ISHS
  Fruits
     
Fruits
Home


Submit
an article


Subscriptions

ISHS Home

ISHS Contact

Search

Fruits
  Fruits 74 (3) 97-109 | DOI: 10.17660/th2019/74.3.1
ISSN 0248-1294 print and 1625-967X online | © ISHS 2019 | Fruits, The International Journal of Tropical and Subtropical Horticulture | Original article

Effects of seasonal climatic variations on physiology and phenology of Litchi chinensis Sonn.in Madagascar

N.R. Solo1, H.P. Ramanankierana1, E. Miasa1, D. Donno2,a, R.H. Baohanta1, E.N. Rakotoniaina3, T. Soifoini4, C. Giacoma5 and G.L. Beccaro2
1 Institut Supérieur de Sciences, Environnement et Développement Durable, University of Toamasina, Madagascar
2 Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Italy
3 Département de Biologie et Écologie Végétales, Faculté des Sciences, Université d’Antananarivo, Madagascar
4 Faculté des Sciences et Techniques, Université des Comores, Comoros Islands
5 Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Italy

SUMMARY
Introduction – The phenology of lychee (Lychee chinensis Sonn.) varies as a function of the developmental stage and season. Number and sex of flowers are dependent on climatic conditions. The aim of this study was to determine the impacts of climate (temperatures and rainfalls) on the lychee tree development. Materials and methods – Plant physiology and phenology were studied in the field during different seasons in four lychee production sites in Madagascar, considering the following stages: flowering, fruit formation, fruit development and ripening. The used phenological codes were based on the extended BBCH-scale and described the growth stages of the lychee plant using a three-digit numerical system. The analysis of auxin (indole-3-acetic acid – IAA) and abscisic acid (ABA) contents in different plant parts by high-performance liquid chromatography (HPLC), coupled to a diode array detector (DAD), was performed to evaluate potential different physiological dynamics in leaves from branches with or without flowers. Results and discussion – The climatic stresses showed tree growth difficulties, which were explained by a reversal of the production phases (stages 5 to 9) toward the resumption of the growth phases (stages 0 to 3). Changes of auxin and abscisic acid contents indicated a sensitivity of the plants to climate variability: the leaves contained about 10 mg ABA 100 g-1 dry weight, what is rather low compared to the concentrations of IAA. Based on the BBCH model, the phenological pattern of lychee followed a more marked evolution by phase reversal at a critical point of time, when the stop code leads to growth anomalies. This evolution is considered an anomaly and no longer represents the normal rhythm of the lychee tree development according to BBCH-scale. Conclusion – Unfavourable climatic conditions such as climatic disturbance may be responsible for the tree hormonal imbalance with potential detrimental effects on lychee cultivation in Madagascar: an accurate understanding of these stages is very important for the correct timing of general orchard management, particularly for disease and pest management, as well as irrigation, fruit retention, flower thinning, flush control, fertilizer effectiveness, and application of plant growth regulators (PGRs).

Keywords lychee, Madagascar, BBCH-scale coding system, phenological stages, abscisic acid, auxins, climate

Significance of this study

What is already known on this subject?

  • The phenology of lychee varies as a function of the developmental stage and season.
What are the new findings?
  • This study evaluated the relationships between climatic parameters and lychee physiology and phenology to highlight the impact of climate change on plant development.
What is the expected impact on horticulture?
  • The results of the study may be used as a link between changed climatic conditions and lychee phenology in Madagascar in order to mitigate the effects of climate change for lychee cultivation.

Download fulltext version How to cite this article       Export citation to RIS format      

E-mail: dario.donno@unito.it  

References

  • Aroca, R., Ruiz-Lozano, J.M., Zamarreno, T.M., Paz, J.A., Garcia-Mina, J.M., Pozo, M.J., and Lopez-Raez, J.A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170, 47–55. https://doi.org/10.1016/j.jplph.2012.08.020.

  • Arora, R., Rowland, L.J., and Tanino, K. (2003). Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38(5), 911–921. https://doi.org/10.21273/HORTSCI.38.5.911.

  • Bai, Y., Du, F., and Liu, H. (2010). Determination strategies of phytohormones: recent advances. Anal. Meth. 2, 1867–1873. https://doi.org/10.1039/c0ay00471e.

