GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,664)
Document type
  • Articles  (2,664)
Source
Publisher
Years
Topic
  • 21
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Nataliya V. Bondarenko, Mikhail A. Kreslavsky Microwave remote sensing data acquired with Magellan Venus orbiter are the main source of information about the surface of the planet. We analyze variability of the backscattering function (dependence of radar cross-section on incidence angle) for steep incidence angles 0.25°–4.75° in the 75°N–55°S latitude zone with data from the Magellan radar altimeter at 12.6 cm wavelength. We show that all variability of the backscattering function can be described by three parameters, describing (1) surface reflectivity, (2) relative proportion of horizontal facets, and (3) general roughness. Analysis of maps of these parameters revealed that surficial deposits, for example, microdune fields, are abundant on Venus even in places, where they are not readily seen in the synthetic aperture radar images. Properties of surficial deposits rather than original volcanic flow roughness define the shape of the backscattering function on the majority of regional plains. A large radar-dark flow in Bereghinia Planitia has anomalously high proportion of horizontal facets, which is consistent with it being formed by a relatively recent plain-forming volcanic episode. Some crater-associated radar-dark diffuse features and splotches are also characterized by increased proportion of horizontal faces, which indicate the presence of mantles deposited from fluidized granular material. The backscattering functions of the anomalous radar-bright material of mountaintops are more consistent with the strong internal scattering hypothesis rather than the exotic surficial material hypothesis. Obtained maps can be useful for planning future lander missions to sites with access to surface material with known provenance.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): M. Pajuelo, B. Carry, F. Vachier, M. Marsset, J. Berthier, P. Descamps, W.J. Merline, P.M. Tamblyn, J. Grice, A. Conrad, A. Storrs, B. Timerson, D. Dunham, S. Preston, A. Vigan, B. Yang, P. Vernazza, S. Fauvaud, L. Bernasconi, D. Romeuf, R. Behrend, C. Dumas, J.D. Drummond, J.-L. Margot, P. Kervella, F. Marchis, J.H. Girard The population of large 100+ km asteroids is thought to be primordial. As such, they are the most direct witnesses of the early history of our Solar System available. Those among them with satellites allow study of the mass, and hence density and internal structure. We study here the dynamical, physical, and spectral properties of the triple asteroid (107) Camilla from lightcurves, stellar occultations, optical spectroscopy, and high-contrast and high-angular-resolution images and spectro-images. Using 80 positions measured over 15 years, we determine the orbit of its larger satellite, S/2001 (107) 1 , to be circular, equatorial, and prograde, with root-mean-square residuals of 7.8 mas, corresponding to a sub-pixel accuracy. From 11 positions spread over three epochs only, in 2015 and 2016, we determine a preliminary orbit for the second satellite S/2016 (107) 1 . We find the orbit to be somewhat eccentric and slightly inclined to the primary’s equatorial plane, reminiscent of the properties of inner satellites of other asteroid triple systems. Comparison of the near-infrared spectrum of the larger satellite reveals no significant difference with Camilla. Hence, both dynamical and surface properties argue for a formation of the satellites by excavation from impact and re-accumulation of ejecta in orbit. We determine the spin and 3-D shape of Camilla. The model fits well each data set: lightcurves, adaptive-optics images, and stellar occultations. We determine Camilla to be larger than reported from modeling of mid-infrared photometry, with a spherical-volume-equivalent diameter of 254 ± 36 km (3 σ uncertainty), in agreement with recent results from shape modeling (Hanus et al., 2017, A&A 601). Combining the mass of (1.12 ± 0.01) × 10 19  kg (3 σ uncertainty) determined from the dynamics of the satellites and the volume from the 3-D shape model, we determine a density of 1,280 ± 130 kg · m − 3 (3 σ uncertainty). From this density, and considering Camilla’s spectral similarities with (24) Themis and (65) Cybele (for which water ice coating on surface grains was reported), we infer a silicate-to-ice mass ratio of 1–6, with a 10–30% macroporosity.