GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (167)
  • 2015-2019  (167)
  • 2010-2014
  • 2015  (167)
Document type
  • Articles  (167)
Source
Publisher
Years
  • 2015-2019  (167)
  • 2010-2014
Year
Topic
  • 1
    Publication Date: 2015-12-30
    Description: Landslides contribute to dismantle active mountain ranges and faults control the location of landslides. Yet, evidence of the long-term, regional dependency of landslides on active faults is limited. Previous studies focused of the transient effects of earthquakes on slope stability in compressive and transcurrent regimes. Here we show that in the Peloritani range, NE Sicily, Italy, one of the fastest uplifting areas in the Mediterranean, a clear geographical association exists between large bedrock landslides and active normal faults of the Messina Straits graben. By interpreting aerial photographs, we mapped 1590 landslides and sackungs and 626 fault elements and their facets in a 300-km 2 area in the E part of the range. We used the new landslide and fault information, in combination with prior geological and seismic information, to investigate the association between bedrock landslides and faults. We find that the distribution and abundance of landslides is related to the presence of large active normal faults, and matches the pattern of the local historical seismicity. Landslide material is more abundant along the East Peloritani Fault System where the long-term activity of the faults, measured by the average yearly geological moment rate, is larger than in the West Peloritani Fault System where landslides are less abundant. Along the fault systems landslide material concentrates where the cumulated fault throws are largest. We conclude that large landslides and their cumulated volume are sensitive to local rates of tectonic deformation, and discriminate the deformation of the single fault segments that dissect the Peloritani range. Our findings are a direct test of landscape evolution models that predict higher rates of landslide activity near active faults. Our work opens to the possibility of exploiting accurate landslide and fault maps, in combination with geological and seismic information, to characterize the long-term seismic history of poorly instrumented active regions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-30
    Description: ABSTRACT Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the 3-D flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-30
    Description: ABSTRACT Lacustrine sediment archives indicate that flooding during Tropical Storm Irene (2011) in the northeastern US caused the most severe erosion of any flood in the historic record, surpassing that of events with greater precipitation and peak discharges. Compared to deposition from historic floods, Irene's event layer was more massive and more enriched in unweathered upland sediments, indicating an anomalously high incidence of mass wasting and sediment entrainment. Precipitation records indicate that neither precipitation intensity nor total accumulation distinguished Irene from less erosive historic floods. However, cumulative precipitation prior to Irene exceeded the 95 th percentile of all days in the record. When allowing for non-stationarity in 20 th century background precipitation, we find a fourfold increase in the probability of Irene-like conditions, where impacts of extreme rainfall are enhanced by high antecedent precipitation. We conclude that irrespective of increases in extreme precipitation, the risk of highly erosive flooding in the region is increasing due to the influence of wetter baseline conditions associated with a changing climate.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-30
    Description: ABSTRACT Anthropogenic activities on peatlands, such as drainage, can increase sediment transport and deposition downstream resulting in harmful ecological impacts. The objective of this study was to quantify changes in erosion/deposition quantities and surface roughness in peatland forest ditches by measuring changes in ditch cross-sections and surface microtopography with two alternative methods: manual pin meter and terrestrial laser scanning (TSL).The methods were applied to a peat ditch and a ditch with thin peat layer overlaying erosion sensitive mineral soil within a period of two years following ditch cleaning. The results showed that erosion was greater in the ditch with exposed mineral soil than in the peat ditch. The two methods revealed rather similar estimates of erosion and deposition for the ditch with thin peat layer where cross-sectional changes were large, whereas the results for smaller scale erosion and deposition at the peat ditch differed. The TLS-based erosion and deposition quantities depended on the size of the sampling window used in the estimations. Surface roughness was smaller when calculated from the pin meter data than from the TLS data. Both methods indicated that roughness increased in the banks of the ditch with thin peat layer. TLS data showed increased roughness also in the peat ditch. The increase in surface roughness was attributed to erosion and growth of vegetation. Both methods were suitable for the measurements of surface roughness and microtopography at the ditch cross-section scale, but the applicability, rigour, and ease of acquisition of TLS data were more evident. The main disadvantage of the TLS instrument (Leica ScanStation 2) compared to pin meter was that even a shallow layer of humic (dark brown) water prevented the detection of ditch bed. The geomorphological potential of the methods was shown to be limited to detection of surface elevation changes 〉~0.1 m. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-23