  • Bentsink, L., and Koornneef, M. (2008). Seed dormancy and germination. In The Arabidopsis Book, C.R. Somerville, and E.M. Meyerowitz, eds. (Rockville, MD: American Society of Plant Biologists). https://doi.org/10.1199/tab.0119.

  • Bleiholder, H., Van den Boom, T., Langelüddeke, P., and Stauss, R. (1989). Einheitliche Codierung der phänologischen Stadien bei Kultur-und Schadpflanzen. Gesunde Pflanzen 41, 381–384.

  • Bosco, R., Caser, M., Vanara, F., and Scariot, V. (2014). Development of a rapid LC-DAD/FLD method for the simultaneous determination of auxins and abscisic acid in plant extracts. J. Agric. and Food Chem. 61(46), 10940–10947. https://doi.org/10.1021/jf4034305.

  • Brisson, N., and Delécolle, R. (1992). Dévéloppement et modèles de simulation de cultures. Agronomie (EDP Sciences), pp. 256. https://doi.org/10.1051/agro:19920305.

  • Chang, Y.Y. (1999). Regulation of flowering in Litchi (Litchi chinensis Sonn.) (Taipei, Taiwan: Department of Horticulture, National Taiwan University).

  • Chen, H.B., Huang, H.B., and Liu, Z.L. (2004). Flower formation and patterns of carbohydrate distribution in litchi trees. Acta Hortic. Sinica 31(1), 1–6.

  • Chen, P.A., Roan, S.F., Lee, C.I, and Chen, I.Z. (2013). The effects of temperature during inflorescence development to flowering and inflorescence length on yield of “Yu Her Pau” Litchi. Sci. Hortic. 159, 186–189. https://doi.org/10.1016/j.scienta.2013.04.029.

  • Chen, P.A., Roan, S.F., Lee, C.L., and Chen, I.Z. (2016). Temperature model of litchi flowering – From induction to anthesis. Sci. Hortic. 205, 106–111. https://doi.org/10.1016/j.scienta.2016.04.012.

  • Cronje, R.B. (2010). Litchi phenology and botanical aspects. In The Cultivation of Litchi, E.A. de Villiers, and P.H. Joubert, eds. (Nelspruit, South Africa: ARC-Institute for Tropical and Subtropical Crops), p. 8–22.

  • Cui, Z., Zhou, B., Zhang, Z., and Hu, Z. (2013). Abscisic acid promotes flowering and enhances LcAP1 expression in Litchi chinensis Sonn. South Afric. J. Botany 88, 76–79. https://doi.org/10.1016/j.sajb.2013.05.008.

  • Donno, D., Beccaro, G.L., Mellano, M.G., Bonvegna, L., and Bounous, G. (2014). Castanea spp. buds as a phytochemical source for herbal preparations: Botanical fingerprint for nutraceutical identification and functional food standardisation. J. Sci. Food and Agric. 94(14), 2863–2873. https://doi.org/10.1002/jsfa.6627.

  • Du, F., Ruan, G., and Liu, H. (2012). Analytical methods for tracing plant hormones. Anal. Bioanal. Chem. 403, 55–74. https://doi.org/10.1007/s00216-011-5623-x.

  • Durgbanshi, A., Arbona, V., Pozo, O., Miersch, O., Sancho, J.V., and Gómez-Cadenas, A. (2005). Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography–electrospray tandem mass spectrometry. J. Agric. Food Chem. 53, 8437–8442. https://doi.org/10.1021/jf050884b.

  • Eeuwens, J., and Schwabe, W.W. (1975). Seed and pod wall development in Pisum sativum L. in relation to extracted and applied hormones. J. Exper. Botany 26, 1-14. https://doi.org/10.1093/jxb/26.1.1.

  • Endo, A., Sawada, Y., Takahashi, H., Okamoto, M., Ikegami, K., Koiwai, H., Seo, M., Toyomasu, T., Mitsuhashi, W., Shinozaki, K., Nakazono, M., Kamiya, Y., Koshiba, T., and Nambara, E. (2008). Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 147(4), 1984–1993. https://doi.org/10.1104/pp.108.116632.

  • Etemadi, M., Gutjahr, C., Couzigou, J.M., Zouine, M., Lauressergues, D., Timmers, A., Audran, C., Bouzayen, M., Becard, G., and Combier, J.P. (2014). Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol. 166, 281–292. https://doi.org/10.1104/pp.114.246595.