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Carsten Schult, Peter Brown, Petr Pokorný, Gunter Stober, Jorge L. Chau Results from a meteor head echo shower survey using the quasi continuous meteor observations of the high power large aperture radar MAARSY, located in northern Norway (69.30° N , 16.04° E ) are presented. The data set comprises 760 000 head echoes detected during two and half years sensitive to an effective limiting masses below 10 − 8 kg. Using a wavelet shower search algorithm, we identified 33 meteor showers in the data set all of which are found in the IAU meteor shower catalog. We find  ∼ 1% of all measured head echoes at these masses are associated with meteor showers. Comparison of shower radiants from this survey with the observation of the Canadian Meteor Orbit radar (CMOR) transverse scattering radar system shows generally good agreement, although there are large differences in the measured durations of some meteor showers. Differential mass indices ( s ) of  ∼ 1.5–1.6 are measured for the Perseids (PER), Geminids (GEM) and Quadrantids (QUA) showers. The Orionids (ORI) show a much steeper mass index of 2.0, in agreement with other observations at small particle sizes, suggesting the Halleyid showers, in particular, are rich in very small meteoroids.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): C.J. Bierson, F. Nimmo, W.B. McKinnon Observations by the New Horizons spacecraft have determined that Pluto has a larger bulk density than Charon by 153 ± 44 kg m − 3 (2 σ uncertainty). We use a thermal model of Pluto and Charon to determine if this density contrast could be due to porosity variations alone, with Pluto and Charon having the same bulk composition. We find that Charon can preserve a larger porous ice layer than Pluto due to its lower gravity and lower heat flux but that the density contrast can only be explained if the initial ice porosity is  ≳ 30%, extends to ≳100 km depth and Pluto retains a subsurface ocean today. We also find that other processes such as a modern ocean on Pluto, self-compression, water-rock interactions, and volatile (e.g., CO) loss cannot, even in combination, explain this difference in density. Although an initially high porosity cannot be completely ruled out, we conclude that it is more probable that Pluto and Charon have different bulk compositions. This difference could arise either from forming Charon via a giant impact, or via preferential loss of H 2 O on Pluto due to heating during rapid accretion.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Michael Battalio, Istvan Szunyogh, Mark Lemmon An assessment of the energetics of transient waves in the southern hemisphere of Mars is presented using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. The dataset is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for three Mars years. Spring eddies are the most intense, with eddies during the fall being less intense due to a marginally more stable mean-temperature profile and reduced recirculation of ageostrophic geopotential fluxes compared to the spring. Eddy kinetic energy during winter is reduced in intensity as a result of the winter solstitial pause in wave activity, and eddy kinetic energy during the summer is limited. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter as a result of a stabilized vertical temperature profile. Barotropic energy conversion acts as both a source and a sink of eddy kinetic energy, being most positive during the solstitial pause. Eddies take a northwest to southeast track across the southern highlands in the fall but have a more zonal track in the spring due to stronger eddy kinetic energy advection. Wave energetics is less intense in the southern compared to the northern hemisphere as a result of a shallower baroclinically unstable vertical profile.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Erica R. Jawin, James W. Head, David R. Marchant On Earth a transitional phase between glacial and interglacial periods is referred to as the paraglacial period. This period immediately postdates glacial retreat and is characterized by ice removal, glacial unloading, and the exposure of steep slopes and large sediment stores. These responses led to the development of a suite of morphologic units (e.g., talus cones, gullies, sackungen, and polygons) which, when observed together, are indicative of the paraglacial period. A similar period of transitional climate and deglaciation is identified on Mars in the Late Amazonian, characterized by the association of features in a glaciated 10.6 km diameter mid-latitude crater. This crater contains concentric crater fill (CCF) formed by debris-covered glaciers, as well as a suite of stratigraphically younger geomorphic units (e.g., spatulate depressions, washboard terrain, gullies, and polygonal terrain) that are all indicative of the local environmental response to deglaciation. These features are interpreted to represent a geologically recent martian paraglacial period within this crater. The morphology and