GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biodiversity Research  (92)
Material
Person/Organisation
Language
FID
  • Biodiversity Research  (92)
Subjects(RVK)
  • 11
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Journal of Animal Science Vol. 100, No. Supplement_1 ( 2022-03-08), p. 22-23
    In: Journal of Animal Science, Oxford University Press (OUP), Vol. 100, No. Supplement_1 ( 2022-03-08), p. 22-23
    Abstract: Forage and supplemental feed costs remain the overriding factors driving profitability in U.S. cow/calf operations. The cow/calf sector uses 74% of the total feed energy required to produce one pound of carcass weight. Methane is the second most abundant anthropogenic greenhouse gas after carbon dioxide. The cow/calf sector of beef production accounts for 77 to 81% of enteric methane emissions per unit of carcass weight produced. Reducing feed energy required and methane emissions by the cow/calf segment of the beef production system will improve economic, environmental, and social sustainability. Most of the beef production cycle occurs on land not suitable for raising crops. Of the 2.3 billion acres available in the United States, about 655 million acres (29%) are classified as grassland pasture and rangeland, and 316 million acres (14%) are identified as parks and wildlife areas, some of which are grazed. Therefore, improving forage utilization efficiency would have a wide-reaching impact on U.S. food security and profitability of cow/calf enterprises. Beef production is a critical component in U.S. and global food security because cattle upcycle poorly digestible plant components and food waste products into high-quality human edible protein. In recent years, substantial progress has been made in understanding biological variation and genetic components of feed efficiency in growing animals consuming energy-dense mixed diets during the post-weaning phase. Much less is known about within-animal variation of forage utilization efficiency for beef cows consuming moderate to low-quality forage diets common to most cow/calf production systems. Considerable evidence indicates the existence of an environment by genetic interaction for feed efficiency. More rapid progress in forage utilization efficiency and reduction in greenhouse gas emissions could be made by studying forage utilization efficiency directly.
    Type of Medium: Online Resource
    ISSN: 0021-8812 , 1525-3163
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1490550-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Online Resource
    Online Resource
    Wiley ; 2011
    In:  Journal of Vegetation Science Vol. 22, No. 4 ( 2011-08), p. 577-581
    In: Journal of Vegetation Science, Wiley, Vol. 22, No. 4 ( 2011-08), p. 577-581
    Abstract: The field of ecoinformatics provides concepts, methods and standards to guide management and analysis of ecological data with particular emphasis on exploration of co‐occurrences of organisms and their linkage to environmental conditions and taxon attributes. In this editorial, introducing the Special Feature ‘Ecoinformatics and global change’, we reflect on the development of ecoinformatics and explore its importance for future global change research with special focus on vegetation‐plot data. We show how papers in this Special Feature illustrate important directions and approaches in this emerging field. We suggest that ecoinformatics has the potential to make profound contributions to pure and applied sciences, and that the analyses, databases, meta‐databases, data exchange formats and analytical tools presented in this Special Feature advance this approach to vegetation science and illustrate and address important open questions. We conclude by describing important future directions for the development of the field including incentives for data sharing, creation of tools for more robust statistical analysis, utilities for integration of data that conform to divergent taxonomic standards, and databases that provide detailed plot‐specific data so as to allow users to find and access data appropriate to their research needs.
    Type of Medium: Online Resource
    ISSN: 1100-9233 , 1654-1103
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 2047714-4
    detail.hit.zdb_id: 1053769-7
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Online Resource
    Online Resource
    CSIRO Publishing ; 2015
    In:  International Journal of Wildland Fire Vol. 24, No. 2 ( 2015), p. 151-
    In: International Journal of Wildland Fire, CSIRO Publishing, Vol. 24, No. 2 ( 2015), p. 151-
    Abstract: Global social-economic and environmental changes are increasing the challenges of wildfire risk management. Addressing these challenges requires perspectives beyond knowledge of the bio-physical dynamics of fire. This Special Section provides some such perspectives, including safety, children's understanding of the risk, indigenous knowledge of fire, and ‘shared responsibility’. Each paper highlights important challenges and ideas for fire management.
