Skip to main content
Log in

Monitoring defensive responses in macroalgae – limitations and perspectives

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

As part of an ongoing research program aiming at monitoring molecular changes in the tissues and metabolite trafficking in the hydrosphere of algae subjected to chemical stresses, we are discussing the various analytical techniques that have been employed to characterize, and sometimes to quantity these metabolites. High-field multinuclear and solid-state nuclear magnetic resonance (NMR) spectroscopies are powerful tools for metabolite characterization from extracts and in vivo, but quantification and kinetic aspects show some limitations. Modern MS (mass spectrometry) is extremely useful for fingerprinting samples against databases and when dealing with very low concentrations of metabolites, the limitations being set by the type of chromatographic separation and mode of detection coupled with the mass spectrometer. Regarding chemical communication, optimization in terms of resolution and efficiency of hydrosphere chemical analysis can theoretically be achieved in a system which integrates (i) a multiparametric incubation chamber, (ii) a gasphase or a liquid-phase separation system and (iii) mass spectrometer(s) equipped with one or two detectors responding to the analytical and quantitative needs. This text reviews some of the techniques that have been employed in various types of plant metabolic studies, which may serve as a basis towards an integrative analytical strategy directly applicable to the metabolomics of selected marine macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APCI:

Atmospheric Pressure Chemical Ionization

cITP:

Capillary Isotachophoresis (cITP)

DAD:

Diode Array Detector

ECD:

Electron Capture Detection

EI-MS:

Electron-Impact Mass Spectroscopy

ESI:

Electro-Spray Ionization

GC:

Gas Chromatography

1H NMR:

Proton Nuclear Magnetic Resonance

HPLC:

High-Performance Liquid Chromatography

HR-MAS:

High-Resolution Magic Angle Spin

HVOC:

Halogenated Volatile Organic Compound

HXO:

Hypohalous Acid

ICP-MS:

Inductively Coupled Plasma Mass Spectrometry

LC-MS:

Liquid Chromatography coupled with Mass Spectroscopy

LMWHC:

Low-MolecularWeight Halocarbon

MAA:

Mycosporin-like Amino Acids

MIP-AED:

Microwave-Induced Plasma Atomic Emission Detection

MS:

Mass Spectroscopy

MS/MS:

refers to two tandem-coupled mass spectrometers

NMR:

Nuclear Magnetic Resonance

31P NMR:

Phosphorus Nuclear Magnetic Resonance

PAR:

Photosynthetic Active Radiation

SBSE:

Stir Bar Sorptive Extraction

SIM:

Single Ion Monitoring

SPME:

Solid-Phase Micro Extraction

UV:

Ultra-Violet

UVR:

Ultra-Violet Radiation

VHC:

Volatile HaloCarbon

VHOC:

Volatile Halogenated Organic Compounds

X-:

Halide Ions

References

  • FB Abeles PW Morgan ME Saltveit SuffixJr (1992) Ethylene in Plant Biology Academic Press New York/Boston

    Google Scholar 

  • K Abrahamsson S Klick (1990) ArticleTitleDetermination of biogenic and anthropogenic volatile halocarbons in sea water by liquid-liquid extraction and capillary gas chromatography J. Chrom 513 39–45

    Google Scholar 

  • PD Biber (2002) The effects of environmental stressors on the dynamics of three functional groups of algae in Thalassia testudinum habitats of Biscayne Bay, Florida: a modelling approach. PhD. dissertation University of Miami Coral Gables FL 350

    Google Scholar 

  • Bligny R, Gout E, Aubert S, Van Der Rest B & Douce R (2001) Utilisation de la RMN du 13C et du 31P pour les analyses métáboliques in vivo et in vitro chez les cellules et les tissus végétaux. Ecole Thématique de Biologie Végétale du CNRS (pp. 1– 8).

  • K Bouarab F Adas E Gaquerel B Kloareg J-P Salaun P Potin (2004) ArticleTitleThe innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways Plant Physiol 135 1838–1848

    Google Scholar 

  • K Bouarab P Potin J Correa B Kloareg (1999) ArticleTitleSulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte Plant Cell 11 1635–1650

    Google Scholar 

  • A Broberg L Kenne M Pedersén (1998) ArticleTitleIn situ identification of major metabolites in the red alga Gracilariopsis lemaneiformis using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy Planta 206 300–307

    Google Scholar 

  • LA Cardoza VK Almeida A Carr CK Larive D Graham (2003) ArticleTitleSeparations coupled with NMR detection Trends Analyt. Chem 22 766–775

    Google Scholar 

  • GL Cetrulo ME Hay (2000) ArticleTitleActivated chemical defenses in tropical versus temperate seaweeds Mar. Ecol. Prog. Ser 207 243–253

    Google Scholar 

  • G Cronin E Hay M (1996) ArticleTitleInduction of seaweed chemical defences by amphipod grazing Ecology 77 2287–2301

