GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (30)
  • OceanRep: Article in a Scientific Journal - peer-reviewed  (30)
  • 2020-2024  (30)
  • 1
    Publication Date: 2024-06-05
    Description: Pattern-triggered immunity (PTI) is an integral part of the innate immune system of many eukaryotic hosts, assisting in the defence against pathogen invasions. In plants and animals, PTI exerts a selective pressure on the microbiota that can alter community composition. However, the effect of PTI on the microbiota for non-model hosts, including seaweeds, remains unknown. Using quantitative polymerase chain reaction complemented with 16S rRNA gene and transcript amplicon sequencing, this study profiled the impact that PTI of the red seaweed Gracilaria gracilis has on its microbiota. PTI elicitation with agar oligosaccharides resulted in a significant reduction in the number of bacteria (by 〉75% within 72 h after treatment). However, the PTI elicitation did not cause any significant difference in the community diversity or structure. These findings demonstrated that PTI can be non-selective, and this might help to maintain a stable microbiota by uniformly reducing bacterial loads.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Due to low salinity and lack of hard substrata, the Baltic Sea and Kattegat area and German and Danish North Sea coasts are characterized by a relatively low diversity of seaweeds. At the same time the areas are severely eutrophicated, which has caused extensive shifts in macroalgal communities toward opportunistic species. Unattached seaweed communities dominated by Furcellaria lumbricalis, which have been a resource for hydrocolloid production since the 1940s, have been severely reduced due to eutrophication and unsustainable harvesting and are nowadays only exploited commercially in Estonia. On the other hand, the biomass of opportunistic seaweeds of various red, green and brown algal genera has increased. They cause ecological problems, are a nuisance on many tourist beaches and constitute at the same time a potential bioresource that is so far only exploited to a limited extent for production of energy and fertilizer. Commercial seaweed cultivation is largely focused on Saccharina latissima and still very limited, but is currently being expanded as a compensation measure for sea-based fish aquaculture. Also land-based seaweed cultivation is primarily employed for recycling of nutrients in tank animal aquaculture, but in most cases so far only on an experimental scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Seaweeds are colonized by a microbial community, which can be directly linked to their performance. This community is shaped by an interplay of stochastic and deterministic processes, including mechanisms which the holobiont host deploys to manipulate its associated microbiota. The Anna Karenina principle predicts that when a holobiont is exposed to suboptimal or stressful conditions, these host mechanisms may be compromised. This leads to a relative increase of stochastic processes that may potentially result in the succession of a microbial community harmful to the host. Based on this principle, we used the variability in microbial communities (i.e., beta diversity) as a proxy for stability within the invasive holobiont Gracilaria vermiculophylla during a simulated invasion in a common garden experiment. Independent of host range, host performance declined at elevated temperature (22°C) and disease incidence and beta diversity increased. Under thermally stressful conditions, beta diversity increased more in epibiota from native populations, suggesting that epibiota from non-native holobionts are thermally more stable. This pattern reflects an increase in deterministic processes acting on epibiota associated with non-native hosts, which in the setting of a common garden can be assumed to originate from the host itself. Therefore, these experimental data suggest that the invasion process may have selected for hosts better able to maintain stable microbiota during stress. Future studies are needed to identify the underlying host mechanisms.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Supralittoral and shallow water seaweed communities are particularly exposed to impacts such as climate change and disturbance by humans. Therefore, their classification, the study of composition, and the monitoring of their structural changes are particularly important. A phytosociological survey of the supralittoral and upper sublittoral vegetation of the South West Baltic Sea revealed eight phytobenthos communities with two variants comprising 35 taxa of macrophytes (18 taxa of Chlorophyta, 13 taxa of Rhodophyta and four taxa of Phaeophyceae, Ochrophyta). Five of the eight communities were dominated by Ulvales (Ulva intestinalis, Kornmannia leptoderma, and three Blidingia species), the other three by Fucus vesiculosus. Most Fucus vesiculosus-dominated communities contained U. intestinalis and U. linza as subdominants. Only one of the communities had until now been described as an association ( Ulvetum intestinalis Feldman 1937). The syntaxonomic composition of the investigated vegetation includes both phytocenoses with the domination of green algae ( Ulvetum intestinalis Feldman 1937 and communities of Blidingia marginata, unidentified Blidingia spp. and Kornmannia leptoderma), as well as