GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (76)
  • 2016  (76)
Document type
Years
  • 2015-2019  (76)
Year
  • 1
    Publication Date: 2016-12-27
    Description: Rising global temperature has put increasing pressure on understanding the linkage between atmospheric warming and the occurrence of natural hazards. While the Paris Agreement has set the ambitious target to limiting global warming to 1.5°C compared to pre-industrial levels, scientists are urged to explore scenarios for different warming thresholds and quantify ranges of socio-economic impact. In this work, we present a framework to estimate the economic damage and population affected by river floods at global scale. It is based on a modeling cascade involving hydrological, hydraulic and socio-economic impact simulations, and makes use of state-of-the-art global layers of hazard, exposure and vulnerability at 1 km grid resolution. An ensemble of seven high-resolution global climate projections based on Representative Concentration Pathways (RCP) 8.5 is used to derive streamflow simulations in the present and in the future climate. Those were analyzed to assess the frequency and magnitude of river floods and their impacts under scenarios corresponding to 1.5°C, 2°C, and 4°C global warming. Results indicate a clear positive correlation between atmospheric warming and future flood risk at global scale. At 4°C global warming, countries representing more than 70% of the global population and global GDP will face increases in flood risk in excess of 500%. Changes in flood risk are unevenly distributed, with the largest increases in Asia, America and Europe. In contrast, changes are statistically not significant in most countries in Africa and Oceania for all considered warming levels.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    Publication Date: 2016-12-25
    Description: ABSTRACT The humanitarian sector is active at the global frontline of climate impacts, and has a track record in influencing the climate change policy agenda. Geoengineering is a humanitarian concern: the potential for deliberate large-scale intervention in the Earth's climate system has major implications in terms of impacts on the most vulnerable. Yet so far the humanitarian community has largely been absent from geoengineering deliberations. Geoengineering may be perceived as too theoretical, too complex, and not imminent enough to merit attention. However, early engagement by the sector is imperative to ensure that humanitarian considerations are integrated into policy decisions. Those who can suffer the worst outcomes need to be involved; especially given the plausibility of ‘predatory geoengineering’ where recklessly self-concerned actions may result in harmful consequences to others. This paper explores the humanitarian dimensions of geoengineering, specifically relating to solar radiation management (SRM). Drawing from the engagement of the Red Cross Red Crescent Climate Centre in SRM discussions, we discuss how to improve linkages between science, policy and humanitarian practice. We further propose the creation of a geoengineering risk management framework to ensure that the interests of the most vulnerable are considered and addressed - including the voices of all stakeholders.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    Publication Date: 2016-12-25
    Description: This piece examines the need to interrogate the role of the conceptions of the future, as embedded in academic papers, policy documents, climate models, and other artifacts that serve as currencies of the science-society interface, in shaping scientific and policy agendas in climate engineering. Growing bodies of work on framings, metaphors, and models in the past decade serve as valuable starting points, but can benefit from integration with STS work on the sociology of expectations, imaginaries, and visions. Potentially valuable branches of work to come might be the anticipatory use of the future: the design of experimental spaces for exploring the future of an engineered climate in service of responsible research and innovation, and the integration of this work within the unfolding context of the Paris Agreement.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    Publication Date: 2016-12-22
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-20
    Description: ABSTRACT As the Earth's climate has changed, Arctic sea ice extent has decreased drastically. It is likely that the late-summer Arctic will be ice-free as soon as the 2030s. This loss of sea ice represents one of the most severe positive feedbacks in the climate system, as sunlight that would otherwise be reflected by sea ice is absorbed by open ocean. It is unlikely that CO 2 levels and mean temperatures can be decreased in time to prevent this loss, so restoring sea ice artificially is an imperative. Here we investigate a means for enhancing Arctic sea ice production by using wind power during the Arctic winter to pump water to the surface, where it will freeze more rapidly. We show that where appropriate devices are employed, it is possible to increase ice thickness above natural levels, by about 1 m over the course of the winter. We examine the effects this has in the Arctic climate, concluding that deployment over 10% of the Arctic, especially where ice survival is marginal, could more than reverse current trends of ice loss in the Arctic, using existing industrial capacity. We propose that winter ice thickening by wind-powered pumps be considered and assessed as part of a multi-pronged strategy for restoring sea ice and arresting the strongest feedbacks in the climate system.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-17
