GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,506)
  • Physics  (1,506)
Document type
  • Articles  (1,506)
Source
Publisher
Years
Journal
  • 21
    Publication Date: 2018-03-30
    Description: Publication date: Available online 27 March 2018 Source: Ultramicroscopy Author(s): Roy Shiloh, Roei Remez, Peng-Han Lu, Lei Jin, Yossi Lereah, Amir H. Tavabi, Rafal E. Dunin-Borkowski, Ady Arie Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-03-29
    Description: Publication date: May 2018 Source: Ultramicroscopy, Volume 188 Author(s): Andreas Mittelberger, Christian Kramberger, Jannik C. Meyer The performance of the detector is of key importance for low-dose imaging in transmission electron microscopy, and counting every single electron can be considered as the ultimate goal. In scanning transmission electron microscopy, low-dose imaging can be realized by very fast scanning, however, this also introduces artifacts and a loss of resolution in the scan direction. We have developed a software approach to correct for artifacts introduced by fast scans, making use of a scintillator and photomultiplier response that extends over several pixels. The parameters for this correction can be directly extracted from the raw image. Finally, the images can be converted into electron counts. This approach enables low-dose imaging in the scanning transmission electron microscope via high scan speeds while retaining the image quality of artifact-free slower scans.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-03-29
    Description: Publication date: May 2018 Source: Ultramicroscopy, Volume 188 Author(s): J. Bogdanowicz, A. Kumar, C. Fleischmann, M. Gilbert, J. Houard, A. Vella, W. Vandervorst This paper demonstrates the increased light absorption efficiency of semiconducting atom probe tips resulting from focused-ion-beam (FIB) preparation. We use transmission electron microscopy to show that semiconducting tips prepared with FIB are surrounded with an amorphized shell. Photomodulated optical reflectance measurements then provide evidence that FIB-induced damage leads to an increase in both sub- and supra-bandgap light absorption efficiency. Using laser-assisted atom probe tomography (La-APT) measurements, we finally show that, for a nanoscale tip geometry, the laser-induced heating of a tip during La-APT is enhanced by the FIB preparation. We conclude that, upon supra-bandgap illumination, the presence of a FIB-amorphized surface dramatically increases the light-induced heat generation inside semiconducting tips during La-APT. Furthermore, we also deduce that, in the intriguing case of sub-bandgap illumination, the amorphization plays a crucial role in the unexpected light absorption.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-03-29
    Description: Publication date: May 2018 Source: Ultramicroscopy, Volume 188 Author(s): Matthieu Picher, Kerstin Bücker, Thomas LaGrange, Florian Banhart We implement a parametric study with single electron pulses having a 7 ns duration to find the optimal conditions for imaging, diffraction, and electron energy-loss spectroscopy (EELS) in the single-shot approach. Photoelectron pulses are generated by illuminating a flat tantalum cathode with 213 nm nanosecond laser pulses in a 200 kV transmission electron microscope (TEM) with thermionic gun and Wehnelt electrode. For the first time, an EEL spectrometer is used to measure the energy distribution of single nanosecond electron pulses which is crucial for understanding the ideal imaging conditions of the single-shot approach. By varying the laser power, the Wehnelt bias, and the condenser lens settings, the optimum TEM operation conditions for the single-shot approach are revealed. Due to space charge and the Boersch effect, the energy width of the pulses under maximized emission conditions is far too high for imaging or spectroscopy. However, by using the Wehnelt electrode as an energy filter, the energy width of the pulses can be reduced to 2 eV, though at the expense of intensity. The first EEL spectra taken with nanosecond electron pulses are shown in this study. With 7 ns pulses, an image resolution of 25 nm is attained. It is shown how the spherical and chromatic aberrations of the objective lens as well as shot noise limit the resolution. We summarize by giving perspectives for improving the single-shot time-resolved approach by using aberration correction.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-03-29
    Description: Publication date: May 2018 Source: Ultramicroscopy, Volume 188 Author(s): W. Xu, J.M. LeBeau We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of  ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction .
