GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (30)
  • 2015-2019  (30)
  • 2015  (30)
Document type
  • Articles  (30)
Source
Publisher
Years
  • 2015-2019  (30)
Year
Topic
  • 1
    Publication Date: 2015-12-11
    Description: In situ measurement of the biogeochemical properties of Southern Ocean mesoscale eddies in the Southwest Indian Ocean, April 2014 Earth System Science Data, 7, 415-422, 2015 Author(s): S. de Villiers, K. Siswana, and K. Vena Several open-ocean mesoscale features – a "young" warm-core (anti-cyclonic) eddy at 52° S, an "older" warm-core eddy at 57.5° S and an adjacent cold-core (cyclonic) eddy at 56° S – were surveyed during a R/V S.A. Agulhas II cruise in April 2014. The main aim of the survey was to obtain hydrographical and biogeochemical profile data for contrasting open-ocean eddies in the Southern Ocean, which will be suitable for comparative study and modelling of their heat, salt and nutrient characteristics, and the changes that occur in these properties as warm-core eddies migrate from the polar front southwards. The major result is that the older warm-core eddy at 57.5° S is, at its core, 2.7 °C colder than a younger eddy at 52° S, while its dissolved silicate levels are almost 500 % higher and accompanied by chlorophyll a levels that are more than 200 % higher than that in the younger eddy. A total of 18 CTD stations were occupied in a sector south of the Southwest Indian Ridge, along three transects crossing several mesoscale features identified from satellite altimetry data prior to the cruise. The CTD data, as well as chlorophyll a and dissolved nutrient data (for NO 3 − , NO 2 − , PO 4 3− and SiO 2 ), have been processed, quality controlled and made available via the PANGAEA Data Archiving and Publication database at doi:10.1594/PANGAEA.848875 .
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-09
    Description: The CM SAF ATOVS data record: overview of methodology and evaluation of total column water and profiles of tropospheric humidity Earth System Science Data, 7, 397-414, 2015 Author(s): N. Courcoux and M. Schröder Recently, the reprocessed Advanced Television Infrared Observation Satellite (TIROS)-N Operational Vertical Sounder (ATOVS) tropospheric water vapour and temperature data record was released by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM~SAF). ATOVS observations from infrared and microwave sounders onboard the National Oceanic and Atmospheric Agency (NOAA)-15–19 satellites and EUMETSAT's Meteorological Operational (Metop-A) satellite have been consistently reprocessed to generate 13 years (1999–2011) of global water vapour and temperature daily and monthly means with a spatial resolution of 90 km × 90 km. The data set is referenced under the following digital object identifier (DOI): doi:10.5676/EUM_SAF_CM/WVT_ATOVS/V001 . After preprocessing, a maximum likelihood solution scheme was applied to the observations to simultaneously infer temperature and water vapour profiles. In a post-processing step, an objective interpolation method (Kriging) was applied to allow for gap filling. The product suite includes total precipitable water vapour (TPW), layer-integrated precipitable water vapour (LPW) and layer mean temperature for five tropospheric layers between the surface and 200 hPa, as well as specific humidity and temperature at six tropospheric levels between 1000 and 200 hPa. To our knowledge, this is the first time that the ATOVS record (1998–now) has been consistently reprocessed (1999–2011) to retrieve water vapour. TPW and LPW products were compared to corresponding products from the Global Climate Observing System (GCOS) Upper-Air Network (GUAN) radiosonde observations and from the Atmospheric Infrared Sounder (AIRS) version 5 satellite data record. TPW shows a good agreement with the GUAN radiosonde data: average bias and root mean square error (RMSE) are −0.2 and 3.3 kg m −2 , respectively. For LPW, the maximum absolute (relative) bias and RMSE values decrease (increase) strongly with height. The maximum bias and RMSE are found at the lowest layer and are −0.7 and 2.5 kg m −2 , respectively. While the RMSE relative to AIRS is generally smaller, the TPW bias relative to AIRS is larger, with dominant contributions from precipitating areas. The consistently reprocessed ATOVS data record exhibits improved quality and stability relative to the operational CM SAF products when compared to the TPW from GUAN radiosonde data over the period 2004–2011. Finally, it became evident that the change in the number of satellites used for the retrieval combined with the use of the Kriging leads to breakpoints in the ATOVS data record; therefore, a variability analysis of the data record is not recommended for the time period from January 1999 to January 2001.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2015-12-08