relative stratigraphic relationships among these paraglacial features are described in order to assess the processes operating during deglaciation and to document the recent history of glaciation on Mars: spatulate depressions formed by the differential sublimation of pure glacial ice near the base of the crater wall; subsequently, due to the loss of basal support and steepened slopes, remnant ice on the crater wall began to flow downhill, and formed transverse crevasses that created washboard terrain. Continuous thermal cycling of sediment-mantled ice on crater walls created fractures that formed polygonal terrain. During this time and after, gullies formed by the transport of sediment downslope from crater rim alcoves. Analyses of modeled obliquity variations suggest that the paraglacial period could have operated within the last ∼5 Myr and may still be ongoing, suggesting that the current martian paraglacial period is much longer in duration than typical paraglacial periods on Earth. Understanding the nature and sequence of paraglacial activity can help to identify variations in climate in recent Mars history.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Toshihiko Kadono, Takayuki Tanigawa, Kosuke Kurosawa, Takaya Okamoto, Takafumi Matsui, Hitoshi Mizutani We propose that the shape of impact fragments reflects their fragmentation mechanisms; the fragmentation process that generates smaller fragments (fractal crack bifurcation) produces the shapes frequently observed in the previous studies, and those that generate larger fragments (spallation, random tessellation, and geometrical effects) produce flatter fragments. Fragment shape analyses derived from hypervelocity impact experiments in a variety of mass distribution ranges qualitatively support this view.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): W.H. Farrand, S.P. Wright, T.D. Glotch, C. Schröder, E.C. Sklute, M.D. Dyar Hydro- and glaciovolcanism are processes that have taken place on both Earth and Mars. The amount of materials produced by these processes that are present in the martian surface layer is unknown, but may be substantial. We have used Mars rover analogue analysis techniques to examine altered tuff samples collected from multiple hydrovolcanic features, tuff rings and tuff cones, in the American west and from glaciovolcanic hyaloclastite ridges in Washington state and in Iceland. Analysis methods include VNIR-SWIR reflectance, MWIR thermal emissivity, thin section petrography, XRD, XRF, and Mössbauer spectroscopy. We distinguish three main types of tuff that differ prominently in petrography and VNIR-SWIR reflectance: minimally altered sideromelane tuff, gray to brown colored smectite-bearing tuff, and highly palagonitized tuff. Differences are also observed between the tuffs associated with hydrovolcanic tuff rings and tuff cones and those forming glaciovolcanic hyaloclastite ridges. For the locations sampled, hydrovolcanic palagonite tuffs are more smectite and zeolite rich while the palagonitized hyaloclastites from the sampled glaciovolcanic sites are largely devoid of zeolites and relatively lacking in smectites as well. The gray to brown colored tuffs are only observed in the hydrovolcanic deposits and appear to represent a distinct alteration pathway, with formation of smectites without associated palagonite formation. This is attributed to lower temperatures and possibly longer time scale alteration. Altered hydro- or glaciovolcanic materials might be recognized on the surface of Mars with rover-based instrumentation based on the results of this study.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Uwe Fink, Lyn Doose A phase curve is derived for the dust coma of comet 67P/Churyumov-Gerasimenko (67P) from 1.2° to 74° using images from the OSIRIS camera system on board the Rosetta mission during the period 2014 July 25 to 2015 February 23 as the spacecraft approached the comet. We analyzed 123 images of the continuum filter at 612.6 nm and 60 images of the 375 nm UV continuum filter of the Wide Angle Camera. Our method of extracting a phase curve, close to the nucleus, taking into account illumination conditions, activity of the comet, strong radial radiance intensity decrease and varying phase angles across the image, is described in detail. Our derived backscattering phase curve is considerably steeper than earlier published data. The radiance of the scattering dust in the 612.6 nm filter increases by about a factor of 12 going from a phase angle of 75° to a phase angle of 2.0°. The phase curve for the 375 nm filter is similar but there is reasonable evidence that the I/F color ratio between the two filters changes from a roughly neutral color ratio of 1.2 to a more typical red color of ∼ 