-1183. Doi: 10.2112/JCOASTRES-D-12-00120.1. SIWRR-Southern Institute of Water Resources Research, 2016. Annual Report. Ministry of Agriculture and Rural Development, Ho Chi Minh City, 1-19. Slangen A.B.A., Katsman C.A., Van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M., 2012. Towards regional projections of twenty-first century sea-level change based on IPCC RES scenarios. Climate Dynamics, 38, 1191-1209. Doi: 10.1007/s00382-011-1057-6. Spencer T., Schuerch M., Nicholls R.J., Hinkel J., Lincke D., Vafeidis A.T., Reef R., McFadden L., Brown S., 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model. Global  and Planetary Change, 139, 15-30. Doi:10.1016/j.gloplacha.2015.12.018. Stammer D., Cazenave A., Ponte R.M., Tamisiea M.E., 2013. Causes of contemporary regional sea level changes. Annual Review of Marine Science, 5, 21-46. Doi: 10.1146/annurev-marine-121211-172406. Tett P., Mee L., 2015. Scenarios explored with Delphi. In: Coastal zones ecosystems services. Eds., Springer, Berlin, Germany, 127-144. Tran Hong Hanh, 2017. Land use dynamics, its drivers and consequences in the Ca Mau province, Mekong delta, Vietnam. PhD dissertation, 191p. VUBPRESS Brussels University Press, ISBN 9789057186226, Brussels, Belgium. Tran Thuc, Nguyen Van Thang, Huynh Thi Lan Huong, Mai Van Khiem, Nguyen Xuan Hien, Doan Ha Phong, 2016. Climate change and sea level rise scenarios for Vietnam. Ministry of Natural resources and Environment. Hanoi, Vietnam. Tran Hong Hanh, Tran Thuc, Kervyn M., 2015. Dynamics of land cover/land use changes in the Mekong Delta, 1973-2011: A remote sensing analysis of the Tran Van Thoi District, Ca Mau province, Vietnam. Remote Sensing, 7, 2899-2925. Doi: 10.1007/s00254-007-0951-z Van Lavieren H., Spalding M., Alongi D., Kainuma M., Clüsener-Godt M., Adeel Z., 2012. Securing the future of Mangroves. The United Nations University, Okinawa, Japan, 53, 1-56. Water Resources Directorate. Ministry of Agriculture and Rural Development, 2016. Available online: http://www.tongcucthuyloi.gov.vn/Tin-tuc-Su-kien/Tin-tuc-su-kien-tong-hop/catid/12/item/2670/xam-nhap-man-vung-dong-bang-song-cuu-long--2015---2016---han-han-o-mien-trung--tay-nguyen-va-giai-phap-khac-phuc. Last accessed on: 30/9/2016. Webster P.J., Holland G.J., Curry J.A., Chang H.-R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846. Doi: 10.1126/science.1116448. Were K.O., Dick O.B., Singh B.R., 2013. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage Basin, Kenya. Applied Geography, 41, 75-86. Williams G.A., Helmuth B., Russel B.D., Dong W.-Y., Thiyagarajan V., Seuront L., 2016. Meeting the climate change challenge: Pressing issues in southern China an SE Asian coastal ecosystems. Regional Studies in Marine Science, 8, 373-381. Doi: 10.1016/j.rsma.2016.07.002. Woodroffe C.D., Rogers K., McKee K.L., Lovdelock C.E., Mendelssohn I.A., Saintilan N., 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243-266. Doi: 10.1146/annurev-marine-122414-034025. 
