Skip to main content
Log in

Impact of arsenic-polluted groundwater on soil and produce quality: a food chain study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The experiment was conducted to assess the impact of arsenic (As)-contaminated groundwater irrigation on soil health and crop quality. Geo-referenced groundwater, soil, and crop produce samples were collected from the middle Gangetic plains of Maner block of Patna and were analyzed for As content. The result showed that long-term application of As-contaminated groundwater (0.017 to 0.677 mg L−1) buildup significant amount of As in the soil (0.41 to 8.66 mg kg−1). A significant correlation (r2 = 0.922) was also observed between As content in groundwater and the soil. The content of As in groundwater also affected crop quality and accumulated metal content in different crop parts. Total As content in crop samples ranged from 0.010 to 0.963 μg g−1 of dry weight. The average As content in crop followed order: oilseeds > cereals > vegetables > pulses. Therefore, produce quality should be monitored frequently for As uptake as there is a great chance of As accumulation in food crops. Hence, these approaches are useful for the formulation of policy guidelines for the management of As-containing groundwater and routine risk assessment of As-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Map 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science & Technology, 36, 962–968.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2009a). Transfer of arsenic from groundwater and paddy soil to rice plant (Oryza sativa L): A micro level study in West Bengal, India. World Journal of Agricultural Sciences, 5, 425–431.

    CAS  Google Scholar 

  • Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2009b). Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy and Water Environment, 8(1), 63–70.

    Article  Google Scholar 

  • Bhattacharya, P., Samal, A. C., Majumder, J., & Santra, S. C. (2010). Arsenic contamination in rice, wheat, pulses and vegetables: A study in an arsenic affected area of West Bengal, India. Water, Air, and Soil Pollution, 213, 3–13.

    Article  CAS  Google Scholar 

  • Biswas, A., Deb, D., Ghose, A., Santra, S. C., & Mazumder, D. N. G. (2014). Seasonal perspective of dietary arsenic consumption and urine arsenic in an endemic population. Environmental Monitoring and Assessment, 186, 4543–4551.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Mukherjee, S. C., Pati, S., Sengupta, M. K., Rahman, M. M., Chowdhury, U. K., Lodh, D., Chanda, C. R., Chakraborti, A. K., & Basu, G. K. (2003). Arsenic groundwater contamination in middle ganga plain, Bihar, India: A future danger? Environmental Health Perspectives, 111(9), 1194–1201.

    Article  CAS  Google Scholar 

  • Dahal, B. M., Fuerhacker, M., Mentler, A., Karki, K. B., Shrestha, R. R., & Blum, W. E. H. (2008). Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Environmental Pollution, 155, 157–163.

    Article  CAS  Google Scholar 

  • Dotaniya, M. L., Meena, V. D., & Das, H. (2014). Chromium toxicity on seed germination, root elongation and coleoptile growth of pigeon pea (Cajanus cajan). Legume Research, 37(2), 225–227.

    Google Scholar 

  • Dotaniya, M. L., Rajendiran, S., Meena, V. D., Saha, J. K., Coumar, M. V., Kundu, S., & Patra, A. K. (2016). Influence of chromium contamination on carbon mineralization and enzymatic activities in vertisol. Agricultural Research, 6(1), 91–96.

    Article  Google Scholar 

  • Dotaniya, M. L., Meena, V. D., Rajendiran, S., Coumar, M. V., Saha, J. K., Kundu, S., & Patra, A. K. (2017). Geo-accumulation indices of heavy metals in soil and groundwater of Kanpur, India under long term irrigation of tannery effluent. Bulletin of Environmental Contamination and Toxicology, 98, 706–711.

    Article  CAS  Google Scholar 

  • Dotaniya, M. L., Rajendiran, S., Meena, V. D., Coumar, M. V., Saha, J. K., Kundu, S., & Patra, A. K. (2018). Impact of long-term application of sewage on soil and crop quality in vertisols of Central India. Bulletin of Environmental Contamination and Toxicology, 101, 779–786.

    Article  CAS  Google Scholar 

  • FAO (1985) Water quality guidelines for maximum crop production. FAO/UN. www.fao.org/docrep/T0551E. Accessed 13 Jun 2017.

  • Gomez, K. A., & Gomez, A. (1983). Statistical procedures for agricultural research. New York: Wiley.