a number of communities dominated by Fucus vesiculosus. Mainly boreal Atlantic species and cosmopolitans make up the bulk of the species in these associations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Seaweed bioinvasions increasingly affect coastal environments around the world, which increases the need for predictive models and mitigation strategies. The biotic interactions between seaweed invaders and invaded communities are often considered a key determinant of invasion success and failure and we here revise the current evidence that the capacity of seaweed invaders to deter enemies in newly reached environments correlates with their invasion success. Particularly efficient chemical defences have been described for several of the more problematic seaweed invaders during the last decades. However, confirmed cases in which seaweed invaders confronted un-adapted enemies in newly gained environments with deterrents that were absent from these environments prior to the invasion (so-called “novel weapons”) are scarce, although an increasing number of invasive and non-invasive seaweeds are screened for defence compounds. More evidence exists that seaweeds may adapt defence intensities to changing pressure by biological enemies in newly invaded habitats. However, most of this evidence of shifting defence was gathered with only one particular model seaweed, the Asia-endemic red alga Agarophyton vermiculophyllum, which is particularly accessible for direct comparisons of native and non-native populations in common garden experiments. A. vermiculophyllum interacts with consumers, epibionts and bacterial pathogens and in most of these interactions, non-native populations have rather gained than lost defensive capacity relative to native conspecifics. The increases in the few examined cases were due to an increased production of broad-spectrum deterrents and the relative scarcity of specialized deterrents perhaps reflects the circumstance that seaweed consumers and epibionts are overwhelmingly generalists.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Invasive species are co-introduced with microbiota from their native range and also interact with microbiota found in the novel environment to which they are introduced. Host flexibility toward microbiota, or host promiscuity, is an important trait underlying terrestrial plant invasions. To test whether host promiscuity may be important in macroalgal invasions, we experimentally simulated an invasion in a common garden setting, using the widespread invasive macroalga Agarophyton vermiculophyllum as a model invasive seaweed holobiont. After disturbing the microbiota of individuals from native and non-native populations with antibiotics, we monitored the microbial succession trajectories in the presence of a new source of microbes. Microbial communities were strongly impacted by the treatment and changed compositionally and in terms of diversity but recovered functionally by the end of the experiment in most respects. Beta-diversity in disturbed holobionts strongly decreased, indicating that different populations configure more similar –or more common– microbial communities when exposed to the same conditions. This decline in beta-diversity occurred not only more rapidly, but was also more pronounced in non-native populations, while individuals from native populations retained communities more similar to those observed in the field. This study demonstrates that microbial communities of non-native A. vermiculophyllum are more flexibly adjusted to the environment and suggests that an intraspecific increase in host promiscuity has promoted the invasion process of A. vermiculophyllum. This phenomenon may be important among invasive macroalgal holobionts in general.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Communities are shaped by scale dependent processes. To study the diversity and variation of microbial communities across scales, the invasive and widespread seaweed Agarophyton vermiculophyllum presents a unique opportunity. We characterized pro‐ and eukaryotic communities associated with this holobiont across its known distribution range, which stretches over the northern hemisphere. Our data reveal that community composition and diversity in the holobiont vary at local but also larger geographic scales. While processes acting at the local scale (i.e., within population) are the main structuring drivers of associated microbial communities, changes in community composition also depend on processes acting at larger geographic scales. Interestingly, the largest analysed scale (i.e., native and non‐native ranges) explained variation in the prevalence of predicted functional groups, which could suggest a functional shift in microbiota occurred over the course of the invasion process. While high variability in microbiota at the local scale supports A. vermiculophyllum to be a generalist host, we also identified a number of core taxa. These geographically independent holobiont members imply that cointroduction of specific microbiota may have additionally promoted the invasion process.