2.0 as the activity of the comet increases. No substantial change in the shape of the phase curve could be discerned between 2014 August and 2015 February 19–23 when the comet increased considerably in activity. The phase curve behavior on the illuminated side of the comet and the dark side is in general similar. A comparison of our phase curve with a recent phase curve for 67P by Bertini et al. for the phase angle range ∼15°–80°, where our two reductions overlap, shows good agreement (as does our color ratio between the 612.6 nm and the 375 nm filters) despite the fact that the two phase curve determinations observed the comet at different dust activity levels, at different distances from the nucleus and used completely different observing and data reduction methodologies. Trial scattering calculations demonstrate that the observed strong backscattering most likely arises from particles in the size range 1–20 µm. Our observed backscattering phase curve gives no constraints on the real index of refraction, the particle size distribution or the minimum and maximum particle size cut-offs. However, an upper limit to the imaginary index of refraction of ∼0.01 was required, making these particles quite transparent. Simple spherical scattering calculations including particle size distributions can fit the general characteristics of the phase curve but cannot produce a satisfactory detailed fit.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): T. Bertrand, F. Forget, O.M. Umurhan, W.M. Grundy, B. Schmitt, S. Protopapa, A.M. Zangari, O.L. White, P.M. Schenk, K.N. Singer, A. Stern, H.A. Weaver, L.A. Young, K. Ennico, C.B. Olkin Pluto’s landscape is shaped by the endless condensation and sublimation cycles of the volatile ices covering its surface. In particular, the Sputnik Planitia ice sheet, which is thought to be the main reservoir of nitrogen ice, displays a large diversity of terrains, with bright and dark plains, small pits and troughs, topographic depressions and evidences of recent and past glacial flows. Outside Sputnik Planitia, New Horizons also revealed numerous nitrogen ice deposits, in the eastern side of Tombaugh Regio and at mid-northern latitudes. These observations suggest a complex history involving volatile and glacial processes occurring on different timescales. We present numerical simulations of volatile transport on Pluto performed with a model designed to simulate the nitrogen cycle over millions of years, taking into account the changes of obliquity, solar longitude of perihelion and eccentricity as experienced by Pluto. Using this model, we first explore how the volatile and glacial activity of nitrogen within Sputnik Planitia has been impacted by the diurnal, seasonal and astronomical cycles of Pluto. Results show that the obliquity dominates the N 2 cycle and that over one obliquity cycle, the latitudes of Sputnik Planitia between 25°S-30°N are dominated by N 2 condensation, while the northern regions between 30°N and -50°N are dominated by N 2 sublimation. We find that a net amount of 1 km of ice has sublimed at the northern edge of Sputnik Planitia during the last 2 millions of years. It must have been compensated by a viscous flow of the thick ice sheet. By comparing these results with the observed geology of Sputnik Planitia, we can relate the formation of the small pits and the brightness of the ice at the center of Sputnik Planitia to the sublimation and condensation of ice occurring at the annual timescale, while the glacial flows at its eastern edge and the erosion of the water ice mountains all around the ice sheet are instead related to the astronomical timescale. We also perform simulations including a glacial flow scheme which shows that the Sputnik Planitia ice sheet is currently at its minimum extent at the northern and southern edges. We also explore the stability of N 2 ice deposits outside the latitudes and longitudes of the Sputnik Planitia basin. Results show that N 2 ice is not stable at the poles but rather in the equatorial regions, in particular in depressions, where thick deposits may persist over tens of millions of years, before being trapped in Sputnik Planitia. Finally, another key result is that the minimum and maximum surface pressures obtained over the simulated millions of years remain in the range of milli-Pascals and Pascals, respectively. This suggests that Pluto never encountered conditions allowing liquid nitrogen to flow directly on its surface. Instead, we suggest that the numerous geomorphological evidences of past liquid flow observed on Pluto’s surface are the result of liquid nitrogen that flowed at the base of thick ancient nitrogen glaciers, which have since disappeared.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...