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-03-29
    Description: Publication date: May 2018 Source: Ultramicroscopy, Volume 188 Author(s): W. Verhoeven, J.F.M. van Rens, E.R. Kieft, P.H.A. Mutsaers, O.J. Luiten Ultrashort, low-emittance electron pulses can be created at a high repetition rate by using a TM 110 deflection cavity to sweep a continuous beam across an aperture. These pulses can be used for time-resolved electron microscopy with atomic spatial and temporal resolution at relatively large average currents. In order to demonstrate this, a cavity has been inserted in a transmission electron microscope, and picosecond pulses have been created. No significant increase of either emittance or energy spread has been measured for these pulses. At a peak current of 814 ± 2 pA, the root-mean-square transverse normalized emittance of the electron pulses is ɛ n , x = ( 2.7 ± 0.1 ) · 10 − 12  m rad in the direction parallel to the streak of the cavity, and ɛ n , y = ( 2.5 ± 0.1 ) · 10 − 12  m rad in the perpendicular direction for pulses with a pulse length of 1.1–1.3 ps. Under the same conditions, the emittance of the continuous beam is ɛ n , x = ɛ n , y = ( 2.5 ± 0.1 ) · 10 − 12  m rad. Furthermore, for both the pulsed and the continuous beam a full width at half maximum energy spread of 0.95 ± 0.05 eV has been measured.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-03-29
    Description: Publication date: April 2018 Source: Ultramicroscopy, Volume 187 Author(s): Jinsen Tian, Jing Wu, Yu-Lung Chiu The intensity profiles of backscattered and secondary electrons from a pure Mg sample have shown a variation with sample thickness and acceleration voltage in the range of 5–30 kV, depending on the specimen holder used. The intensities of backscattered electron (BSE) and secondary electron (SE) signals increases with the sample thickness until saturation when using a scanning transmission electron microscopy (STEM) holder with a closed tube below the sample. However the SE signal increases to the maximum and then decreases with the sample thickness when using a transmission Kikuchi diffraction (TKD) holder with no shielding below the sample whereas the BSE signal again increases until saturation. The influence of the holder on the SE signals is caused by the fact that secondary electrons emitted from the bottom surface could be detected only when using the TKD holder but not the STEM holder. The experimental results obtained are consistent with the Monte Carlo simulation results. Application of the magnitude of the SE and BSE signals to measurement of sample thickness has been considered and the BSE image profile shows a reasonably good accuracy.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-03-29
    Description: Publication date: April 2018 Source: Ultramicroscopy, Volume 187 Author(s): Jakob Spiegelberg, Juan Carlos Idrobo, Andreas Herklotz, Thomas Zac Ward, Wu Zhou, Ján Rusz Atomic resolution imaging and spectroscopy suffers from inherently low signal to noise ratios often prohibiting the interpretation of single pixels or spectra. We introduce local low rank (LLR) denoising as tool for efficient noise removal in scanning transmission electron microscopy (STEM) images and electron energy-loss (EEL) spectrum images. LLR denoising utilizes tensor decomposition techniques, in particular the multilinear singular value decomposition (MLSVD), to achieve a denoising in a general setting largely independent of the signal features and data dimension, by assuming that the signal of interest is of low rank in segments of appropriately chosen size. When applied to STEM images of graphene, LLR denoising suppresses statistical noise while retaining fine image features such as scan row-wise distortions, possibly related to rippling of the graphene sheet and consequent motion of atoms. When applied to EEL spectra, LLR denoising reveals fine structures distinguishing different lattice sites in the spinel system CoFe 2 O 4 .
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-03-29
    Description: Publication date: April 2018 Source: Ultramicroscopy, Volume 187 Author(s): Christopher J. Russo, Richard Henderson The fluctuating granularity or “bee swarm” effect seen in highly defocussed transmission electron micrographs is caused by microscopic charge fluctuations in the specimen created by the illuminating beam. In the field of high-resolution single particle electron cryomicroscopy (cryoEM), there has been a concern that this fluctuating charge might cause defocus-dependent Thon ring fading which would degrade the final image. In this paper, we have analysed the 2.35 Å fringes from the (111) reflection in images of gold nanoparticles embedded in amorphous ice. We show that there is a small, yet detectable amount of defocus-dependent blurring of the lattice fringes when compared with those from a pure gold foil. The transverse electric field associated with the fluctuating charges on the insulating frozen water specimen deflects the electron beam locally and causes image blurring. The perturbation is small, decreasing the amplitude of the 2.35 Å reflection at 10 µm defocus by about 7% (intensity by 14%). For smaller defocus values in the range 2–4 µm and for resolutions that are typical in cryoEM, the effects of source incoherence and the bee swarm effect are negligible for all reasonable cryoEM imaging conditions, assuming that a field emission gun (FEG) is used for illumination. This leaves physical movement of the specimen due to radiation damage as the outstanding problem and the major source of contrast loss in cryoEM micrographs.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-03-29
    Description: Publication date: April 2018 Source: Ultramicroscopy, Volume 187 Author(s): G.T. Martinez, K.H.W. van den Bos, M. Alania, P.D. Nellist, S. Van Aert In quantitative scanning transmission electron microscopy (STEM), scattering cross-sections have been shown to be very sensitive to the number of atoms in a column and its composition. They correspond to the integrated intensity over the atomic column and they outperform other measures. As compared to atomic column peak intensities, which saturate at a given thickness, scattering cross-sections increase monotonically. A study of the electron wave propagation is presented to explain the sensitivity of the scattering cross-sections. Based on the multislice algorithm, we analyse the wave propagation inside the crystal and its link to the scattered signal for the different probe positions contained in the scattering cross-section for detector collection in the low-, middle- and high-angle regimes. The influence to the signal from scattering of neighbouring columns is also discussed.
    Print ISSN: 0304-3991
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...