GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4,040)
Document type
  • Articles  (4,040)
Source
Publisher
Years
Journal
  • 1
    Publication Date: 2018-04-16
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Yan Gao, Wen Zhang, Bin Gao, Wen Jia, Aijun Miao, Lin Xiao, Liuyan Yang Electrolysis combined with biochar (BC) was used in a constructed wetland to intensify nitrogen (N) and phosphorus (P) removal from wastewater simultaneously. A pilot study was conducted using an electrolysis-integrated, BC-amended, horizontal, subsurface-flow, constructed wetland (E-BHFCW). The research results showed that both electrolysis and BC substrate played important roles in the intensified, constructed wetland. The electrolysis combined BC substrate greatly enhanced the removal rates of nitrate (49.54%) and P (74.25%) when the E-BHFCW operated under the lower current density of 0.02 mA/cm 2 and an electrolysis time of 24 h. Improved N removal was accomplished with the electrochemical denitrification of iron cathodes; the autotrophic denitrification bacteria appeared to remove nitrate which was adsorbed on the BC substrate because hydrogen gas was produced by cathodes in the E-BHFCW. Less nitrate was taken directly by wetland plants and microbes. The in-situ formation of ferric ions from a sacrificial iron anode, causing P chemical sedimentation and physical adsorption, improved P removal. BC, modified by iron ions from an iron anode to adsorb the nitrate and P, was a good material to improve effluent water quality. It can also serve as a favorable microbial carrier to bio-transform nitrate to N gas. This is because there were abundant and diverse bacterial communities in the biofilm on the BC substrate in the E-BHFCW. Thus, electrolysis integrated with BC in a constructed wetland is a novel, feasible and effective technique for enhancing wastewater N and P removal. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-16
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Wei Ouyang, Wanxin Yang, Mats Tysklind, Yixue Xu, Chunye Lin, Xiang Gao, Zengchao Hao The formation and transportation processes of non-point source (NPS) pollution varied among the studied watersheds in the Northeastern China, so we hypothesized that the driving force behind NPS pollution followed the spatial scale effect. With a watershed outlet sedimentary flux analysis and a distributed NPS pollution loading model, we investigated the temporal dynamics of NPS and the differences in driving forces. Sediment core samples were collected from two adjacent watersheds, the smaller Abujiao watershed and the larger Naoli watershed. The natural climatic conditions, long-term variations in the distribution of land use, soil properties and tillage practices were the same in the two watersheds. The vertical distributions of total nitrogen, total phosphorus, Zn and As at 1-cm intervals in the section showed clear differences between the watersheds. There were higher concentrations of total nitrogen and total phosphorus in the larger watershed, but the heavy metals were more concentrated in the smaller watershed. Lead-210 ( 210 Pb) analyses and the constant rate of supply model provided a dated sedimentary flux, which was correlated with the corresponding yearly loading of NPS total nitrogen and total phosphorus in the two watersheds. The total phosphorus showed a stable relationship in both watersheds with an R 2 value that ranged from 0.503 to 0.682. A rose figure comparison also demonstrated that the pollutant flux in the sediment was very different in the two watersheds, which had similar territorial conditions and different hydrological patterns. Redundancy analysis further indicated that expanding paddy areas had a large impact on the sedimentary flux of nitrogen and phosphorus in the smaller watershed, but precipitation had a direct impact on NPS loading in the larger watershed. We concluded that the spatial scale effect affected the NPS pollution via the transport processes in the waterway, which was mainly influenced by branch length and drainage density.