    Type of Medium: Online Resource
    ISSN: 0866-7187 , 0866-7187
    Language: Unknown
    Publisher: Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)
    Publication Date: 2018
    SSG: 6,25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications) ; 2019
    In:  VIETNAM JOURNAL OF EARTH SCIENCES Vol. 41, No. 1 ( 2019-01-08), p. 21-35
    In: VIETNAM JOURNAL OF EARTH SCIENCES, Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications), Vol. 41, No. 1 ( 2019-01-08), p. 21-35
    Abstract: Can Gio mangrove forest (CGM) is located downstream of Ho Chi Minh City (HCMC), situated between an estuarine system of Dong Nai - Sai Gon river and a part of Vam Co river. The CGM is the largest restored mangrove forest in Vietnam and the UNESCO’s Mangrove Biosphere Reserve. The CGM has been gradually facing to numeric challenges of global climate change, environmental degradation and socio-economic development for the last decades. To evaluate sediment quality in the CGM, we collected 13 cores to analyze for sediment grain size, organic matter content, and trace element concentration of Cd, Cr, Cu, Ni, Pb, Zn. Results showed that trace element concentrations ranged from uncontaminated (Cd, Cu, and Zn) to very minor contaminated (Cr, Ni, and Pb). The concentrations were gradually influenced by suspended particle size and the mangrove plants.ReferencesAnh M.T., Chi D.H., Vinh N.N., Loan T.T., Triet L.M., Slootenb K.B.-V., Tarradellas J., 2003. Micropollutants in the sediment of Sai Gon – Dong Nai rivers: Situation and ecological risks. Chimia International Journal for Chemistry, 57, 09(0009–4293), 537–541.Baruddin N.A., Shazili N.A., Pradit S., 2017. Sequential extraction analysis of heavy metals in relation to bioaccumulation in mangroves, Rhizophora mucronata from Kelantan delta, Malaysia. AACL Bioflux, 10(2), 172-181. Retrieved from www.bioflux.com/aacl.Bravard J.-P., Goichot M., Tronchere H., 2014. An assessment of sediment transport processes in the lower Mekong river based on deposit grain size, the CM technique and flow energy data. Geomorphology, 207, 174-189.Cang L.T., Thanh N.C. 2008. Importing and exporting sediment to and from mangrove forest at Dong Trang estuary, Can Gio district, Ho Chi Minh city. Science & Technology Development, 11(04), 12-18.Carignan J., Hild P., Mevelle G., Morel J., Yeghicheyan D., 2001. Routine analyses of trace elements in geological samples using flow injection and low-pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. The Journal of Geo standard and Geoanalysis, 187-198.Carlson P.R., Yarbro L.A., Zimmermann C.F., Montgomery J.R., 1983. Pore water chemistry of an overwash mangrove island. Academy Symposium: Future of the Indian River System, 46(3/4), 239-249. https://www.jstor.org/stable/24320336.Chatterjee M., Canário J., Sarkar S.K., Branco V., Godhantaraman N., Bhattacharya B.D., Bhattacharya A., 2012. Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India—a UNESCO World Heritage Site. Environ Monit Assess, 184, 5239–5254.Claudia R., Huy N.V., 2004. Water allocation policies for the Dong Nai river basin in Viet Nam: An integrated perspective. EPTD Discussion Paper, 127, 01-52.Folk R.L., Ward W.C., 1957. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27(1), 3-26.Furukawaa K., Wolanski E., Mueller H., 1997. Currents and sediment transport in mangrove forests. Estuarine, Coastal and Shelf Science, 44, 301-310.Hai H.Q., Tuyen N.N., 2011. Coastal Erosion of Can Gio district Ho Chi Minh City due to the global climate change. The journal of development of technology and science, 14, 17-28.HCM SO S.O., 2015. Annual statistic data in 2015 for HCM city. Ho Chi Minh city: Statistic office of HCM city.HCMC, 2017. Decision No. 3901 on approving the areas of forest and land in HCM city in 2016. Ho Chi Minh: The people's committee of HCM city.Herut B., Sandler A., 2006. Normalization methods for pollutants in marine sediments: review and recommendations for the Mediterranean. Haifa 31080: Israel Oceanographic & Limnological Research: IOLR Report H18/2006.Hong P.N., San H.T., 1993. Mangroves of Vietnam: Chapter VI Human impacts on the mangrove ecosystem. Bangkok 10501: IUCN - The International Union for Conservation of Nature, ISBN: 2-8317-0166-x.Hubner R., Astin K.B., Herbert R.J., 2009. Comparison of sediment quality guidelines (SQGs) for the assessment of metal contamination in marine and estuarine environments. Journal of Environmental Monitoring, 11, 713–722.IAEA, 2003. Collection and preparation of bottom sediment samples for analysis of radionuclides and trace elements. Vienna, Austria: International Atomic Energy Agency, IAEA-TECDOC-1360, ISBN 92–0–109003–X.Jingchun L., Chongling Y., Ruifeng Z., Haoliang L., Guangqiu Q., 2008. Speciation