    Type of Medium: Online Resource
    ISSN: 1049-8001
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2015
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  Journal of Environmental Studies and Sciences Vol. 3, No. 2 ( 2013-6), p. 232-242
    In: Journal of Environmental Studies and Sciences, Springer Science and Business Media LLC, Vol. 3, No. 2 ( 2013-6), p. 232-242
    Type of Medium: Online Resource
    ISSN: 2190-6483 , 2190-6491
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2600077-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    In: Journal of Environmental Biology, Triveni Enterprises, Vol. 44, No. 6 ( 2023-11-1), p. i-iii
    Abstract: Insects (Insecta, Arthropoda), undeniably represent the most triumphant group of living organisms, in terms of evolutionary achievement, existing on earth. With over one million described species, they account for more than 75 percent of all known species, and it is estimated that at least 4-5 million insect species still remain undiscovered and undescribed (Stork, 2018). They represent one of the largest components of biodiversity in the world, closely associated with human's wellbeing in different forms like pests, natural enemies, producers of economic products and facilitators of pollination. In contemporary times, despite notable progress in agricultural output and economic prosperity in many regions, the problem of food insecurity persists as a significant concern affecting substantial segments of the global population (Palli, 2022). To cater the food demand of the fast expanding global population, intensive agricultural practices like extensive use of chemical fertilizers and insecticides, greater tillage and irrigation, as well as heavy mechanization are followed. The result is frequent outbreak of phytophagous insect pests along with a rapid decline in the biodiversity of beneficial insects including natural enemies and pollinators. It is estimated that crop losses caused by insects are a major problem in both developed and developing countries, destroying 18 to 20 per cent of the annual crop production globally, having worth over US$ 470 billion (Srivastava and Chakravarty, 2021). Initially, when pesticides were used to control or prevent insect pest outbreaks, the chemicals were often applied as soon as a problem was perceived, without accurate identification of the insect's identity or discovery of why the problem had developed in the first place. This lack of understanding of the cause of outbreak meant that the same problem could reoccur. Sustainable pest management requires a more scientific approach. The first step in this direction is the correct identification of the insect species. Accurate species identification, whether of the pest or its associated natural enemy along with their biological systematic studies provide backbone information for the success of any integrated pest management programme (Chakravarty et al., 2022). Traditional systematics or taxonomy was primarily reliant on morphology-based taxon identification systems. However, the process of morphological identification poses significant challenges in numerous insect taxa, mostly attributable to the absence of dependable diagnostic traits or the presence of cryptic species complexes (Shashank et al., 2022). Moreover, due to a decrease in the number of proficient morpho-taxonomists, specifically those specializing in lesser-known insect groups, there is a need for alternate approaches to species identification. Presently, entomologists are leveraging a wide array of molecular techniques that were previously untapped, while also embracing novel technologies under the paradigm of a "technology-driven revolution" in the field of systematics (Srivastava et al., 2019). Molecular techniques present a highly advantageous strategy for the identification and classification of insects, offering distinct benefits when compared to traditional morphological methods. Over the past twenty years, DNA barcoding has emerged as a swift and dependable technique for the identification of species, thereby revitalizing the field of taxonomic study. It refers to the technique, where short fragment of the conserved mitochondrial cytochrome c oxidase subunit I (COI) gene, the “DNA barcode,” is sequenced from a taxonomically undesignated specimen and comparisons are made with the DNA sequence of species of known origin for establishing a species level identification (Hebert et al., 2003). This approach has been frequently employed in various studies focusing on insects (and other arthropods in general), leading to the identification of previously unknown or cryptic species. Additionally, it has helped identify species complexes and evolutionary significant units, thereby establishing a basis for further comprehensive integrative taxonomic research (Firake and Behere, 2021). DNA barcoding considerably facilitates the monitoring of invasive species, vectors, and economically important endangered and/or endemic arthropod species. Furthermore, the utilization of DNA metabarcoding in ecological and surveillance initiatives has become increasingly prevalent. This approach enables the rapid evaluation of biodiversity in certain geographical regions, as well as the study of arthropod biosystems and communities that would otherwise be inaccessible. In recent times, entomologists in India have efficiently identified various invasive insect pest species, such as the elephant beetle, tomato pinworm, rugose spiralling whitefly, coconut case caterpillar, fall armyworm, and cassava mealy bug, by incorporating molecular systematics either as the sole method or in conjunction with traditional taxonomical tools (Srivastava and Chakravarty, 2021). In addition, there have been endeavours to offer extensive data through molecular