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-15
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Kam W. Tang, Sabine Flury, Dominic Vachon, César Ordóñez, Daniel F. McGinnis Chaoborus spp. (phantom midge) are prevalent in eutrophic inland waters. In Lake Soppen, Switzerland, C. flavicans larvae diurnally migrate between the methane-rich, oxygen-depleted hypolimnion and sediments, and the methane-poor, oxygen-rich epilimnion. Using a combination of experiments and system modelling, this study demonstrated that the larvae's burrowing activities in and out of the sediment perturbed the sediment and re-introduced sequestered phosphorus into the overlying water at a rate of 0.022 μg P ind −1 d −1 , thereby exacerbating internal nutrient loading in the water column. Fluxes of sediment methane and other reduced solutes enhanced by the larval bioturbation would consume oxygen and sustain the hypoxic/anoxic condition below the thermocline. In addition to increasing diffusive fluxes, migrating larvae also directly transported methane in their gas vesicles from the deep water and release it in the surface water at a rate of 0.99 nmol CH 4 ind −1 d −1 , potentially contributing to methane emission to air. As nutrient pollution and climate warming persist or worsen in the coming decades, proliferation of Chaoborus could intensify this positive feedback loop and delay lake recovery. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-15
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Ian L. Pepper, Charles P. Gerba Legionella pneumophila has been detected in reclaimed water used for spray irrigation of turfgrass in public parks and golf courses. This study determined the risks of infection from exposure to various levels of Legionella in reclaimed waters considering: the method of spray application; and the duration and frequency of exposure. Evaluation of these factors resulted in a risk of infection greater than 1:10,000 for several scenarios when the number of Legionella in the reclaimed water exceeded 1000 colony-forming units (CFU) per ml. Most current guidelines for control of Legionella in distribution systems recommend that increased monitoring or remedial action be taken when Legionella levels exceed 1000 to 10,000 CFU/ml. Based upon our risk assessment, these guidelines seem appropriate for reclaimed water systems where spray irrigation is practiced. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-04-15
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Mashor Housh, Ziv Ohar Modern Water Distribution Systems (WDSs) are often controlled by Supervisory Control and Data Acquisition (SCADA) systems and Programmable Logic Controllers (PLCs) which manage their operation and maintain a reliable water supply. As such, and with the cyber layer becoming a central component of WDS operations, these systems are at a greater risk of being subjected to cyberattacks. This paper offers a model-based methodology based on a detailed hydraulic understanding of WDSs combined with an anomaly detection algorithm for the identification of complex cyberattacks that cannot be fully identified by hydraulically based rules alone. The results show that the proposed algorithm is capable of achieving the best-known performance when tested on the data published in the BATtle of the Attack Detection ALgorithms (BATADAL) competition ( http://www.batadal.net ).
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-15
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Xueci Xing, Haibo Wang, Chun Hu, Lizhong Liu The effects of ozone-biologically activated carbon (O 3 -BAC) treatment with various phosphate doses (0, 0.3 or 0.6 mg/L) were investigated on the formation of disinfection by-products (DBPs) and occurrence of opportunistic pathogens (OPs) in drinking water distribution systems (DWDSs) simulated by annular reactors (ARs). It was found that the lowest DBPs and the highest inactivation of OPs such as Mycobacterium spp. , Mycobacterium avium , Aeromonas spp. , Pseudomonas aeruginosa and Hartmanella vermiformis , occurred in the effluent of the AR with 0.6 mg/L phosphate addition. Based on the results of different characterization techniques, for the AR with 0.6 mg/L phosphate-enhanced O 3 -BAC treatment, dissolved organic carbon in the influent exhibited the lowest concentration and most stable fraction due to the improved biodegradation effect. Moreover, the total amount of suspended extracellular polymeric substances (EPS) in the bulk water of the AR decreased greatly, resulting in the lowest chlorine consumption and DBPs formation in the AR. In Fourier transform infrared spectra of the suspended EPS, the amide II band (1600-1500 cm −1 ) disappeared and the protein/polysaccharide ratio decreased remarkably, indicating the destruction of protein and a decrease in hydrophobicity. Moreover, β-sheets and α-helices in the protein secondary structures were degraded while the random coils increased sharply as phosphate addition increased to 0.6 mg/L, inhibiting microbial aggregation and hence weakening the chlorine-resistance capability. Thus, most of the OPs in suspended biofilms were more easily inactivated by residual chlorine, resulting in the lowest OPs occurrence in the effluent of the AR. Our findings indicated that enhancing the efficiency of the BAC filter by adding phosphate is a promising method for improving water quality in DWDSs. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-15
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Maricor J. Arlos, Wayne J. Parker, José R. Bicudo, Pam Law, Keegan A. Hicks, Meghan L.M. Fuzzen, Susan A. Andrews, Mark R. Servos Decades of studies on endocrine disruption have suggested the need to manage the release of key estrogens from municipal wastewater treatment plants (WWTP). However, the proposed thresholds are below the detection limits of most routine chemical analysis, thereby restricting the ability of watershed managers to assess the environmental exposure appropriately. In this study, we demonstrated the utility of a mechanistic model to address the data gaps on estrogen exposure. Concentrations of the prominent estrogenic contaminants in wastewaters (estrone, estradiol, and ethinylestradiol) were simulated in the Grand River in southern Ontario (Canada) for nine years, including a period when major WWTP upgrades occurred. The predicted concentrations expressed as total estrogenicity (E2 equivalent concentrations) were contrasted to a key estrogenic response (i.e., intersex) in rainbow darter ( Etheostoma caeruleum ), a wild sentinel fish species. A predicted total estrogenicity in the river of ≥10 ng/L E2 equivalents was associated with high intersex incidence and severity, whereas concentrations 〈0.1 ng/L E2 equivalents were associated with minimal intersex expression. Exposure to a predicted river concentration of 0.4 ng/L E2 equivalents, the environmental quality standard (EQS) proposed by the European Union for estradiol, was associated with 34% (95% CI:30–38) intersex incidence and a very low severity score of 0.6 (95% CI:0.5–0.7). This exposure is not predicted to cause adverse effects in rainbow darter. The analyses completed in this study were only based on the predicted presence of three major estrogens (E1, E2, EE2), so caution must be exercised when interpreting the results. Nevertheless, this study illustrates the use of models for exposure assessment, especially when measured data are not available. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-15