changes of Cd in mangrove (Kandelia Candel L.) rhizosphere sediments. Bull Environ Contam Toxicol, 231-236. Doi:10.1007/s00128-007-9351-z.Kalaivanan R., Jayaprakash M., Nethaji S., Arya V., Giridharan L., 2017. Geochemistry of Core Sediments from Tropical Mangrove Region of Tamil Nadu: Implications on Trace Metals. Journal of Earth Science & Climatic Change, ISSN: 2157-7617., 8(1.1000385), 1-10. Doi:10.4172/2157-7617.1000385.Kathiresan K., Saravanakumar K., Mullai P., 2014. Bioaccumulation of trace elements by Avicennia marina. Journal of Coastal Life Medicine, 2(11), 888-894.Kitazawa T., Nakagawa T., Hashimoto T., Tateishi M., 2006. Stratigraphy and optically stimulated luminescence (OSL) dating of a Quaternary sequence along the Dong Nai River, southern Vietnam. Journal of Asian Earth Sciences, 27, 788–804.Lacerda L.D., 1998. Trace metals of biogeochemistry and diffuse pollution in mangrove (M. Vannucci, Ed.) Mangrove ecosystem occassional papers (ISSN: 0919-1348), 2, 1-72.Laura H., Probsta A., Probsta J.L., Ulrich E., 2003. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. The Science of Total Environment, 195-210.Li R., Li R., Chai M., Shen X., Xu H., Qiu G., 2015. Heavy metal contamination and ecological risk in Futian mangrove forest sediment in Shenzhen Bay, South China. Marine Pollution Bulletin, 101, 448–456.Long E., Morgan L.G., 1990. The potential for biological effects of sediment-sorted contaminants tested in the national status and trends program. Seattle, Washington: NOAA Technical Memorandum NOS OMA 52.Long E.R., Field L.J., MacDonald D.D., 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry, 17, 714–727. http://onlinelibrary.wiley.com/doi/10.1002/etc.5620170428/abstract;jsessionid=C5264A1AD0.7ACCA9B4EF9A088BE2EDE9.f04t04Long E.R., MacDonald D.D., Smith S.L., Calder F.D., 1995. Incidence of adverse biological effects within ranges of chemical concentration in marine and estuarine sediments. Environmental management, 19, 81-97.Maiti S.K., Chowdhury A., 2013. Effects of Anthropogenic Pollution on Mangrove Biodiversity: A Review. Journal of Environmental Protection, 4, 1428-1434.Marchand C., Allenbach M., Lallier-Verges E., 2011. Relation between heavy metal distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia). Geoderma, Elsevier, 160 (3-4), 444-456.Mohd F.N., Nor R.H., 2010. Heavy metal concentrations in an important mangrove species, Sonneratia caseolaris, in Peninsular Malaysia. Environment Asia, 3, 50-53.Muller G., 1979. Schwermetalle in den Sedimenten des Rheins - Veränderungen seit 1971. Umschau, 778-783.Nam V.N., 2007. Restoration of Can Gio mangrove forest: Its structure and function in comparison between the ecosytems of plantion and nature mangrove forest. Workshop on the thesis between Germany and Vietnam.Nickerson N.H., Thibodeau F.R., 1985. Association between pore water sulfide concentrations and the distribution of mangroves. Biogeochemistry, 1, 183-192.Ong Che R.G., 1999. Concentration of 7 Heavy Metals in Sediments and Mangrove Root Samples from Mai Po, Hong Kong. Marine Pollution Bulletin, 39, 269-279.Passega R., 1957. Texture as characteristics of clastic deposition. Publisher: American Association of Petroleum Geologists.Passega R., 1964. Grain size representation by CM patterns as a geological tool. J Sediment Petrol, 34, 830–847.Phuoc V.L., An D.T., Cang L.T., Chung B.N., Tien N.V., 2010. Study the sediment dynamics in Can Gio mangrove forest (Nang Hai site, Ho Chi Minh city). Ho Chi Minh city: The final report of National University Ho Chi Minh city, No. B2009-18-36.Pumijumnong N., Danpradit S., 2016. Heavy metal accumulation in sediments and mangrove forest stems from Surat Thani province, Thailand. The Malaysian forester, 79(1 & 2), 212-228.QCVN43:2012/BTNMT, 2012. QCVN43:2012/BTNMT: National technical regulation on the sediment quality, Ha Noi: Ministry of natural resources and environment of Vietnam.Qiao S., Shi X., Fang X., Liu S., Kornkanitnan N., Gao J., Yu Y., 2015. Heavy metal and clay mineral analyses in the sediments of Upper Gulf of Thailand and their implications on sedimentary provenance and dispersion pattern. Journal of Asian Earth Sciences, 114, 488–496.Rollinson H. R., 1993. Using geochemical data for evaluation, presentation and interpretation. UK: Longman Group UK Limited ISBN-0-582-06701-4.Spalding M., Blasco F., Field C., 2010. World atlas of mangrove. Cambridge: Earthscan in UK and US, ISBN: 978-1-84407-657-4.Strady E., Dang V.B., Némery J., Guédron S., Dinh Q.T., Denis H., Nguyen P.D., 2016. Baseline seasonal investigation of nutrients and trace metals in surface waters and sediments along the Saigon River basin impacted by the megacity of HCM, Viet Nam. Environ Sci Pollut Res, 1-18. doi:10.1007/s11356-016-7660-7.Tam N.F., Wong Y.S., 1996. Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environment pollution, 94(5), 283-291.Thomas N., Lucas R., Bunting P., Hardy A., Rosenqvist A., Simard M., 2017. Distribution and drivers of global mangrove forest change, 1996– 2010. PLoS ONE, 12(6): e0179302, 1-14. Doi:10.1371/journal.pone.0179302.Thuy H.T., Loan T.T., Vy N.N., 2007. Study on environmental geochemistry of heavy metals in urban canal sediments of Ho Chi Minh city. Science and Technology Development, 10(01), 1-9.Toan T.T., Bay N.T., 2006. A study on the tendency of accretion and erosion in Can Gio coastal zone. Vietnam-Japan estuary workshop, 184-194.Tri N.H., Hong P.N., Cuc L.T., 2000. Can Gio Mangrove Biosphere Reserve Ho Chi Minh city, Ha Noi, Viet Nam. Ha Noi: Hanoi University Publisher.Truong T.V., 2007. Planning for water source of Dong Nai river basin. Retrieved from Water Resources Planning: http://siwrp.org.vn/tin-tuc/quy-hoach-tai-nguyen-nuoc-luu-vuc-song-dong-nai_143.html.Tuan L.D., Oanh T.T., Thanh C.V., Quy N.D., 2002. Can Gio mangrove biosphere reserve. HCM city, Vietnam: Agriculture Publisher.Tue N.T., Quy T.D., Amono A., 2012. Historical profiles of trace element concentrations in Mangrove sediments from the Ba Lat estuary, Red river, Vietnam. Water, Air & Soil Pollution, ISSN 0049-6979, 223(3), 1315-1330.Twilley R., Chen R., Hargis T., 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air & Soil pollution, Netherland, 64, 265-288.UN Environment Program, 2006. Methods for sediment sampling and analysis. Palermo (Sicily), Italy: United Nation Environment Program.UNESCO, 2000. List of Biosphere reserves approved by MAB committee belonging to UNESCO. Retrieved from United Nations, Educational, Scientific, Cultural Organization (UNESCO): http://www.unesco.org/new/en/natural-sciences/environment/ecological-sciences/biosphere-reserves/asia-and-the-pacific.Vandenberghe N., 1975. An evaluation of CM patterns for grain size studies of fine grained sediments. Sedimentology, 22, 615-622.Vinh B.T., Ichiro D., 2012. Erosion mechanism of cohesive river bank and bed of Soai Rap river (Ho Chi Minh city). J. Sci. of the Earth, 34(2), 153-161.Wang J., Du H., Xu Y., Chen K., Liang J., Ke H., Cai M., 2016. Environmental and Ecological Risk Assessment of Trace Metal Contamination in Mangrove Ecosystems. BioMed Research International, Article ID 2167053, 1-14. Doi:10.1155/2016/2167053.Wedepohl K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217-1232.Woodroffe C., Rogers K., McKee K., Lovelock C., Mendelssohn I., Saintilan N., 2016. Mangrove sedimentation and response to relative sea level rise. The Annual Review of Marine Science, 8, 243-266.Zhang J., Liu C.L., 2002. Riverine Composition and Estuarine Geochemistry of Particulate Metals in China-Weathering Features, Anthropogenic Impact and Chemical Fluxes. Estuarine, Coastal and Shelf Science, 54(6), 1051-1070.Zhang W., Feng H., Chang J., Qu J., Xie H., Yu L., 2009. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environmental Pollution, 157, 1533-1543.Zheng W.-j., Xiao-yong C., Peng L., 1997. Accumulation and biological cycling of heavy metal elements in Rhizophora stylosa mangroves in Yingluo Bay, China. Marine ecology progress series, 159, 293-301.
    Type of Medium: Online Resource
    ISSN: 0866-7187 , 0866-7187
    Language: Unknown
    Publisher: Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)
    Publication Date: 2019
    SSG: 6,25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiley ; 1996
    In:  Singapore Journal of Tropical Geography Vol. 17, No. 1 ( 1996-06), p. 83-103
    In: Singapore Journal of Tropical Geography, Wiley, Vol. 17, No. 1 ( 1996-06), p. 83-103
    Abstract: Books reviewed in this article: Climatology: An Atmospheric Science . John J. Hidore and John E. Oliver. Geomorphology in the Tropics: A Study of Weathering and Denudation in Low Latitudes . Michael F. Thomas. Hydrology and Water Management in the Humid Tropics . Michael Bonell, Maynard M. Hufschmidt and John S. Gladwell. The Environment and International Relations . John Vogler and Mark F. Imber (eds.). Summary and Selected Papers of the SEAPOL Tri‐Regional Conference . Kathleen I. Matics and Ted L. McDorman (eds.) Trade, Aid and Global Interdependence . George Cho. Communication and the “Third World” . Geoffrey Reeves. East Asian Economies: Transformation and Challenges . Toshihiko Kawagoe and Sueo Sekiguchi (eds.). Counting the Cost: Economic Growth and Environmental Change in Thailand . Jonathan Rigg (ed.).
    Type of Medium: Online Resource
    ISSN: 0129-7619 , 1467-9493
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 1996
    detail.hit.zdb_id: 1482898-4
    SSG: 6,25
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...