  • Food and Agriculture Organization of the United Nations. (2018). FAOSTAT Statistics Database (Rome: FAO).

  • Hack, H., Bleiholder, H., Buhr, L., Meier, U., Schnock-Fricke, U., Weber, E., and Witzenberger, A. (1992). Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und dikotyler Pflanzen – Erweiterte BBCH-Skala. Allgemein. Nachrichtenbl. Deut. Pflanzenschutzd. 44, 265–270.

  • Huang, H.B., and Chen, H.B. (2003). A phasic approach towards the floral formation in Litchi chinensis Sonn. J. Fruit Sci. 20(6), 487–492.

  • Huang, X.M., and Li, J.G. (2007). Litchi production: history and current situation. In The Litchi, J.G. Li, ed. (Beijing, China: China Agriculture Press), p. 1–47.

  • Husselman, J.H., and Froneman, I.J. (2010). Cultivars. In The Cultivation of Litchi, E.A. de Villiers, and P.H. Joubert, eds. (Nelspruit, South Africa: ARC-Institute for Tropical and Subtropical Crops), p. 31–33.

  • Jahiel, M., Andreas, C., and Penot, E. (2014). Experience from fifteen years of Malagasy lychee export campaigns. Fruits 69(1), 1–18. https://doi.org/10.1051/fruits/2013098.

  • Jiraskova, D., Poulickova, A., Novak, O., Sedlakova, K., Hradecka, V., and Strnad, M. (2009). High-throughput screening technology for monitoring phytohormone production in microalgae. J. Phycology 45, 108-118. https://doi.org/10.1111/j.1529-8817.2008.00615.x.

  • Liu, B.F., Zhong, X.H., and Lu, Y.T. (2002). Analysis of plant hormones in tobacco flowers by micellar electrokinetic capillary chromatography coupled with online large volume sample stacking. J. Chromatography A 945, 257-265. https://doi.org/10.1016/S0021-9673(01)01503-5.

  • Liu, H.T., Li, Y.F., Luan, T.G., Lan, C.Y., and Shu, W.S. (2007). Simultaneous determination of phytohormones in plant extracts using SPME and HPLC. Chromatographia 66, 515-520. https://doi.org/10.1365/s10337-007-0350-3.

  • Ma, Z., Ge, L., Lee, A.S.Y., Yong, J.W.H., Tan, S.N., and Ong, E.S. (2008). Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry after solid-phase extraction. Anal. Chimica Acta 610, 274-281. https://doi.org/10.1016/j.aca.2008.01.045.

  • Machakova, I., Zazimalova, E., and George, E.F. (2008). Plant growth regulators: Introduction – auxins, their analogues and inhibitors. In Plant Propagation by Tissue Culture, E.F. George, M.A. Hall, and G.-J. De Klerk, eds. (Dordrecht, The Netherlands: Springer), p. 175–204.

  • Malhotra, S.K., Singh, S.K., and Nath, V. (2018). Physiology of flowering in litchi (Litchi chinensis): A review. Indian J. Agric. Sci. 88(9) 1319–1330.

  • Meier, U., Garf, H., Hack, H., Hess, M., Kennel, W., Klose, R., Mappes, D., Seipp, D., Stauss, R., Streif, D., and Van den Boom, T. (1994). Phänologische Entwicklungsstadien des Kernobstes (Malus domestica Borkh. and Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannisbeere (Ribes-Arten) und der Erdbeere (Fragaria × ananassa Duch.). Codierung und Beschreibung nach der Erweiterten BBCH-Skala, mit Abbildungen, Nachrichtenbl. Deut. Pflanzenschutzd. 46, 141–153.

  • Menzel, C. (2001). The physiology of growth and cropping in lychee. Acta Hortic. 558, 175–184. https://doi.org/10.17660/ActaHortic.2001.558.24.

  • Menzel, C.M. (1983). The control of floral initiation in lychee: a review. Sci. Hortic. 21, 201–215. https://doi.org/10.1016/0304-4238(83)90093-6.

  • Menzel, C.M., and Simpson, D.R. (1988). Effect of temperature on growth and flowering of litchi (Litchi chinensis Sonn.) cultivar. J. Hortic. Sci. 63, 349–360. https://doi.org/10.1080/14620316.1988.11515869.