    Description: Global Carbon Budget 2015 Earth System Science Data, 7, 349-396, 2015 Author(s): C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil fuels and industry ( E FF ) are based on energy statistics and cement production data, while emissions from land-use change ( E LUC ), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM ) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN ) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND ) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2 , and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), E FF was 9.0 ± 0.5 GtC yr −1 , E LUC was 0.9 ± 0.5 GtC yr −1 , G ATM was 4.4 ± 0.1 GtC yr −1 , S OCEAN was 2.6 ± 0.5 GtC yr −1 , and S LAND was 3.0 ± 0.8 GtC yr −1 . For the year 2014 alone, E FF grew to 9.8 ± 0.5 GtC yr −1 , 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr −1 that took place during 2005–2014. Also, for 2014, E LUC was 1.1 ± 0.5 GtC yr −1 , G ATM was 3.9 ± 0.2 GtC yr −1 , S OCEAN was 2.9 ± 0.5 GtC yr −1 , and S LAND was 4.1 ± 0.9 GtC yr −1 . G ATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger S LAND for that year. The global atmospheric CO 2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in E FF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of E FF and assumed constant E LUC for 2015, cumulative emissions of CO 2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO 2 ) for 1870–2015, about 75 % from E FF and 25 % from E LUC . This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center ( doi:10.3334/CDIAC/GCP_2015 ).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-21
    Description: CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters Earth System Science Data, 7, 319-348, 2015 Author(s): B. Nechad, K. Ruddick, T. Schroeder, K. Oubelkheir, D. Blondeau-Patissier, N. Cherukuru, V. Brando, A. Dekker, L. Clementson, A. C. Banks, S. Maritorena, P. J. Werdell, C. Sá, V. Brotas, I. Caballero de Frutos, Y.-H. Ahn, S. Salama, G. Tilstone, V. Martinez-Vicente, D. Foley, M. McKibben, J. Nahorniak, T. Peterson, A. Siliò-Calzada, R. Röttgers, Z. Lee, M. Peters, and C. Brockmann The use of in situ measurements is essential in the validation and evaluation of the algorithms that provide coastal water quality data products from ocean colour satellite remote sensing. Over the past decade, various types of ocean colour algorithms have been developed to deal with the optical complexity of coastal waters. Yet there is a lack of a comprehensive intercomparison due to the availability of quality checked in situ databases. The CoastColour Round Robin (CCRR) project, funded by the European Space Agency (ESA), was designed to bring together three reference data sets using these to test algorithms and to assess their accuracy for retrieving water quality parameters. This paper provides a detailed description of these reference data sets, which include the Medium Resolution Imaging Spectrometer (MERIS) level 2 match-ups, in situ reflectance measurements, and synthetic data generated by a radiative transfer model (HydroLight). These data sets, representing mainly coastal waters, are available from doi:10.1594/PANGAEA.841950 . The data sets mainly consist of 6484 marine reflectance (either multispectral or hyperspectral) associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: total suspended matter (TSM) and chlorophyll a (CHL) concentrations, and the absorption of coloured dissolved organic matter (CDOM). Inherent optical properties are also provided in the simulated data sets (5000 simulations) and from 3054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three data sets are compared. Match-up and in situ sites where deviations occur are identified. The distributions of the three reflectance data sets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-17
    Description: CO 2 -flux measurements above the Baltic Sea at two heights: flux gradients in the surface layer? Earth System Science Data, 7, 311-317, 2015 Author(s): A. Lammert and F. Ament The estimation of CO 2 exchange between the ocean and the atmosphere is essential to understand the global carbon cycle. The eddy-covariance technique offers a very direct approach to observe these fluxes. The turbulent CO 2 flux is measured, as well as the sensible and latent heat flux and the momentum flux, a few meters above the ocean in the atmosphere. Assuming a constant-flux layer in the near-surface part of the atmospheric boundary layer, this flux equals the exchange flux between ocean and atmosphere. The purpose of this paper is the comparison of long-term flux measurements at two different heights above the Baltic Sea to investigate this assumption. The results are based on a 1.5-year record of quality-controlled eddy-covariance measurements. Concerning the flux of momentum and of sensible and latent heat, the constant-flux layer theory can be confirmed because flux differences between the two heights are insignificantly small more than 95 % of the time. In contrast, significant differences, which are larger than the measurement error, occur in the CO 2 flux about 35 % of the time. Data used for this paper are published at http://doi.pangaea.de/10.1594/PANGAEA.808714 .
