Skip to main content

Advertisement

Log in

Pteropod sedimentation patterns in different water depths observed with moored sediment traps over a 4-year period at the LTER station HAUSGARTEN in eastern Fram Strait

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Pteropods are important organisms in high-latitude ecosystems, and they are expected to severely suffer from climate change in the near future. In this study, sedimentation patterns of two pteropod species, the polar Limacina helicina and the subarctic boreal L. retroversa, are presented. Time series data received by moored sediment traps at the Long-Term Ecological Research (LTER) Observatory HAUSGARTEN in eastern Fram Strait were analyzed during the years 2008 to 2012. Results were derived from four different deployment depths (~200, 1,250, 2,400, and 2,550 m) at two different sites (79°N 04°20′E; 79°43′N 04°30′E). A species-specific sedimentation pattern was present at all depths and at both sites showing maximal flux rates during September/October for L. helicina and in November/December for L. retroversa. The polar L. helicina was outnumbered by L. retroversa (55–99 %) at both positions and at all depths supporting the recently observed trend toward the dominance of the subarctic boreal species. The largest decrease in pteropod abundance occurred within the mesopelagic zone (~200–1,250 m), indicating loss via microbial degradation and grazing. Pteropod carbonate (aragonite) amounted up to ~75 % of the total carbonate flux at 200 m and 2–13 % of the aragonite found in the shallow traps arrived at the deep sediment traps (~160 m above the seafloor), revealing the significance of pteropods in carbonate export at Fram Strait. Our results emphasize the relevance and the need for continuation of long-term studies to detect and trace changes in pteropod abundances and community composition and thus in the vertical transport of aragonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Accornero A, Manno C, Esposito F, Gambi MC (2003) The vertical flux of particulate matter in the polynya of Terra Nova Bay. Part II. Biological components. Antarct Sci 15(2):175–188

    Article  Google Scholar 

  • AMAP (2013) AMAP assessment 2013: Arctic ocean acidification. Arctic monitoring and assessment programme, Oslo, Norway

  • Bathmann U, Noji TT, von Bodungen B (1991) Sedimentation of pteropods in the Norwegian Sea in autumn. Deep Sea Res 38:1341–1360

    Article  CAS  Google Scholar 

  • Bauerfeind E, Nöthig E-M, Beszczynska A, Fahl K, Kaleschke L, Kreker K, Klages M, Soltwedel T, Lorenzen C, Wegner J (2009) Particle sedimentation patterns in the eastern Fram Strait during 2000–2005: results from the Arctic long-term observatory HAUSGARTEN. Deep Sea Res I 56:1471–1487

    Article  CAS  Google Scholar 

  • Bauerfeind E, Nöthig E-M, Pauls B, Kraft A, Beszczynska-Möller A (2014) Variability in pteropod sedimentation and corresponding aragonite flux at the Arctic deep-sea long-term observatory HAUSGARTEN in the eastern Fram Strait from 2000 to 2009. J Mar Syst 132:95–105

    Article  Google Scholar 

  • Bé AWH, Gilmer RW (1977) A zoogeographic and taxonomic review of euthecosomatous pteropoda. In: Ramsay ATS (ed) Oceanic micropaleontology. Academic Press, London, pp 733–808

    Google Scholar 

  • Bednarsek N, Tarling GA, Bakker DCE, Fielding S, Jones EM, Venables HJ, Ward P, Kuzirian A, Leze B, Feely RA, Murphy EJ (2012) Extensive dissolution of live pteropods in the Southern Ocean. Nat Geosci 5(12):881–885

    Article  CAS  Google Scholar 

  • Berner RA, Honjo S (1981) Pelagic sedimentation of aragonite—its geochemical significance. Science 211:940–942

    Article  CAS  PubMed  Google Scholar 

  • Beszczynska-Möller A, Fahrbach E, Schauer U, Hansen E (2012) Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean 1997–2010. ICES J Mar Sci 69:852–863

    Article  Google Scholar 

  • Betzer PR, Byrne RH, Acker JG, Lewis CS, Jolley RR, Feely RA (1984) The oceanic carbonate system—a reassessment of biogenic controls. Science 226:1074–1077

    Article  CAS  PubMed  Google Scholar 

  • Byrne RH, Acker JG, Betzer PR, Feely RA, Cates MH (1984) Water column dissolution of aragonite in the Pacific-Ocean. Nature 312:321–326

    Article  CAS  Google Scholar 

  • Cherkasheva A, Bracher A, Melsheimer C, Köberle C, Gerdes R, Nöthig E-M, Bauerfeind E, Boetius A (2013) Influence of the physical environment on polar phytoplankton blooms: a case study in the Fram Strait. J Mar Syst. doi:10.1016/j.jmarsys.2013.11.008

    Google Scholar 

  • Collier R, Dymond J, Honjo S, Manganini S, Francois R, Dunbar R (2000) The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996–1998. Deep Sea Res Part II 47:3491–3520

