GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • OceanRep  (91)
  • OceanRep: Thesis - not published by a publisher  (91)
  • 2020-2024  (39)
  • 2010-2014  (52)
  • 1
    Publication Date: 2024-02-07
    Description: The trace metal iron is considered to be the nutrient that limits marine primary production in one third of the global surface ocean (Martin, 1990; Boyd et al., 2007; Moore et al., 2013). It is also the nutrient that maintains future ocean fertility due to its irreplaceable role in the process of nitrogen fixation, which adds “new” nitrogen (another nutrient for phytoplankton) to the surface ocean (Raven, 1988; Kustka et al., 2003b; Zehr and Capone, 2020). Due to iron’s importance, it is not surprising that the demand for incorporating iron into global biogeochemical models is high. However, including iron in an earth system model has been shown to have no clear benefits with respect to model misfit against observational data (Nickelsen et al., 2015) . How smart is it then to introduce iron models into global biogeochemical models, when the benefits are not clearly identifiable? Especially, when the iron models perform poorly at reproducing observed iron patterns in the ocean (Tagliabue et al., 2016). The poor performance of iron models, coupled with their failure to improve biogeochemical tracer representation of the ocean, inspired this additional effort to identify the advantages of including iron in a global biogeochemical model, both for the preindustrial state and under conditions of a changing climate. The working hypothesis was that the relatively poor performance of iron models might come from inadequate model calibration. A first sensitivity study on biogeochemical model parameter values was conducted in order to identify key parameters for model calibration. It was found that while some of the parameters influence simulated nitrogen, phosphorus, and oxygen concentrations, few parameters influence simulated iron concentrations. This suggests that our modelling skill of the iron cycle is still limited and/or that the observational data base is insufficient for comprehensive model calibration so far. Thus it was decided not to include iron data in further model calibration. A model calibration framework (Kriest et al., 2017) was next applied to a hierarchy of global models with different implementations of iron; one without iron, one with prescribed iron concentrations, and another one with a dynamic iron cycle. Using calibration against global data sets of nitrogen, phosphorus, and oxygen, the misfit of each model was pushed to its minimum. It was found that under an assumed preindustrial steady state, the calibrated model with a full dynamic iron cycle has the lowest model misfit against observations (thus confirming the working hypothesis). It was also found that the calibrated model with a fully dynamic iron cycle has 50% less net primary production (which is closer to empirical estimations) compared to the calibrated model without iron. Finally, transient simulations for all calibrated models were integrated from their pre- industrial state until the end of the 21st century using an atmospheric CO2 concentration pathway consistent with a ’business-as-usual’ CO2 emission scenario. It was found that nitrogen fixation trends diverge among models. This divergence is caused by whether iron limits the productivity of the upwelling regions, e.g. in the eastern tropical Pacific. The export production in the eastern tropical Pacific (and other tropical upwelling regions) reacts differently to warming, depending on whether iron is a limiting nutrient. These different responses trigger a divergent chain of downstream responses that affect nitrogen fixation across the tropical oligotrophic regions in the model. Through the comparison between calibrated models, this thesis quantifies the advantages of including iron in a global biogeochemistry model and reveals how important iron is for future nitrogen fixation trends. It furthermore illustrates the interconnection between tropical upwelling and oligotrophic regions.