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Terrestrial plants are known to “garden” the microbiota of their rhizosphere via released metabolites (that can attract beneficial microbes and deter pathogenic microbes). Such a “gardening” capacity is also known to be dynamic in plants. Although microbial “gardening” has been recently demonstrated for seaweeds, we do not know whether this capacity is a dynamic property in any aquatic flora like in terrestrial plants. Here, we tested the dynamic microbial “gardening” capacity of seaweeds using the model invasive red seaweed Agarophyton vermiculophyllum. Following an initial extraction of surface-associated metabolites (immediately after field collection), we conducted a long-term mesocosm experiment for 5 months to test the effect of two different salinities (low = 8.5 and medium = 16.5) on the microbial “gardening” capacity of the alga over time. We tested “gardening” capacity of A. vermiculophyllum originating from two different salinity levels (after 5 months treatments) in settlement assays against three disease causing pathogenic bacteria and seven protective bacteria. We also compared the capacity of the alga with field-collected samples. Abiotic factors like low salinity significantly increased the capacity of the alga to deter colonization by pathogenic bacteria while medium salinity significantly decreased the capacity of the alga over time when compared to field-collected samples. However, capacity to attract beneficial bacteria significantly decreased at both tested salinity levels when compared to field-collected samples. Dynamic microbial “gardening” capacity of a seaweed to attract beneficial bacteria and deter pathogenic bacteria is demonstrated for the first time. Such a dynamic capacity as found in the current study could also be applicable to other aquatic host–microbe interactions. Our results may provide an attractive direction of research towards manipulation of salinity and other abiotic factors leading to better defended A. vermiculophyllum towards pathogenic bacteria thereby enhancing sustained production of healthy A. vermiculophyllum in farms
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Climate change is characterized not only by an increase in mean temperature, but also an increase in the variability around the means causing extreme events like marine heatwaves. These events are expected to have strong influence on the ecology of marine foundation species such as the eelgrass Zostera marina. Bacterial and macroscopic foulers are ubiquitous in the marine environment; they can have detrimental impacts on macrophytes and warming is known to enhance bacterial fouling. Thus, to investigate the consequence of heatwaves on the chemical defense of eelgrass against microbial colonizers, we incubated Z. marina plants in the Kiel Outdoor Benthocosm system under ambient control conditions and two different heatwave treatments: a treatment experiencing two spring heatwaves followed by a summer heatwave, and a treatment only experiencing just the summer heatwave. The capacity to deter microbial colonizers was found to be significantly up-regulated in Z. marina from both heatwave treatments in comparison to Z. marina under control conditions, suggesting defense regulation of Z. marina in response to marine heatwaves. We conclude climate extremes such as heatwaves can trigger a regulation in the defense capacity, which could be necessary for resilience against climate change scenarios. Such dynamics in rapid regulation of defense capacity as found in this study could also apply to other host plant – microbe interactions under scenarios of ongoing climate change or extreme climate events like heatwaves.
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The green seaweed Ulva is a model system to study seaweed–bacteria interactions, but the impact of environmental drivers on the dynamics of these interactions is little understood. In this study, we investigated the stability and variability of the seaweed-associated bacteria across the Atlantic–Baltic Sea salinity gradient. We characterized the bacterial communities of 15 Ulva sensu lato species along 2,000 km of coastline in a total of 481 samples. Our results demonstrate that the Ulva-associated bacterial composition was strongly structured by both salinity and host species (together explaining between 34% and 91% of the variation in the abundance of the different bacterial genera). The largest shift in the bacterial consortia coincided with the horohalinicum (5–8 PSU, known as the transition zone from freshwater to marine conditions). Low-salinity communities especially contained high relative abundances of Luteolibacter, Cyanobium, Pirellula, Lacihabitans and an uncultured Spirosomaceae, whereas high-salinity communities were predominantly enriched in Litorimonas, Leucothrix, Sulfurovum, Algibacter and Dokdonia. We identified a small taxonomic core community (consisting of Paracoccus, Sulfitobacter and an uncultured Rhodobacteraceae), which together contributed to 14% of the reads per sample, on average. Additional core taxa followed a gradient model, as more core taxa were shared between neighbouring salinity ranges than between ranges at opposite ends of the Atlantic–Baltic Sea gradient. Our results contradict earlier statements that Ulva-associated bacterial communities are taxonomically highly variable across individuals and largely stochastically defined. Characteristic bacterial communities associated with distinct salinity regions may therefore facilitate the host's adaptation across the environmental gradient.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...