    Article  CAS  Google Scholar 

  • Comeau S, Jeffree R, Teyssié J-L, Gattuso J-P (2010) Response of the Arctic Pteropod Limacina helicina to projected future environmental conditions. PLoS One. doi:10.1371/journal.pone.0011362

    PubMed Central  PubMed  Google Scholar 

  • Comeau S, Gattuso JP, Nisumaa AM, Orr J (2012) Impact of aragonite saturation state changes on migratory pteropods. Proc R Soc B 279:732–738

    Article  PubMed Central  PubMed  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Article  PubMed  Google Scholar 

  • Falk-Petersen S, Sargent JR, Kwasniewski S, Gulliksen B, Millar RM (2001) Lipids and fatty acids in Clione limacina and Limacina helicina in Svalbard waters and the Arctic Ocean: trophic implications. Polar Biol 24:163–170

    Article  Google Scholar 

  • Falk-Petersen S, Leu E, Berge J, Kwasniewski S, Nygard H, Rostad A, Keskinen E, Thormar J, von Quillfeldt C, Wold A, Gulliksen B (2008) Vertical migration in high Arctic waters during autumn 2004. Deep Sea Res II 55:2275–2284

    Article  Google Scholar 

  • Gangstø R, Gehlen M, Schneider B, Bopp L, Aumont O, Joos F (2008) Modeling the marine aragonite cycle: changes under rising carbon dioxide and its role in shallow water CaCO3 dissolution. Biogeosciences 5:1057–1072

    Article  Google Scholar 

  • Gannefors C, Boer M, Kattner G, Graeve M, Eiane K, Gulliksen B, Hop H, Falk-Petersen S (2005) The Arctic sea butterfly Limacina helicina: lipids and life strategy. Mar Biol 147:169–177

    Article  Google Scholar 

  • Gilmer RW, Harbison GR (1991) Diet of Limacina helicina (Gastropoda: Thecosomata) in Arctic waters in midsummer. Mar Ecol Prog Ser 77:125–134

    Article  Google Scholar 

  • Harbison GR, Gilmer RW (1986) Effects of animal behavior on sediment trap collections—implications for the calculation of aragonite fluxes. Deep Sea Res 33:1017–1024

    Article  CAS  Google Scholar 

  • Howard WR, Roberts D, Moy AD, Lindsay MM, Hopcroft RR, Trull TW, Bray SG (2011) Distribution, abundance and seasonal flux of pteropods in the Sub-Antarctic zone. Deep Sea Res II 58(21–22):2293–2300

    Article  Google Scholar 

  • Hsiao SCT (1939a) The reproductive system and spermatogenesis of Limacina (Spiratella) retroversa (Flem.). Biol Bull 76:7–25

    Article  Google Scholar 

  • Hsiao SCT (1939b) The reproduction of Limacina retroversa (Flem.). Biol Bull 76:280–303

    Article  Google Scholar 

  • Hunt BPV, Pakhomov EA, Hosie GW, Siegel V, Ward P, Bernard K (2008) Pteropods in southern ocean ecosystems. Prog Oceanogr 78:193–221

    Article  Google Scholar 

  • Jansen H, Zeebe RE, Wolf-Gladrow DA (2002) Modeling the dissolution of settling CaCO3 in the ocean. Glob Biogeochem Cycles 16:1–16

    Article  Google Scholar 

  • Jutterstrøm S, Anderson LG (2005) The saturation of calcite and aragonite in the Arctic Ocean. Mar Chem 94:101–110

    Article  Google Scholar 

  • Karl DM, Knauer GA (1989) Swimmers: a recapitulation of the problem and a potential solution. Oceanography 2:32–35

    Article  Google Scholar 

  • Karnovsky NJ, Hobson KA, Iverson S, Hunt GL (2008) Seasonal changes in diets of seabirds in the North Water Polynya: a multiple-indicator approach. Mar Ecol Prog Ser 357:291–299

    Article  Google Scholar 

  • Kraft A, Nöthig E-M, Bauerfeind E, Wildish DJ, Pohle GW, Bathmann UV, Beszczynska-Möller A, Klages M (2013) First evidence of reproductive success in a southern invader indicates possible community shifts among Arctic zooplankton. Mar Ecol Prog Ser 493:291–296

    Article  Google Scholar 

  • Kremling K, Lentz U, Zeitzschel B, Schulz-Bull DE, Duinker JC (1996) New type of time-series sediment trap for the reliable collection of inorganic and organic trace chemical substances. Rev Sci Instrum 67:4360–4363

    Article  CAS  Google Scholar 

  • Lalli CM, Gilmer RW (1989) The Thecosomes - Shelled Pteropods. In: Lalli CM, Gilmer RW (eds) Pelagic snails: the biology of holoplanktonic gastropod mollusks. Stanford University Press, California, pp 58–166

    Google Scholar 

  • Lalli CM, Wells FE (1978) Reproduction in genus Limacina (Opisthobranchia: Thecosomata). J Zool 186:95–108