    Description: Crude oil from oil sands will constitute a substantial share of future global oil demand. Oil sands deposits account for a third of globally proven oil reserves, underlie large natural forested areas, and have extraction methods requiring large volumes of freshwater. Yet little work has been done to quantify some of the main environmental impacts of oil sands operations. Here we examine forest loss and water use for the world's major oil sands deposits. We calculate actual and potential rates of water use and forest loss both in Canadian deposits, where oil sands extraction is already taking place, and in other major deposits worldwide. We estimated that their exploitation, given projected production trends, could result in 1.31 km 3  yr −1 of freshwater demand and 8700 km 2 of forest loss. The expected escalation in oil sands extraction thus portends extensive environmental impacts.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-13
    Description: Rising sea level represents a significant threat to coastal communities and ecosystems, including altered habitats and increased vulnerability to coastal storms and recurrent inundation. This threat is exemplified in the northern Gulf of Mexico, where low topography, marshes, and a prevalence of tropical storms have resulted in extensive coastal impacts. The ability to facilitate adaptation and mitigation measures relies, in part, on the development of robust predictive capabilities that incorporate complex biological processes with physical dynamics. Initiated in 2010, the 6-year Ecological Effects of Sea Level Rise - Northern Gulf of Mexico project applied a transdisciplinary science approach to develop a suite of integrated modeling platforms informed by empirical data that are capable of evaluating a range of climate change scenarios. This special issue highlights resultant integrated models focused on tidal hydrodynamics, shoreline morphology, oyster ecology, coastal wetland vulnerability, and storm surges that demonstrate the need for dynamic models to incorporate feedbacks among physical and biological processes in assessments of sea level rise effects on coastal systems. Effects are projected to be significant, spatially variable and nonlinear relative to sea level rise rates. Scenarios of higher sea level rise rates are projected to exceed thresholds of wetland sustainability, and many regions will experience enhanced storm surges. Influenced by an extensive collaborative stakeholder engagement process, these assessments on the coastal dynamics of sea level rise provide a strong foundation for resilience measures in the northern Gulf of Mexico and a transferable approach for application to other coastal regions throughout the world.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-10
    Description: We combine socio-economic data from a large-scale household survey with historical climate data to map the climate sensitivity of availability and access dimensions of food security in Mali, and infer the ways in which at-risk communities may have been impacted by persistent climatic shift. Thirty years after 1982-1984, the period of most intense drought during the protracted late 20 th century drying of the Sahel, the impact of drought on livelihoods and food security is still recognizable in the Sahelian center of Mali. This impact is expressed in the larger fraction of households in this Sahelian center of the country — the agro-ecological transition between pastoralism in the north, and sedentary agriculture in the south — who practice agriculture but not livestock raising, despite environmental conditions that are suitable to their combination. These households have lower food security and rely more frequently on detrimental nutrition-based coping strategies, such as reducing the quantity or quality of meals. In contrast, the more food secure households show a clear tendency toward livelihood diversification away from subsistence agriculture. These households produce less of what they consume, yet spend less on food in proportion. The analysis points to the value of interdisciplinary research – in this case bridging climate science and vulnerability analysis – to gain a dynamical understanding of complex systems, understanding which may be exploited to address real-world challenges, offering lessons about food security and local adaptation strategies in places among the most vulnerable to climate.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-10
    Description: ABSTRACT The Arctic freshwater cycle is changing rapidly, which will require adequate monitoring of river flows to detect, observe and understand changes and provide adaptation information. There has however been little detail about where the greatest flow changes are projected, and where monitoring therefore may need to be strengthened. In this study, we used a set of recent climate model runs and an advanced macro-scale hydrological model to analyze how flows across the continental pan-Arctic are projected to change, and where the climate models agree on significant changes. We also developed a method to identify where monitoring stations should be placed to observe these significant changes, and compared this set of suggested locations with the existing network of monitoring stations. Overall, our results reinforce earlier indications of large increases in flow over much of the Arctic, but we also identify some areas where projections agree on significant changes but disagree on the sign of change. For monitoring, central and eastern Siberia, Alaska and central Canada are hot spots for the highest changes. To take advantage of existing networks, a number of stations across central Canada and western and central Siberia could form a prioritized set. Further development of model representation of high-latitude hydrology would improve confidence in the areas we identify here. Nevertheless, ongoing observation programs may consider these suggested locations in efforts to improve monitoring of the rapidly changing Arctic freshwater cycle.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-24
    Description: Despite a growing literature on the climate response to solar geoengineering – proposals to cool the planet by increasing the planetary albedo – there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar geoengineered climate and identify major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can build upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges and risks presented by solar geoengineering.
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...