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): Jinling Xue, Jinshan Zhang, Qian-Yuan Wu, Yun Lu When reclaimed water is used as municipal miscellaneous water, acute exposure of the generated aerosol with high levels of endotoxins can cause severe inflammation in the lungs. However, the potential risks of long-term inhalation of reclaimed water remains unclear. To identify the adverse effects of sub-chronic reclaimed water inhalation and explain the underlying mechanisms, a mouse model of 12-week sub-chronic exposure was established, and wastewater before a membrane bioreactor (MBR, positive control) and the MBR effluent (reclaimed water, which met the quality standard of urban use and was currently used for landscape irrigation) were tested in this study. The exposure dose was set to approach the real working scenarios. Lung lavage and histology were analyzed. Obvious epithelial cell apoptosis in the bronchi was observed, along with the accumulation of myofibroblasts and the collagen deposition both in main bronchi and terminal bronchioles. All these symptoms were persistent after 4 weeks of recovery. Inflammation and induced bronchus-associated lymphoid tissues (iBALT) were also observed but diminished after recovery indicating inflammation may not be the direct cause of the symptom. Furthermore, two fibrogenic cytokines (TNF-α and TGF-β) were constantly high in the lung during the study. They might be the biomarkers of lung damage after the inhalation of reclaimed water. Adaptive immune responses were also detected as elevated levels of IgG and IgA, but not for IgE. Inhalation of reclaimed water causes sustained fibrotic lesions in the lungs, which suggests potential health risks during urban application where aerosols generated. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-15
    Description: Publication date: 1 August 2018 Source: Water Research, Volume 139 Author(s): A.K. Leight, R.R. Hood Many coastal states of the United States restrict harvest of shellfish from select areas based on some environmental trigger. Such areas are classified as being conditionally approved. In Maryland, the trigger is an inch or more of rainfall that has fallen in the last 24 h. This study used 11 years of monitoring data to test the relationship between daily rainfall totals and densities of fecal indicators in Maryland shellfish harvest waters. Precipitation and fecal coliform (FC) water monitoring data from 2004 to 2014 were matched by date and watershed. The influence of antecedent rainfall conditions (i.e. rainfall in the preceding days or weeks) and the distance of each monitoring station to land were compared to the percent of samples exceeding the FDA criterion for managing shellfish harvest areas. Sample stations beyond 1000m from land had FC densities consistently below the FDA criterion and were excluded from further analysis. Rainfall events greater than an inch tended to result in significantly elevated FC for the following two days, followed by lower levels thereafter. The total amount of rain in the last three weeks was positively related to the proportion of samples with FC greater than the FDA criterion. Bay-wide, the percent of samples exceeding the FDA criterion rose from seven percent for rainfall less than an inch to 37% following one or more inches of rain. Watersheds were classified based on the percent of FC densities over the criterion when rainfall was an inch or more, with 41 of 81 watersheds showing FC responses indicative of potential conditionally approved areas, those shellfish growing areas where the one inch precipitation trigger may be applied. These areas largely overlapped the current conditionally approved areas defined by Maryland. The percent of open water, wetlands, and poorly drained soils explained a significant amount of the variability (R 2  = 0.72) in the difference in percent of samples exceeding the FDA criterion when rainfall was greater than an inch and when it was less than an inch. Logistic regression analysis showed that the current trigger of one inch of rain in 24 h is predictive of FC densities over the FDA criterion, though the appropriate threshold will most likely depend on how far the particular shellfish growing area is from land and antecedent rain conditions. In watersheds with relatively high percentages of open water to total watershed size, higher rainfall thresholds might be appropriate. The approach taken in this study could be applied to individual stations and sub-watersheds, potentially allowing the reclassification of some shellfish harvest areas. Graphical abstract
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-15
    Description: Publication date: 1 July 2018 Source: Water Research, Volume 138 Author(s): Josep Anton Mir-Tutusaus, Rim Baccar, Glòria Caminal, Montserrat Sarrà Micropollutants are a diverse group of compounds that are detected at trace concentrations and may have a negative effect on the environment and/or human health. Most of them are unregulated contaminants, although they have raised a concern in the scientific and global community and future regulation might be written in the near future. Several approaches have been tested to remove micropollutants from wastewater streams. In this manuscript, a focus is placed in reactor biological treatments that use white-rot fungi. A critical review of white-rot fungal-based technologies for micropollutant removal from wastewater has been conducted, several capabilities and limitations of such approaches have been identified and a range of solutions to overcome most of the limitations have been reviewed and/or proposed. Overall, this review argues that white-rot fungal reactors could be an efficient technology to remove micropollutants from specific wastewater streams.
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...