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-13
    Description: Multi-year high-frequency physical and environmental observations at the Guadiana Estuary Earth System Science Data, 7, 299-309, 2015 Author(s): E. Garel and Ó. Ferreira High-frequency data collected continuously over a multi-year time frame are required for investigating the various agents that drive ecological and hydrodynamic processes in estuaries. Here, we present water quality and current in situ observations from a fixed monitoring station operating from 2008 to 2014 in the lower Guadiana Estuary, southern Portugal (37°11.30' N, 7°24.67' W). The data were recorded by a multi-parametric probe providing hourly records (temperature, salinity, chlorophyll, dissolved oxygen, turbidity, and pH) at a water depth of ~ 1 m, and by a bottom-mounted acoustic Doppler current profiler measuring the pressure, near-bottom temperature, and flow velocity through the water column every 15 min. The time series data, in particular the probe ones, present substantial gaps arising from equipment failure and maintenance, which are ineluctable with this type of observation in harsh environments. However, prolonged (months-long) periods of multi-parametric observations during contrasted external forcing conditions are available. The raw data are reported together with flags indicating the quality status of each record. River discharge data from two hydrographic stations located near the estuary head are also provided to support data analysis and interpretation. The data set is publicly available in machine-readable format at PANGAEA ( doi:10.1594/PANGAEA.845750 ).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-28
    Description: Processing of water level derived from water pressure data at the Time Series Station Spiekeroog Earth System Science Data, 7, 289-297, 2015 Author(s): L. Holinde, T. H. Badewien, J. A. Freund, E. V. Stanev, and O. Zielinski The quality of water level time series data strongly varies with periods of high- and low-quality sensor data. In this paper we are presenting the processing steps which were used to generate high-quality water level data from water pressure measured at the Time Series Station (TSS) Spiekeroog. The TSS is positioned in a tidal inlet between the islands of Spiekeroog and Langeoog in the East Frisian Wadden Sea (southern North Sea). The processing steps will cover sensor drift, outlier identification, interpolation of data gaps and quality control. A central step is the removal of outliers. For this process an absolute threshold of 0.25 m 10 min −1 was selected which still keeps the water level increase and decrease during extreme events as shown during the quality control process. A second important feature of data processing is the interpolation of gappy data which is accomplished with a high certainty of generating trustworthy data. Applying these methods a 10-year data set (December 2002–December 2012) of water level information at the TSS was processed resulting in a 7-year time series (2005–2011). Supplementary data are available at doi: 10.1594/PANGAEA.843740 .
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-10-14
    Description: A global satellite-assisted precipitation climatology Earth System Science Data, 7, 275-287, 2015 Author(s): C. Funk, A. Verdin, J. Michaelsen, P. Peterson, D. Pedreros, and G. Husak Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate Hazards Group's Precipitation Climatology version 1 (CHPclim v.1.0, doi:10.15780/G2159X ), is shown to compare favorably with similar global climatology products, especially in areas with complex terrain and low station densities.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-06
    Description: Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean Earth System Science Data, 7, 261-273, 2015 Author(s): R. Sauzède, H. Lavigne, H. Claustre, J. Uitz, C. Schmechtig, F. D'Ortenzio, C. Guinet, and S. Pesant In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-15
    Description: The new database of the Global Terrestrial Network for Permafrost (GTN-P) Earth System Science Data, 7, 245-259, 2015 Author(s): B. K. Biskaborn, J.-P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness (ALT) data from Arctic, Antarctic and mountain permafrost regions. The purpose of GTN-P is to establish an early warning system for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we introduce the GTN-P database and perform statistical analysis of the GTN-P metadata to identify and quantify the spatial gaps in the site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the data management system in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies based on national correspondents. Assessment of the metadata and data quality reveals 63 % metadata completeness at active layer sites and 50 % metadata completeness for boreholes. Voronoi tessellation analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides a potential method to locate additional permafrost research sites by improving the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73 % are shallower than 25 m and 27 % are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations, which are illustrated with maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high representation of areas with smaller expected temperature rise but a lower number of sites within Arctic areas where climate models project extreme temperature increase. GTN-P metadata used in this paper are available at doi: 10.1594/PANGAEA.842821 .
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...