  • Menzel, C.M., and Simpson, D.R. (1991). Effects of temperature and leaf water stress on panicle and flower development of litchi. J. Hortic. Sci. 66, 335–344. https://doi.org/10.1080/00221589.1991.11516161.

  • Müller, M., and Munné-Bosch, S. (2011). Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Meth. 7(1), 37. https://doi.org/10.1186/1746-4811-7-37.

  • Nitsch, J.P. (1953). Phytohormones et biologie fruitière. Fruits 8, 91–97.

  • Pan, X.Q., Ruth, W., and Wang, X.M. (2008). Simultaneous quantitation of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69, 1773-1781. https://doi.org/10.1016/j.phytochem.2008.02.008.

  • Proust, R. (2010). L’efficience économique des organisations de producteurs certifiées GlobalGap est-elle remise en cause par la nature du bailleur dans la filière litchi à Madagascar? Mémoire de fin d’études (Rennes: AgroCampus Ouest).

  • Santner, A., Calderon-Villalobos, L.I.A., and Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 5(5), 301. https://doi.org/10.1038/nchembio.165.

  • Schmelz, E.A., Engelberth, J., Tumlinson, J.H., Block, A., and Alborn, H.T. (2004). The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites, Plant J. 39, 790–808. https://doi.org/10.1111/j.1365-313X.2004.02168.x.

  • Seo, M., and Koshiba, T. (2002). Complex regulation of ABA biosynthesis in plants. Trends in Plant Sci. 7(1), 41–48. https://doi.org/10.1016/S1360-1385(01)02187-2.

  • Shen, J., Xiao, Q., Qiu, H., Chen, C., and Chen, H. (2016). Integrative effect of drought and low temperature on litchi, Litchi chinensis Sonn., floral initiation revealed by dynamic genome-wide transcriptome analysis. Sci. Rep. 6. https://doi.org/10.1038/srep32005.

  • Stern, R.A., Naor, A., Bar, N., Gazit, S., and Bravdo, B.A. (2003). Xylem-sap zeatin-riboside and dihydrozeatin levels in relation to plant and soil water status and flowering in ‘Mauritius’ lychee. Sci. Hortic. 98, 285–291. https://doi.org/10.1016/S0304-4238(02)00229-7.

  • Sutter, E.G., and Cohen, J.D. (1992). Measurement of indolebutyric acid in plant tissues by isotope dilution gas chromatography-mass spectrometry analysis. Plant Physiol. 99, 1719-1722. https://doi.org/10.1104/pp.99.4.1719.

  • Tindall, H.D. (1994). Sapindaceae fruits: botany and horticultural. Hortic. Rev. 16, 143–196.

  • Wei, Y.Z., Zhang, H.N., Li, W.C., Xie, J.H., Wang, Y.C., Liu, L.Q., and Shi, S.Y. (2013). Phenological growth stages of lychee (Litchi chinensis Sonn.) using the extended BBCH-scale. Sci. Hortic. 161, 273–277. https://doi.org/10.1016/j.scienta.2013.07.017.

  • Wu, S.X. (1998). Encyclopaedia of China Fruits: Litchi. p. 94–206.

  • Xi, Z., Zhang, Z., Sun, Y., Shi, Z., and Tian, W. (2009). Determination of indole-3-acetic acid and indole-3-butyric acid in mung bean sprouts using high performance liquid chromatography with immobilized Ru(bpy)32+–KMnO4 chemiluminescence detection. Talanta 79(2), 216–221. https://doi.org/10.1016/j.talanta.2009.03.031.

  • Yin, X.B., and Liu, D.Y. (2008). Polydopamine-based permanent coating capillary electrochromatography for auxin determination. J. Chromatography A 1212, 130-136. https://doi.org/10.1016/j.chroma.2008.10.001.

  • Zhou, J., Zhang, H., Yang, Y., Zhang, Z., Zhang, H., Hu, X., Chen, J., Wang, X.C., and Huang, R. (2008). Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. J. Experim. Botany 59(3), 645–652. https://doi.org/10.1093/jxb/erm353https://doi.org/10.1093/jxb/erm353.

Received: 24 November 2017 | Accepted: 3 April 2019 | Published: 30 May 2019 | Available online: 30 May 2019

previous article     Volume 74 issue 3     next article