    Description: ABSTRACT Tectonics and climate are usually seen as the main controlling factors of denudation rates, which seem to rise with the tectonic activity and to decrease when the climate becomes drier. However, the low denudation rates observed in semi-arid to arid contexts are generally measured on orogenic plateaus where the respective influence of the flat relief and the dry climate cannot really be unravelled. The Chinese Tian Shan was chosen as a case study. In the northern piedmont of this mountain range, a series of well-preserved Quaternary alluvial fans offer the opportunity to perform a mass balance study at the scale of several catchment areas and several hundreds of thousands years. Based on a geometrical reconstruction of these fans, the volumes of sediments exported out of ten drainage basins during the Middle-Late Pleistocene (from ~300 to ~12 ky) and the Holocene (from ~12 ky to Present) have been estimated. From these volumes, an average denudation rate of ~135 m/My was determined in the Tian Shan Range for the last 300 ky. In agreement with other mass balances performed in the same area, the typical denudation intensity of the northern Tian Shan is thus of a few hundred meters per million years at most regardless of the space and time scales considered. From a comparison with denudation rates in other mountain ranges throughout the world, we suggest that a dry climate can dramatically limit the denudation intensity even in active orogenic systems with a high topographic gradient like the Tian Shan. As a result, the time required to reach equilibrium between denudation and rock uplift in these systems could be extremely long (i.e., of more than several million years). This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-22
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-16
    Description: ABSTRACT Soil-disturbing animals play a critical role in many ecosystem processes. The loss of native soil-foraging mammals(e.g. greater bilby Macrotis lagotis ; burrowing bettong, Bettongia lesueur ) throughout vast areas of Australia has altered fundamental soil processes such as decomposition. Little is known about whether surviving native soil–disturbing animals (e.g. short–beaked echidna, Tachyglossus aculeatus ) produce soil disturbances that are functionally equivalent to those of locally–extinct native animals. We used a litter bag study to compare abiotic and biotic mechanisms of decomposition within the foraging pits of two native mammal species. We compared decomposition rates between landforms, which we used as a surrogate for soil texture; grass species Austrostipa scabra subsp. scabra and Triodia scariosa subsp. scariosa , which we used as our substrates; and the effects of chemically excluding fungi and/ or termites. There were initial differences in the organic mass loss between echidna and bilby/ bettong foraging pits, with bilby/ bettong pits losing more over 30 days, and echidnas losing more over 63 days. However, over 396 days there was no significant difference between the two pit types. Landform (soil texture) and chemical exclusion of termites and fungi did not affect our measures of decomposition until the final stage of the study. The two grass species lost significantly different amounts of organic material at each collection interval, with Austrostipa losing more at 30, 63 and 130 days and Triodia losing more at the final 396 day collection. This provided the most consistent effect on decomposition. Our results highlight the temporal idiosyncrasies in the various drivers of decomposition in this dune-swale system. Overall, this study provides evidence that the foraging pits of the short–beaked echidna do not differ markedly from those of the locally extinct greater bilby and burrowing bettong in terms of their capacity to maintain rates of decomposition at an annual scale. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-16