    Type: Thesis , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-24
    Description: Results of the of the present study provide a strong indication that reproductive periods of the bladderwrack Fucus vesiculosus is tuned by environmental conditions, such as day length, although it cannot be entirely ruled out that genetic constitution may play a role, as well. Furthermore results of the present study identified high temperatures as the most challenging condition for alga recruitment. Sea surface temperature rise could therefore be one of the reasons for the decline of F. vesiculosus populations in the Baltic Sea over the last few decades, particularly in the marginal environments (〈 7 psu). Additionally, fertility of F. vesiculosus from the marginal region, in contrast to all other regions, was very low, which also indicates towards a lower capacity to deal with environmental changes. A rather high germination success of some sibling groups (F. vesiculosus) under various environmental conditions, however, is promising in the light of adaptation to climate change.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 80 pp
    Publication Date: 2019-09-23
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-06
    Description: Small to meso-scale distribution of Baltic cod (Gadus morhua L.) as resolved by hydroacoustics: Habitat preferences, environmental limits, and resulting implications for stock development
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 133 pp
    Publication Date: 2019-03-20
    Description: A central question in ecology is how organisms react to changing environmental conditions induced by global climate change. This is particularly important for ecosystem engineering species, as the fate of whole ecosystems is depending upon their performance and survival. In coastal marine habitats, seagrasses are of outstanding importance as ecosystem builders. Eelgrass, the study species of this thesis, is the most widespread and locally abundant seagrass along soft-sediment coasts of the northern hemisphere. In this thesis I assessed variation among and within eelgrass populations in response to heat stress. I conducted heat stress experiments in a “common stress garden”, simulating a summer heat wave of three weeks followed by a recovery phase. I measured various physiological parameters and assessed the expression profile of selected heat stress associated genes with qPCR as well as the whole transcriptome with next generation sequencing using eelgrass with differing thermal history (a southern population from the Mediterranean Sea and northern populations from the Kattegat and Limfjord, Baltic Sea). To assess variation within populations, I used genotypes originating from a Baltic population. I found that different genotypes showed varying growth rates in control and heat treatment at acute heat stress, but that all populations lost shoots in response to the heat wave, irrespective of their thermal pre-adaptation. While populations diverged in their expression profiles of selected heat stress associated genes already at the onset of heat stress, subsequent global transcription profiling revealed that those effects were of relatively minor importance compared to massive differences in gene expression during the recovery phase between two of the populations. This is in line with findings on the genotype level within one population which showed differences in the expression profiles of selected stress-associated genes between replicated individuals only in the recovery phase. This thesis provides a basis for investigating the potential for microevolution of eelgrass populations in the face of global climate change. Both, cold- as well as warm adapted eelgrass populations responded to heat stress with shoot reduction, a finding that is in line with worldwide records of seagrass decline. On the other hand, there is considerable variation for heat stress-related gene expression within populations, a trait that is likely to be important under global change. As this variation among genotypes is the prerequisite for natural selection and adaptation, populations may succeed to persist.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 193 pp
    Publication Date: 2014-01-13
    Description: The ongoing increase in atmospheric carbon dioxide (CO2) leads to a global increase in temperatures and its subsequent uptake by the ocean considerably alters the carbonate chemistry of seawater, a phenomenon generally referred to as “ocean acidification”. Both ocean warming and acidification occur at a pace unprecedented in recent geological history and are expected to significantly affect marine biota. In the present thesis, the sensitivity of marine ecosystems and biogeochemical cycling to increasing temperatures and CO2 was investigated in a combined approach of numerical modeling and experimental work. In a first step, the role of direct temperature effects in the response of marine ecosystems to ocean warming was investigated by simulating climate change in a global earth system model, based on emission scenarios for the 21st century. The study revealed fundamental uncertainties in our knowledge about temperature sensitivities of marine ecosystems and biogeochemical cycling. Depending on whether biological processes were assumed temperature sensitive or not, simulated marine NPP increased or decreased under projected climate change. Motivated by the outcome of this modeling study, a mesocosm experiment was carried out to specifically investigate the temperature sensitivity of biogeochemically important processes in diatom-dominated plankton communities.The results from this mesocosm study suggested a pronounced increase in carbon uptake and production of organic matter in response to elevated temperatures, which was contrary to results from similar experiments. A major difference to previous mesocosm studies was the dominant phytoplankton species, suggesting that the physiological response of this species determined the biogeochemical response of the entire plankton community. In order to test this hypothesis, culture experiments were conducted to compare the sensitivities of two globally important diatom species (Thalassiosira weissflogii and Dactyliosolen fragilissimus)to temperature and CO2.The results of these experiments revealed a pronounced effect of temperature and CO2 on carbon uptake and partitioning into particulate and dissolved organic matter, and especially the phenomenon of carbon overconsumption and the associated decoupling of carbon and nitrogen cycling. Furthermore, the experiments could show that the sensitivity of these processes to temperature and CO2 varies substantially between species, thereby confirming the hypothesis derived from the preceding mesocosm study. The findings from these various laboratory experiments