    Google Scholar 

  • Hossain, M. A., Mukherjee, A., Sengupta, M. K., Ahmad, S., Das, B., Nayak, B., Pal, A., Rahman, M. M., & Chakraborti, D. (2006). Million-dollar arsenic removal plants in West Bengal, India: Useful or not? Water Quality Research Journal of Canada, 41, 216–225.

    Article  CAS  Google Scholar 

  • Huang, R. Q., Gao, S. F., Wang, W. L., Staunton, S., & Wang, G. (2006). Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, Southeast China. Science of the Total Environment, 368, 531–541.

    Article  CAS  Google Scholar 

  • Kar, S., Das, S., Jean, J. S., Chakraborty, S., & Liu, C. C. (2013). Arsenic in the water-soil-plant system and the potential health risks in the coastal part of Chianan plain, southwestern Taiwan. Journal of Asian Earth Sciences, 77, 295–302.

    Article  Google Scholar 

  • Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis. Part 1 and 2. Madison: Am Soc Agron, Soil Sci Soc Am Inc.

    Google Scholar 

  • Phan, K., Sthiannopkao, S., Kim, K. W., Wong, M. H., Sao, V., Hashim, J. H., Mohamed-Yasin, M. S., & Aljunid, S. M. (2010). Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Research, 44, 5777–5788.

    Article  CAS  Google Scholar 

  • Postma, D., Larsen, F., Hue, N. T. M., Duc, M. T., Viet, P. H., Nhan, P. Q., & Jessen, S. (2007). Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling. Geochimica et Cosmochimica Acta, 71, 5054–5071.

    Article  CAS  Google Scholar 

  • Rajendiran, S., Dotaniya, M. L., Coumar, M. V., Panwar, N. R., & Saha, J. K. (2015). Heavy metal polluted soils in India: Status and countermeasures. JNKVV Research Journal, 49(3), 320–337.

    Google Scholar 

  • Saha, D., Sahu, S., & Chandra, P. (2011). Arsenic-safe alternate aquifers and their hydraulic characteristics in contaminated areas of middle ganga plain, eastern India. Environmental Monitoring and Assessment, 175, 331–348.

    Article  CAS  Google Scholar 

  • Saha, J. K., Rajendiran, S., Coumar, M. V., Dotaniya, M. L., Kundu, S., & Patra, A. K. (2017). Agriculture, soil and environment. In Soil pollution - an emerging threat to agriculture. Singapore: Springer.

    Chapter  Google Scholar 

  • Sandhi, A., Landberg, T., & Greger M. (2017). Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans). Environmental Pollution, 237, 1098–1105.

  • Singh, S. K. (2015). Groundwater arsenic contamination in the middle-Gangetic plain, Bihar (India): The danger arrived. International Research Journal of Environmental Sciences, 4, 70–76.

  • Singh, S. K., & Ghosh, A. K. (2011). Entry of arsenic into food material–a case study. World Applied Sciences Journal, 13, 385–390.

    CAS  Google Scholar 

  • Singh, S. K., & Ghosh, A. K. (2012). Health risk assessment due to groundwater arsenic contamination: Children are at high risk. Human and Ecological Risk Assessment, 18, 751–766.

    Article  Google Scholar 

  • Singh, S. K., & Vedwan, N. (2015). Mapping composite vulnerability to groundwater arsenic contamination: An analytical framework and a case study in India. Natural Hazards, 75, 1883–1908.

    Article  Google Scholar 

  • Singh, S. K., Ghosh, A. K., Kumar, A., Kislay, K., Kumar, C., Tiwari, R., Parwez, R., Kumar, N., & Imam, M. (2014). Groundwater arsenic contamination and associated health risks in Bihar, India. International Journal of Environmental Research, 8, 49–60.

    CAS  Google Scholar 

  • USEPA. (2001). National primary drinking water regulations: Arsenic and clarifications to compliance and new source contaminants monitoring. Federal Register, 40(9), 141–142.

    Google Scholar 

  • WHO (2007) Joint FAO/WHO expert standards program codex alimentation commission, Geneva. http://www.who.int. Accessed April 13, 2020.

Download references

Acknowledgments

Authors are highly thankful to Dr. G.L. Meena, Scientist, ICAR-Indian Institute of Soil & Water Conservation, Research Centre, Kota for the preparation of the Geo-referenced map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Dotaniya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, M.K., Singh, A.K., Prasad, L.K. et al. Impact of arsenic-polluted groundwater on soil and produce quality: a food chain study. Environ Monit Assess 192, 785 (2020). https://doi.org/10.1007/s10661-020-08770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08770-9

Keywords

Navigation