    Description: ABSTRACT Valley setting and confinement (or lack thereof) are primary controls on river character and behaviour. Although there are various proxies for valley confinement, direct measures that quantify the nature and extent of confinement are generally lacking and/or inconsistently described. As such they do not lend themselves to consistent analysis over large spatial scales. Here we clearly define forms of confinement to aid in quantification of degrees of confinement. Types of margin that can induce confinement are differentiated as a valley margin, valley bottom margin, and/or anthropogenic margin. Such margins sometimes overlap and share the same location, and in other situations are separated, giving immediate clues as to the valley setting. We apply this framework to examples from Australia, USA and New Zealand, showing how this framework can be applied across the spectrum of river diversity. This method can help to inform interpretations of reach-scale river behaviour, highlighting the role of antecedent controls on contemporary forms and processes. Clearer definitions of confinement are shown to support for catchment-scale analysis of river patterns along longitudinal profiles and appraisals of the geomorphic effectiveness of floods and sediment flux in catchments (e.g process zone distribution, lateral sediment inputs and (dis)connectivity). This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-16
    Description: ABSTRACT Stream burning is a common flow enforcement technique used to correct surface drainage patterns derived from digital elevation models (DEM). The technique involves adjusting the elevations of grid cells that are coincident with the features of a vector hydrography layer. This paper focuses on the problematic issues with common stream-burning practices, particularly the topological errors resulting from the mismatched scales of the hydrography and DEM data sets. A novel alternative stream burning method is described and tested using five DEMs of varying resolutions (1 to 30 arc-seconds) for an extensive area of southwestern Ontario, Canada. This TopologicalBreachBurn method uses total upstream channel length (TUCL) to prune the vector hydrography layer to a level of detail that matches the raster DEM grid resolution. Network pruning reduces the occurrence of erroneous stream piracy caused by the rasterization of multiple stream links to the same DEM grid cell. The algorithm also restricts flow within individual stream reaches, further reducing erroneous stream piracy. In situations where two vector stream features occupy the same grid cell, the new tool ensures that the larger stream, designated by higher TUCL, is given priority. TUCL-based priority minimizes the impact of the topological errors that occur during the stream rasterization process on modeled regional drainage patterns. The test data demonstrated that TopologicalBreachBurn produces highly accurate and scale-insensitive drainage patterns and watershed boundaries. The drainage divides of four large watersheds within the study region that were delineated from the TopologicalBreachBurn -processed DEMs were found to be highly accurate when compared with the official watershed boundaries, even at the coarsest grid resolutions, with Kappa index of agreement values ranging from 0.952 to 0.921. The corresponding Kappa coefficient values for a traditional stream burning method ( FillBurn ) ranged from 0.953 to 0.490, demonstrating a significant decrease in mapping accuracy at coarser DEM grid resolutions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-16
    Description: ABSTRACT Digital elevation models (DEMs) of river channel bathymetries are developed by interpolating elevations between data collected at discrete points or along transects. The accuracy of interpolated bathymetries depends on measurement error, the density and distribution of point data, and the interpolation method. Whereas point measurement errors can be minimized by selecting the most efficient equipment, the effect of data density and interpolation method on river bathymetry is relatively unknown. Thus, this study focuses on transect-based collection methods and investigates the effects of transect location, the spacing between transects, and interpolation methods on the accuracy of interpolated bathymetry. This is accomplished by comparing four control bathymetries generated from accurate and high resolution, sub-meter scale data to bathymetries interpolated from transect data extracted from the control bathymetries using two transect locating methods and three interpolation methods. The transect locating methods are a morphologically-spaced and an equally-spaced model. The four interpolation methods are Ordinary Kriging, Delaunay Triangulation, and Simple Linear, which are applied in curvilinear coordinates, Delaunay Triangulation is also applied in Cartesian coordinates and Natural Neighbor only in Cartesian Coordinates. The bathymetric data were obtained from morphologically simple and complex reaches of a large (average bankfull width = 90 m) and a small (average bankfull width = 17 m) river. The accuracy of the developed DEMs is assessed using statistical analysis of the differences between the control and interpolated bathymetries and hydraulic parameters assessed from bankfull water surface elevations. Results indicate that DEM accuracy is not influenced by the choice of transect location method (with same averaged cross-section spacing) or a specific interpolation method, but rather by the coordinate system for which the interpolation method is applied and the spacing between transects. They also show negligible differences between the mean depths and surface areas calculated from bathymetries with dense or coarse spacing. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...