    Google Scholar 

  • E Hoffmann ParticleDe J Charette V Stroobant (1999) Quantitative information E Hoffmann ParticleDe J Charette V Stroobant (Eds) Spectrometrie de masse ch. 5 Dunod Paris 162–173

    Google Scholar 

  • R Nys ParticleDe PO Steinberg P Willemsen SA Dworjanyn CL Gabalish RJ King (1995) ArticleTitleBroad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays Biofouling 8 259–271

    Google Scholar 

  • R Nys ParticleDe SA Dworjanyn PD Steinberg (1998) ArticleTitleA new methodology for determining surface concentrations of marine natural products on seaweeds Mar. Ecol. Prog. Ser 162 79–87

    Google Scholar 

  • S Deal Michael ME Hay D Wilson W Fenical (2003) ArticleTitleGalactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus Oecologia 136 107–114

    Google Scholar 

  • M Defernez IJ Colquhoun (2003) ArticleTitleFactors affecting the robustness of metabolite fingerprinting using 1H NMR spectra Phytochemistry 62 1009–1017

    Google Scholar 

  • WC Dunlap BE Chalker JK Oliver (1986) ArticleTitleBathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia: III UV-B absorbing compounds J. Exp. Mar. Biol. Ecol 104 239–248

    Google Scholar 

  • WC Dunlap JM Shick (1998) ArticleTitleUltraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: A biochemical and environmental perspective J. Phycol 34 418–430

    Google Scholar 

  • SA Dworjanyn (2001) Chemically mediated antifouling and the cost of producing secondary metabolites in a marine alga. PhD Thesis University of New South Wales Sydney

    Google Scholar 

  • SA Dworjanyn R Nys ParticleDe PD Steinberg (1999) ArticleTitleLocalisation and surface quantification of secondary metabolites in the red alga Delisea pulchra Mar. Biol 133 727–736

    Google Scholar 

  • H Frischenschlager C Mittermayr M Peck E Rosenberg M Grasserbauer (1997) ArticleTitleThe potential of gas chromatography with microwave-induced plasma atomic emission detection (GCMIP-AED) as a complementary analytical technique in environmental screening analysis of aqueous samples Anal. Bioanal. Chem 359 213–221

    Google Scholar 

  • WH Gerwick (1999) Eicosanoids in nonmammals U Sankawa DHR Barton K Nakanishi Meth-Cohn (Eds) Comprehensive Natural Products Chemistry, Vol. 1 Elsevier New York 207–254

    Google Scholar 

  • M Hay W Fenical (1988) ArticleTitleMarine plant-herbivore interactions: the ecology of chemical defense Ann. Rev. Ecol. Syst 19 111–145

    Google Scholar 

  • ME Hay (1996) ArticleTitleMarine chemical ecology: what’s known and what’s next? J. Exp. Mar. Biol. Ecol 200 103–134

    Google Scholar 

  • ME Hay J Piel W Boland I Schnitzler (1998) ArticleTitleSeaweed sex pheromones and their degradation products frequently suppress amphipod feeding but rarely suppress sea urchin feeding Chemoecology 8 91–98

    Google Scholar 

  • M Jemal Z Ouyang W Zhao M Zhu WW Wu (2003) ArticleTitleA strategy for metabolite identification using triple-quadrupole mass spectrometry with enhanced resolution and accurate mass capability Rapid Commun. Mass Spectrom 17 2732–2740

    Google Scholar 

  • V Jung G Pohnert (2001) ArticleTitleRapid wound-activated transformation of the green algal defensive metabolite caulerpenyne Tetrahedron 57 7169–7172

    Google Scholar 

  • J Kesselmeier M Staudt (1999) ArticleTitleBiogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem 33 23–88

    Google Scholar 

  • TW Kimmerer TT Kozlowski (1982) ArticleTitleEthylene, ethane, acetaldehyde and ethanol produced by plants under stress Plant Physiol 69 840–847

    Google Scholar 

  • Kubanek et al. (2003) ArticleTitleSeaweed resistance to microbial attack: A targeted chemical defense against marine fungi Proc. Nat. Acad. Sci. USA. 100 6916–6921

    Google Scholar 

  • FC Küpper B Kloareg J Guern P Potin (2001) ArticleTitleOligoguluronates elicit an oxidative burst in brown algal kelp, Laminaria digitata Plant Physiol 125 278–291

    Google Scholar 

  • R Maximilien R Nys ParticleDe C Holmstrom L Gram M Givskov K Crass S Kjelleberg PD Steinberg (1998) ArticleTitleChemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra Aquat. Microb. Ecol 15 233–246

    Google Scholar 

  • MSP Mtolera J Collen M Pedersen A Ekdahl K Abrahamson AK Semesi (1996) ArticleTitleStress-induced production of volatile halogenated organic compounds in Eucheuma denticulatum (Rhodophyta) caused by elevated pH and high light intensities Eur. J. Phycol 31 89–95