were the basis for the development of a novel biogeochemical ecosystem model. Most models do not account for carbon overconsumption and dynamic stoichiometry, and sensitivities of associated processes to temperature and pCO2, as observed in these experimental studies. Consequently, a model was constructed that simulates carbon overconsumption and its sensitivity to temperature and pCO2. Application of this model may help to understand how carbon overconsumption and associated processes affect marine biogeochemical cycling. Further work investigated how the warming-induced decrease seawater viscosity under global warming might affect sinking velocity of marine particles and the carbon flux to the deep ocean. Application of a global earth system model demonstrated that this previously overlooked 'viscosity effect' could have profound impacts on marine biogeochemical cycling and oceanic carbon uptake over the next centuries to millennia. In the model experiment, the viscosity effect significantly accelerated particle sinking, thereby effectively reducing the portion of organic matter that is respired in the surface ocean and enhancing the long-term sequestration of atmospheric CO2 in the ocean. The representation of particle sinking in biogeochemical models was investigated in more detail in an additional sensitivity analysis. Results of this study demonstrated that the inherent structure of commonly used ecosystem models sets an upper limit to the flux of organic matter from the euphotic zone to the deep ocean, even under light-saturated and nutrient-replete conditions. This upper limit is determined by the functional form of the various process descriptions in the simulated ecosystem, as well as their respective parameter settings. These findings indicate that, even though such relatively simple ecosystem models may show good skill in reproducing observed current distributions of biogeochemical tracers, it is questionable whether such models can realistically simulate the sensitivity of biogeochemical cycles to environmental change. Altogether, this doctoral thesis revealed substantial sensitivities of marine carbon fluxes to increases in temperature and CO2, which should be considered when assessing the impact of climate change on marine ecosystems and feedbacks on the global carbon cycle.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: In an era of biodiversity loss caused by anthropogenic impacts, it appears essential to improve our understanding of how ecological filters interact with regional species pools, in order to obtain valuable information on the process of community assembly as well as for biodiversity conservation. Especially in the Baltic Sea, which is characterized by strong environmental gradients and far reaching human-mediated pressures, baseline information provided by monitoring approaches are needed to disentangle community shifts from natural background variability. In the frame of this doctoral thesis, the role of ecological filters on the richness and community structure of hard-bottom assemblages in the southwestern Baltic Sea was investigated and the variability of important environmental drivers described. In the southwestern Baltic Sea, hard-bottom communities are mainly found on boulders and stones left by the last glaciation. The characteristics of these substrates are thought as an important driver of the benthic assemblages living in these boulder fields. Thus, the relationship between geological and biological diversity was examined at the local and regional scale. In a multidisciplinary approach, geological seafloor mappings were combined with biological samplings of hard-bottom communities. At the local scale, the size of boulders was found to positively correlate with taxonomic and functional richness, and negatively correlate with the β diversity of the communities. At the regional scale, differences in taxonomic community composition and β diversity were suggested to be the result of site-specific factors like boulder densities and sediment distribution. Whether of natural or anthropogenic origin, the shallow waters of the Baltic Sea are subject to strong environmental fluctuations, sometimes within short timeframes. Temporally highly resolved in-situ measurements of important water parameters can therefore help to understand the environmental dynamics biological communities are facing in coastal waters. Thus, a monitoring network along the southwestern Baltic coast was established, to measure temperature, salinity and oxygen concentration at 10 min interval as well as nutrient concentrations twice a month. The obtained recordings revealed strong temporal and spatial variabilities, highlighting the need to consider such fluctuations in experimental scenarios, as predictors of biodiversity patterns or within environmental assessments. Long-term records of community composition are crucial to distinguish directional regime shifts from random fluctuations. The monitoring of hard-bottom communities established on standardized settlement panels over a period of 11 years showed regional differences in community development. Multivariate analyses revealed the decline of the foundational species Mytilus sp. to be responsible for the observed community changes over time. In a modeling approach, the decline was explained by changes in sea surface temperature, current speed and chlorophyll a content. Moreover, since the mussels recovered only in stations of Lübeck Bight, regional factors like limitations in dispersal and population connectivity were suggested as significant driving forces. To summarize, this doctoral project demonstrated the effects and variabilities of ecological filters in hard-bottom communities of the southwestern Baltic Sea. In all studies, monitoring approaches were of central importance to detect the presented patterns, underlining the strategic need of these efforts in order to improve our understanding of community assembly and persistence, in times when biodiversity management is more vital than ever.