characterization and/or DNA barcoding of indigenous organisms that serve as natural enemies and pollinators within diverse agricultural systems of India (Srivastava et al., 2019). A good number of insect genomes, particularly the mitochondrial genome have also been wholly sequenced in the country, including both crop pests and beneficial insects (Firake and Behere, 2021). However, our nation renowned for its exceptional biodiversity, exhibits a mere 3.73% coverage of DNA barcodes for its documented insect species. Notably, the orders Lepidoptera and Hemiptera are the most extensively represented in this limited dataset (Shashank et al., 2022). Such a delay in developing DNA barcode reference libraries for insects will set us back in our efforts to effectively document and preserve our rich biodiversity. The introduction of molecular systematics has also precipitated a revolution in our understanding of intraspecific genetic diversity and population genetic structure of several key insect pest species of agricultural importance in the country, helpful to detect the changes they adapt to overcome hurdles of various selection pressures including insecticides (Chakravarty et al., 2020). A necessity for the development of effective and safe management techniques for a target pest is the acquisition of comprehensive knowledge pertaining to its population structure and dynamics. Despite the emergence of inconsistencies between morphological and molecular phylogenies, as well as conflicting results from different molecular research, the utilization of phylogenomic analysis has proved helpful in resolving numerous controversial connections within insects. Over the past decade, our working group has devoted its research efforts entirely to this particular issue. Based on the molecular characterization with RAPD markers (Deepa and Srivastava, 2011) and COI gene (Chakravarty et al., 2021), phenotyping of immature and adult stages (Chakravarty and Srivastava, 2020; Chakravarty et al., 2023b), and other biological traits (Chakravarty et al., 2019 and 2023a), existence of sub-specific level variations among Helicoverpa armigera populations from diverse agro-ecologies of India has been deciphered. Similar studies for Leucinodes orbonalis (Padwal et al., 2022), Spodoptera litura (Ganguly et al., 2023) and Maruca vitrata (Mahalle et al., 2022) revealed genetic homogeneity for these pest species in the country. Further, Mahalle et al. (2023) have also screened publically accessible expressed sequence tag resources to identify microsatellites and evaluate their suitability as DNA markers for investigating gene flow patterns among populations of M. vitrata from pigeonpea fields throughout India. Molecular systematics has also proven to be a valuable tool in the identification of convergent evolution phenomena, such as the emergence of eusocial behaviours and caste systems among Hymenoptera (Berens et al., 2015); comprehending predator-prey dynamics within trophic food web investigations (Novotny and Miller, 2014), as well as resolving challenges associated with limited specimen availability or local species populations (Deng et al., 2019). Nevertheless, it is important to note that relying solely on molecular analyses to determine the identity of a species or assess population diversity can be precarious. This is due to potential biases introduced by the improper utilization of neighbor-joining trees, fixed distance thresholds, bootstrap resampling, interpretation of the barcoding gap, as well as limitations associated with DNA barcode repositories such as the Barcode of Life Data Systems (BOLD) and the National Centre for Biotechnology Information (NCBI). For instance, in a study conducted by Kvist (2013), it was found that 42% of invasive insects were not included in the BOLD database. Furthermore, the outcomes of phylogenetic analyses can be affected by various factors, such as the occurrence of recent speciation events, the presence of paraphyly, inadequate taxonomy, interspecific hybridization, and the high prevalence of endosymbiotic bacteria like Wolbachia, that hinders the replication or detection of the target sequence from insect specimens during the polymerase chain reaction, as highlighted by Shashank et al. (2022). Therefore, it is recommended that molecular methodologies should be utilized in conjunction with, rather than in lieu of, morphological identification in order to achieve optimal outcomes (Chakravarty et al., 2023b). Last but not the least, a note of appreciation for the “Journal of Environmental Biology” is also appropriate at this juncture. We are pleased to share our research experience and expertise through this editorial in the aforementioned journal, with which we have been affiliated for several years in various roles such as author, reviewer, and editor. This open access journal is notable for its comparatively modest processing charges, which enable researchers to publish their original work at an affordable cost. The enduring anticipation for highly critical reviews has contributed to the continued prominence of this journal within the realm of environmental science and related disciplines. We appreciate the visions of late Professor R.C. Dalela and his dedicated team, who have worked tirelessly over the years to make this journal a valuable resource for the global environmental outlook, with the ultimate aim of promoting societal well-being. Currently, the responsibility of overseeing this journal rests with Dr. Divakar Dalela, the Executive Editor, and Dr. Sumati Gaumat, the Editor, together with their dedicated publication team. They are diligently working towards upholding the international standards of this esteemed journal. We extend our best wishes for the continued success of the journal in the years to come.
    Type of Medium: Online Resource
    ISSN: 0254-8704 , 2394-0379
    URL: Issue
    Language: Unknown
    Publisher: Triveni Enterprises
    Publication Date: 2023
    detail.hit.zdb_id: 2581524-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  ICES Journal of Marine Science Vol. 77, No. 2 ( 2020-03-01), p. 500-514
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 77, No. 2 ( 2020-03-01), p. 500-514
    Abstract: This study incorporated two pathways of environmental forcing (i.e. “larval mortality forcing” and “somatic growth forcing”) into an end-to-end ecosystem model (Object-oriented Simulator of Marine ecOSystEms, OSMOSE) developed for the Pacific North Coast Integrated Management Area (PNCIMA) off western Canada, in order to evaluate alternative fisheries management strategies under environmental changes. With a suite of ecosystem-level indicators, the present study first compared the ecosystem effects of different pathways of environmental forcing scenarios; and then evaluated the alternative fisheries management strategies which encompassed a series of fishing mortality rates relative to FMSY (the fishing mortality rate that produces maximum sustainable yield) and a set of precautionary harvest control rules (HCRs). The main objectives of this study were to (i) explore the ecosystem effects of different environmental forcing scenarios; (ii) identify the impacts of different fishing mortality rates on marine ecosystem structure and function; and (iii) evaluate the ecosystem-level performance of various levels of precautionary HCRs. Results indicated that different pathways of environmental forcing had different ecosystem effects and incorporating appropriate HCRs in the fisheries management process could help maintain ecosystem health and sustainable fisheries. This study provides important information on future fisheries management options within similar marine ecosystems that are facing global changes.
    Type of Medium: Online Resource
    ISSN: 1054-3139 , 1095-9289
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Online Resource
    Online Resource
    Canadian Science Publishing ; 2019
    In:  Canadian Journal of Fisheries and Aquatic Sciences Vol. 76, No. 7 ( 2019-07), p. 1041-1051
    In: Canadian Journal of Fisheries and Aquatic Sciences, Canadian Science Publishing, Vol. 76, No. 7 ( 2019-07), p. 1041-1051
    Abstract: Aquatic animals are integral to ocean and freshwater ecosystems and their resilience, are depended upon globally for food sustainability, and support coastal communities and Indigenous peoples. However, global aquatic environments are changing profoundly due to anthropogenic actions and environmental change. These changes are altering distributions, movements, and survival of aquatic animals in ways that are not well understood. The Ocean Tracking Network (OTN) is a global partnership that is filling this knowledge gap. OTN Canada, a pan-Canadian (and beyond) research network, was launched in 2010 with visionary funding by the Canadian government. In our introduction to this special issue, we briefly overview how this interdisciplinary network has used state-of-the-art technologies, infrastructure, electronic tags and sensors, and associated cutting-edge research and training programs to better understand changing marine and freshwater dynamics and their impact on ecosystems, resources, and animal ecology. These studies have provided unprecedented insights into animal ecology and resource management at a range of spatial and temporal scales and by interfacing animal movements with novel measures of environment, physiology, disease, genetics–genomics, and anthropogenic stressors.
    Type of Medium: Online Resource
    ISSN: 0706-652X , 1205-7533
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 7966-2
    detail.hit.zdb_id: 1473089-3
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Journal of Environmental Studies and Sciences Vol. 11, No. 3 ( 2021-09), p. 287-293
    In: Journal of Environmental Studies and Sciences, Springer Science and Business Media LLC, Vol. 11, No. 3 ( 2021-09), p. 287-293
    Abstract: In response to global climate change, managed retreat has emerged as a controversial adaptation strategy. The purposeful movement of people and communities away from hazardous places raises numerous social and environmental justice concerns that will become even more pressing as retreat occurs more frequently and at larger scales. This special issue contributes to an emerging body of literature on managed retreat by providing a range of perspectives and approaches to considering justice in managed retreat. The assembled papers represent diverse voices (including perspectives from individuals whose communities are currently relocating or considering relocation), disciplines (including oral histories, legal analyses, and cultural heritage considerations), and lenses through which to consider the justice implications of managed retreat. They describe completed, in-progress, and foiled relocations. They suggest opportunities for improvement through improved evaluations and broader collaborations. While each presents a unique lens, key themes emerge around the need for transparent and equitable policies, self-determination of communities, holistic metrics for assessing individual and community well-being, the importance of culture both as something to be protected and an asset to be leveraged, and the need to address historical and systemic injustices that contribute to vulnerability and exposure to risk.
    Type of Medium: Online Resource
    ISSN: 2190-6483 , 2190-6491
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2600077-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Online Resource
    Online Resource
    Wiley ; 2001
    In:  Journal of Phycology Vol. 37, No. s3 ( 2001-06), p. 12-12
    In: Journal of Phycology, Wiley, Vol. 37, No. s3 ( 2001-06), p. 12-12
    Abstract: Chopin, T. 1 , Yarish, C. 2 , Neefus, C. 3 , Kraemer, G. P. 4 , Belyea, E. 1 , Carmona, R. 2 , Saunders, G. W. 5 , Bates, C. 5 , Page, F. 6 & Dowd, M. 6 1 University of New Brunswick, Centre for Coastal Studies and Aquaculture and Centre for Environmental and Molecular Algal Research, P.O. Box 5050, Saint John, New Brunswick, E2L 4L5, Canada; 2 University of Connecticut, Department of Ecology and Evolutionary Biology, 1 University Place, Stamford, Connecticut, 06901‐2315, USA; 3 University of New Hampshire, Department of Plant Biology, Office of Biometrics, G32 Spaulding Life Science Center, Durham, New Hampshire, 03824, USA; 4 State University of New York, Purchase College, Division of Natural Sciences, Purchase, New York, 10577, USA; 5 University of New Brunswick, Centre for Environmental and Molecular Algal Research, P.O. Box 4400, Fredericton, New Brunswick, E3B 5A3, Canada; 6 Department of Fisheries and Oceans, Biological Station, 531 Brandy Cove Road, St. Andrews, New Brunswick, E5B 2L9, Canada On a regional scale, finfish aquaculture can be one of the significant contributors to coastal nutrification. Contrary to common belief, even in regions of exceptional tidal and apparent “flushing” regimes like the Bay of Fundy, water mixing and transport may be limited and water residency time can be locally prolonged. Hence, nutrient bio‐availability remains significant for a relatively long period of time in some areas. Understanding the assimilative capacity of coastal ecosystems under cumulative pressure, then, becomes critical. To avoid pronounced shifts in coastal processes, conversion, not dilution, is the solution by integrating fed aquaculture (finfish) with organic and inorganic extractive aquaculture (shellfish and seaweed) so that the “ wastes” of one resource user become a resource for the others. Such a bioremediative approach provides mutual benefits to co‐cultured organisms, and economic diversification and increased profitability per cultivation unit for the aquaculture industry. These concepts will be discussed and illustrated by the results of our on‐going projects and we will demonstrate that seaweeds can also be excellent bio‐indicators of nutrification/eutrophication revealing symptoms of environmental stress and measuring the zone of influence of an aquaculture site. The aquaculture industry is here to stay in our “coastal scape”: it has its place in the global seafood supply and demand, and in the economy of coastal communities. To help ensure its sustainability, it needs, however, to responsibly change its too often monotrophic practices by adopting polytrophic ones to become better integrated into a broader coastal management framework.
    Type of Medium: Online Resource
    ISSN: 0022-3646 , 1529-8817
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2001
    detail.hit.zdb_id: 281226-5
    detail.hit.zdb_id: 1478748-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    In: Journal of Vegetation Science, Wiley, Vol. 31, No. 2 ( 2020-03), p. 281-292
    Abstract: Does the influence of forest edges on plant species richness and composition depend on forest management? Do forest specialists and generalists show contrasting patterns? Location Mesic, deciduous forests across Europe. Methods Vegetation surveys were performed in forests with three management types (unthinned, thinned 5–10 years ago and recently thinned) along a macroclimatic gradient from Italy to Norway. In each of 45 forests, we established five vegetation plots along a south‐facing edge‐to‐interior gradient ( n  = 225). Forest specialist, generalist and total species richness, as well as evenness and proportion of specialists, were tested as a function of the management type and distance to the edge while accounting for several environmental variables (e.g. landscape composition and soil characteristics). Magnitude and distance of edge influence were estimated for species richness per management type. Results Greatest total species richness was found in thinned forests. Edge influence on generalist plant species richness was contingent on the management type, with the smallest decrease in species richness from the edge‐to‐interior in unthinned forests. In addition, generalist richness increased with the proportion of forests in the surrounding landscape and decreased in forests dominated by tree species that cast more shade. Forest specialist species richness, however, was not affected by management type or distance to the edge, and only increased with pH and increasing proportion of forests in the landscape. Conclusions Forest thinning affects the plant community composition along edge‐to‐interior transects of European forests, with richness of forest specialists and generalists responding differently. Therefore, future studies should take the forest management into account when interpreting edge‐to‐interior because both modify the microclimate, soil processes and deposition of polluting aerosols. This interaction is key to predict the effects of global change on forest plants in landscapes characterized by the mosaic of forest patches and agricultural land that is typical for Europe.
    Type of Medium: Online Resource
    ISSN: 1100-9233 , 1654-1103
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2047714-4
    detail.hit.zdb_id: 1053769-7
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...