    Article  Google Scholar 

  • Lee C, Wakeham SG, Hedges JI (1989) The measurement of oceanic particle flux—are ʽswimmersʼ a problem. Oceanography 1:34–36

    Article  Google Scholar 

  • Lischka S, Riebesell U (2012) Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Glob Change Biol 18:3517–3528

    Article  Google Scholar 

  • Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2011) Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences 8:919–932

    Article  CAS  Google Scholar 

  • Manno C, Sandrini S, Tositti L, Accomero A (2007) First stages of degradation of Limacina helicina shells observed above the aragonite chemical lysocline in Terra Nova Bay (Antarctica). J Mar Syst 68(1–2):91–102

    Article  Google Scholar 

  • Manno C, Morata N, Primicerio R (2012) Limacina retroversa’s response to combined effects of ocean acidification and sea water freshening. Estuar Coast Shelf Sci 113:163–171

    Article  CAS  Google Scholar 

  • Meinecke G, Wefer G (1990) Seasonal pteropod sedimentation in the Norwegian Sea. Palaeogeogr Palaeoclimatol Palaeoecol 79:129–147

    Article  Google Scholar 

  • Morison J, Aagaard K, Steele M (2000) Recent environmental changes in the Arctic: a review. Arctic 53:359–371

    Article  Google Scholar 

  • Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:780–799

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing,Vienna, URL http://www.R-project.org

  • Redfield AC (1939) The history of a population of Limacina retroversa during its drift across the Gulf of Maine. Biol Bull 76:26–47

    Article  Google Scholar 

  • Roberts D, Howard WR, Moy AD, Roberts JL, Trull TW, Bray SG, Hopcroft RR (2011) Interannual pteropod variability in sediment traps deployed above and below the aragonite saturation horizon in the Sub-Antarctic Southern Ocean. Polar Biol 34:1739–1750

    Article  Google Scholar 

  • Roberts T, Howard WR, Moy AD, Roberts JL, Bray SG, Trull TW, Hopcroft RR (2014) Diverse trends in shell weight of three Southern Ocean pteropod taxa collected with Polar Frontal Zone sediment traps from 1997to 2007. Polar Biol. doi:10.1007/s00300-014-1534-6

    Google Scholar 

  • Sampei M, Sasaki H, Hattori H, Forest A, Fortier L (2009) Significant contribution of passively sinking copepods to the downward export flux in Arctic waters. Limnol Oceanogr 54:1894–1900

    Article  CAS  Google Scholar 

  • Schauer U, Beszcynska-Möller A, Walczowski W, Fahrbach E, Piechura J, Hansen E (2008) Variation of measured heat flow through the Fram Strait between 1997 and 2006. In: Dickson RR (ed) Arctic-subarctic ocean fluxes: defining the role of the northern seas in climate. Springer, Dordrecht, pp 65–86

    Chapter  Google Scholar 

  • Steinacher M, Joos F, Frölicher TL, Plattner G-K, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533

    Article  CAS  Google Scholar 

  • van der Spoel S, Heyman RP (1983) A Comparative Atlas of Zooplankton: Biological patterns in the Oceans. Springer, Berlin, p 186

    Book  Google Scholar 

  • von Bodungen B, Wunsch M, Fürderer H (1991) Sampling and analysis of suspended and sinking particles in the Northern North Atlantic. In: Hurd DC and Spencer DW (eds) Marine Particles: Analysis and Characterization. Geophysical Monograph, vol 63. American Geophysical Union, Washington DC, pp 47–56

  • Walczowski W, Piechura J, Goszczko I, Wieczorek P (2012) Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES J Mar Sci 69:864–869

    Article  Google Scholar 

  • Wassmann P (2011) Arctic marine ecosystems in an era of rapid climate change. Prog Oceanogr 41:1–9

    Article  Google Scholar 

  • Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and seaice melt. Science 326:1098–1100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Arctic-lab team including C. Lorenzen, S. Murawski, N. Knüppel and numerous student workers for the tedious work of swimmer picking and the work in the laboratory. We greatly acknowledge the crew of RV Polarstern during the work at sea. We also thank J. Taylor and E. Bonk for correcting the language of the manuscript. We also thank two anonymous reviewers and D. Piepenburg for comments and suggestions on the previous version of the manuscript. This work was financed by institutional funds of the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven. Results presented here were obtained in the context of K. Busch´s bachelor thesis that was submitted to the Julius-Maximilians-Universität Würzburg under associated supervision of Dr. D. Mahsberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Bauerfeind.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Supplementary material 2 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busch, K., Bauerfeind, E. & Nöthig, EM. Pteropod sedimentation patterns in different water depths observed with moored sediment traps over a 4-year period at the LTER station HAUSGARTEN in eastern Fram Strait. Polar Biol 38, 845–859 (2015). https://doi.org/10.1007/s00300-015-1644-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1644-9

Keywords

Navigation