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: The biological composition of most of the earth’s major ecosystems is being dramatically changed by human activities. The breakdown of natural barriers, as a consequence of an increasingly connected world, has contributed to a rise in biological invasions worldwide with thousands of non-indigenous species established in freshwater, brackish, and marine ecosystems. Identifying traits correlated with invasion success is a central goal in invasion ecology to predict and prevent future invasions. This dissertation is divided into five chapters. Chapter 1 gives a general introduction to the main topic of the thesis, including invasion ecology and possible determinant factors that might influence invasion success such as geographic origin and life history stages. Furthermore, it also explores the influence of experimental design on results in ecology. In Chapter 2, I question the role of geographic origin on invasion success, specifically, whether Ponto-Caspian species are better able to acclimatize to and colonize habitats across a range of salinities than taxa from Northern European and North American regions. The experiments, using eight gammarid species native to those three regions, demonstrated that although species from all three tested regions indicated high tolerance to a wide range of salinities, significant differences in the direction of salinity tolerance were observed among the regions, with Northern European species having a better survival in higher salinities, and Ponto-Caspian species in lower salinities. Therefore, it is important to consider geographic origin as a predictor of invasion success because it might foresee pre-adaptation of certain species due to its evolutionary history. Following these findings, in Chapter 3, I further compare the salinity tolerance of adults and juveniles of three gammarid species originating from Northern European, the Ponto-Caspian and North American regions to determine whether juveniles tolerate salinity changes equally well as adults. During the invasion process, individuals must overcome several challenges and be able to survive and reproduce to establish a successful population. Thus, the role of life history stages in the context of invasion ecology is important to consider. While experimental results determined that both adults and juveniles of all three species endured wide ranges of salinity, juveniles tolerated a narrower salinity range than their parents. The evidence from this study emphasizes the importance of testing several life history stages when constructing models to predict future invasions. In Chapter 4, bearing in mind that the approaches used to test scientific questions may differ not only in spatial scale but also in ecological complexity, I explored how the type of experiment (i.e., scale and ecological complexity) affects the outcome and to what extent the two types of experiments are comparable. Two experiments differing in size and ecological-complexity (i.e. outdoor large-scale community-level mesocosm vs. indoor small-scale two-species laboratory experiment), were conducted to assess the effects of marine heatwaves on two gammarid species. The results revealed that while for one species the population growth was similar independently of the size and ecological-complexity, for the other species, the inclusion of the community seemed to have benefited the species’ growth rate, demonstrating stronger performance in the mesocosm than in the laboratory experiment. These results suggest the importance of biotic interactions and complexity of natural environments in buffering or boosting the effects of environmental stress on organisms while carrying out ecological experiments. Finally, Chapter 5 summarizes the findings from all experiments and concludes that not only geographic origin and life history stages need to be considered in invasion ecology, but also the approach when selecting our experimental designs to answer research questions.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Plastics enter the environment via different sources and are transported and deposited there. They vary regarding polymer, density, colour, shape and size. Concerning the size, plastics are distinguished by their diameter in macroplastics, d ≥ 5 mm, and microplastics, d 〈 5 mm. Macroplastics, that enter the environment, are often the origin for microplastics due to degradation and fragmentation. Based on numerous environmental sampling and numeric modelling the fate of macro- and microplastics in the environment can be understood. Thereby, the entry is caused exclusively by anthropogenic action and the following transport is mainly by freshwater systems. Plastics in the environment accumulate due to the material’s durability on water surfaces and in soils and sediments which are therefore considered as temporary sinks. The final sink for plastic in the environment is the sea bed. To better understand the accumulation processes, more environmental sampling is necessary. For the following sample preparation, a separation method was developed based on the density independent extraction with canola oil in an efficient and cost-effective way using a plastic free separation unit. This method was extensively validated and could thus be identified as an equivalent separation technique which was applied on two different environmental areas. First, samples from marine water and sediment in the Northeast Atlantic were taken not only to prove the applicability of the separation method with canola oil but also to identify microplastic concentration there with microscopic analysis and polymer identification. The results showed a microplastic accumulation and furthermore an increase in microplastic concentration with increasing water depths and therefore distance to the coast. Second, fluvial sediments from a regional river catchment in North Rhine Westphalia were taken and analysed by microscope and infrared spectroscopy. The sampling included depth profiles in the river’s floodplains, composite samples from the river bed and surface samples outside the flooding area. The microplastic concentration was highest within the depth profile samples, followed by the river bed samples and the surface samples. Concerning the grain size, microplastic accumulated predominantly within fine sediment fraction. Furthermore, microplastic detection was set in a sedimentary context for the first time by using it to determine sedimentation rates. Additionally, a connection could be drawn between the polymers of the detected microplastic and the depth of the related sediment layer: the older the polymer, the deeper the layer in which it was found.With the knowledge about a temporal connection between microplastics and sediment deposition, a dating method for recent sediment layers can be developed in the future. In general, the detection of plastics can be seen as an indicator for a deposition after 1950, where the plastic mass production has started and enabled extensive environmental input. The understanding of entry, transport and accumulation of macro- and microplastics as well as the method validation of canola oil extraction and following application in marine and fluvial environments can be used variously as basics especially in upcoming microplastic research. With the consideration of microplastic detection as temporal marker for sediment deposition an additional groundwork for the development of a sediment dating method was set.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-07-06
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...