    Google Scholar 

  • H Pavia G Toth (2000) ArticleTitleInducible chemical resistance in the brown seaweed Ascophyllum nodosum Ecology 81 3212–3225

    Google Scholar 

  • G Pohnert W Boland (2002) ArticleTitleThe oxylipin chemistry of attraction and defense in brown algae and diatoms Nat. Prod. Rep 19 108–122

    Google Scholar 

  • P Potin K Bouarab FC Küpper B Kloareg (1999) ArticleTitleOligosaccharide recognition signals and defence reactions in marine plant-microbe interactions Curr. Opin. Microbiol 2 276–283

    Google Scholar 

  • P Potin K Bouarab JP Salaün G Pohnert B Kloareg (2002) ArticleTitleBiotic interactions of marine algae Curr. Opin. Plant Bioi 5 1–10

    Google Scholar 

  • A Pugin JM Frachisse E Tavernier R Bligny E Gout R Douce J Guerne (1997) ArticleTitleEarly events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxydase and activation of glycolysis and the pentose phosphate pathway Plant Cell 9 2077–2091

    Google Scholar 

  • MA Ragan KW Glombitza (1986) ArticleTitlePhlorotannins, brown algal polyphenols Prog. Phycol. Res 4 129–241

    Google Scholar 

  • GR Ratcliffe Y Sachard-Hili (2001) ArticleTitleProbing plant metabolism with NMR Ann. Rev. Plant Physiol. Plant Mol. Biol 52 499–526

    Google Scholar 

  • GR Ratcliffe (1994) In vivo NMR studies of higher plants and algae JA Callow (Eds) Advances in Botanical Research, Vol. 20 Academic Press London 43–123

    Google Scholar 

  • C Roby JB Martin R Bligny R Douce (1987) ArticleTitleBiochemical changes during sucrose deprivation in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies J. Biol. Chem 262 5000–5007

    Google Scholar 

  • D. Scheel (1998) ArticleTitleResistance response physiology and signal tranduction Curr. Opin. Plant Biol 1 305–310

    Google Scholar 

  • I Schnitzler G Pohnert M Hay W Boland (2001) ArticleTitleChemical defence of brown algae (Dictyopteris spp.) against the herbivorous amphipod Ampithoe longimana Oecologia 126 515–521

    Google Scholar 

  • Heumann Schwartz (2002) ArticleTitleTwo-dimensional on-line detection of brominated and iodinated volatile organic compounds by ECD and ICP-MS after GC separation Anal. Bioanal. Chem 374 212–219

    Google Scholar 

  • IE Sommsich K Halbrock (1998) ArticleTitlePathogen defense in plants: a paradigm of biological complexity Trends Plant Sci 3 86–90

    Google Scholar 

  • GB Toth H Pavia (2000) ArticleTitleWater-borne cues induce chemical defence in a marine alga Ascophyllum nodosum Proc. Natl. Acad. Sci. USA. 97 14418–14420

    Google Scholar 

  • T Urhahn K Ballschmiter (2000) ArticleTitleAnalysis of halogenated C1/C2-trace compounds in marine atmosphere Fresenius J. Anal. Chem 366 365–367

    Google Scholar 

  • F Velde ParticleVan de SH Utsen AI. Usov HS Rollema AS Cerezo (2002) ArticleTitle1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry Trends Food Sci. Tech 13 73–92

    Google Scholar 

  • DA Elswijk ParticleVan H Irth (2003) ArticleTitleAnalytical tools for the detection and characterization of biologically active compounds from nature Phytochem. Rev 1 427–439

    Google Scholar 

  • F Weinberger M Friedlander H-G Hoppe (1999) ArticleTitleOligoagars elicit a physiological response in Gracilaria conferta (Rhodophyta) J. Phycols 35 747–755

    Google Scholar 

  • F Weinberger C Richard B Kloareg Y Kashman HG Hoppe M Friedlander (2001) ArticleTitleStructure-activity relationships of oligoagar elicitors towards Gracillaria conferta (Rhodophyta) J. Phycol 37 418–426

    Google Scholar 

  • R Wever MGM Tromp BE Krenn A Marjani M Tol ParticleVan (1991) ArticleTitleBrominating activity of the seaweed Ascophyllum nodosum: impact on the biosphere Environ. Sci. Technol 25 446–449

    Google Scholar 

  • K Whitehead JI Hedges (2002) ArticleTitleAnalysis of myc osporine-like amino acids in plankton by liquid chromatography electrospray ionization mass spectrometry Mar. Chem 80 27–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. La. Barre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barre, S.L.L., Weinberger, F., Kervarec, N. et al. Monitoring defensive responses in macroalgae – limitations and perspectives. Phytochem Rev 3, 371–379 (2004). https://doi.org/10.1007/s11101-005-1459-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-005-1459-3

Keywords

Navigation