Skip to main content

Cold-Water Corals in an Era of Rapid Global Change: Are These the Deep Ocean’s Most Vulnerable Ecosystems?

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

Cold-water corals create highly complex biogenic habitats that promote and sustain high biological diversity in the deep sea and play critical roles in deep-water ecosystem functioning across the globe. However, these often out of sight and out of mind ecosystems are increasingly under pressure both from human activities in the deep sea such as fishing and mineral extraction, and from a rapidly changing climate. This chapter gives an overview of the importance of cold-water coral habitats, the threats they face and how recent advances in understanding of both past and present cold-water coral ecosystems helps us to understand how well they may be able to adapt to current and future climate change. We address key knowledge gaps and the ongoing efforts at national and international scales to promote and protect these important yet vulnerable ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67(6):1129–1143

    Article  CAS  Google Scholar 

  • Albright R, Mason B (2013) Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS ONE 8(2):e56468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142(3):419–426

    CAS  Google Scholar 

  • Althaus F, Williams A, Schlacher TA, