GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (49)
  • Biology  (49)
Document type
  • Articles  (49)
Source
Years
  • 1
    Publication Date: 2012-05-23
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-25
    Description: Differentiated cells can be forced to change identity, either to directly adopt another differentiated identity or to revert to a pluripotent state. Direct reprogramming events can also occur naturally. We recently characterized such an event in Caenorhabditis elegans, in which a rectal cell switches to a neuronal cell. Here we have used this single-cell paradigm to investigate the molecular requirements of direct cell-type conversion, with a focus on the early steps. Our genetic analyses revealed the requirement of sem-4/Sall, egl-27/Mta, and ceh-6/Oct, members of the NODE complex recently identified in embryonic stem (ES) cells, and of the OCT4 partner sox-2, for the initiation of this natural direct reprogramming event. These four factors have been shown to individually impact on ES cell pluripotency; however, whether they act together to control cellular potential during development remained an open question. We further found that, in addition to acting at the same time, these factors physically associate, suggesting that they could act together as a NODE-like complex during this in vivo process. Finally, we have elucidated the functional domains in EGL-27/MTA that mediate its reprogramming activity in this system and have found that modulation of the posterior HOX protein EGL-5 is a downstream event to allow the initiation of Y identity change. Our data reveal unique in vivo functions in a natural direct reprogramming event for these genes that impact on ES cells pluripotency and suggest that conserved nuclear events could be shared between different cell plasticity phenomena across phyla.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-24
    Description: The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-10
    Description: We report transplantation outcomes of 258 children with Hurler syndrome (HS) after a myeloablative conditioning regimen from 1995 to 2007. Median age at transplant was 16.7 months and median follow-up was 57 months. The cumulative incidence of neutrophil recovery at day 60 was 91%, acute graft-versus-host disease (GVHD) (grade II-IV) at day 100 was 25%, and chronic GVHD and 5 years was 16%. Overall survival and event-free survival (EFS) at 5 years were 74% and 63%, respectively. EFS after HLA-matched sibling donor (MSD) and 6/6 matched unrelated cord blood (CB) donor were similar at 81%, 66% after 10/10 HLA-matched unrelated donor (UD), and 68% after 5/6 matched CB donor. EFS was lower after transplantation in 4/6 matched unrelated CB (UCB) (57%; P = .031) and HLA-mismatched UD (41%; P = .007). Full-donor chimerism ( P = .039) and normal enzyme levels ( P = .007) were higher after CB transplantation (92% and 98%, respectively) compared with the other grafts sources (69% and 59%, respectively). In conclusion, results of allogeneic transplantation for HS are encouraging, with similar EFS rates after MSD, 6/6 matched UCB, 5/6 UCB, and 10/10 matched UD. The use of mismatched UD and 4/6 matched UCB was associated with lower EFS.
    Keywords: Pediatric Hematology, Transplantation, Free Research Articles
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-21
    Description: Severe congenital neutropenia as well as primary myelofibrosis are rare in infancy. Elucidation of the underlying mechanism is important because it extends our understanding of the more common adult forms of these disorders. Using homozygosity mapping followed by exome sequencing, we identified a Thr224Asn mutation in the VPS45 gene in infants from consanguineous families who suffered from life-threatening neutropenia, which was refractory to granulocyte CSF, from defective platelet aggregation and myelofibrosis. The mutation segregated in the families, was not present in controls, affected a highly conserved codon, and apparently destabilized the Vps45 protein, which was reduced in the patients’ leukocytes. Introduction of the corresponding mutation into yeast resulted in reduced cellular levels of Vps45 and also of the cognate syntaxin Tlg2, which is required for membrane traffic through the endosomal system. A defect in the endosomal-lysosomal pathway, the homologous system in humans, was suggested by the absence of lysosomes in the patients’ fibroblasts and by the depletion of α granules in their platelets. Importantly, accelerated apoptosis was observed in the patients’ neutrophils and bone marrow. This is the first report of a Vps45-related disease in humans, manifesting by neutropenia, thrombasthenia, myelofibrosis, and progressive bone marrow failure.
    Keywords: Pediatric Hematology, Phagocytes, Granulocytes, and Myelopoiesis
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-14
    Description: AK2 deficiency compromises the mitochondrial energy metabolism required for differentiation of human neutrophil and lymphoid lineages Cell Death and Disease 6, e1856 (August 2015). doi:10.1038/cddis.2015.211 Authors: E Six, C Lagresle-Peyrou, S Susini, C De Chappedelaine, N Sigrist, H Sadek, M Chouteau, N Cagnard, M Fontenay, O Hermine, C Chomienne, P Reynier, A Fischer, I André-Schmutz, N Gueguen & M Cavazzana
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-24
    Description: Article Spin textures, such as skyrmions, could be useful in future low-power-consumption memory devices, but they are usually only seen in materials with a strong spin-orbit interaction. Phark et al. now, however, observe such non-collinear magnetic order in nanometre-scale bilayer iron islands. Nature Communications doi: 10.1038/ncomms6183 Authors: S. -H. Phark, J. A. Fischer, M. Corbetta, D. Sander, K. Nakamura, J. Kirschner
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-24
    Description: Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion–fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-19
    Description: Cell-cell contact inhibition and the mechanical environment of cells have both been shown to regulate YAP nuclear localization to modulate cell proliferation. Changes in cellular contractility by genetic, pharmacological, and matrix stiffness perturbations regulate YAP nuclear localization. However, because contractility and F-actin organization are interconnected cytoskeletal properties, it remains unclear which of these distinctly regulates YAP localization. Here we show that in the absence of cell-cell contact, actomyosin contractility suppresses YAP phosphorylation at Ser112, however, neither loss of contractility nor increase in YAP phosphorylation is sufficient for its nuclear exclusion. We find that actin cytoskeletal integrity is essential for YAP nuclear localization, and can override phosphoregulation or contractility-mediated regulation of YAP nuclear localization. This actin-mediated regulation is conserved during mechanotransduction, as substrate compliance increased YAP phosphorylation and reduced cytoskeletal integrity leading to nuclear exclusion of both YAP and Ser(P)112-YAP. These data provide evidence for two actin-mediated pathways for YAP regulation; one in which actomyosin contractility regulates YAP phosphorylation, and a second that involves cytoskeletal integrity-mediated regulation of YAP nuclear localization independent of contractility. We suggest that in non-contact inhibited cells, this latter mechanism may be important in low stiffness regimes, such as may be encountered in physiological environments.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-13
    Description: The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...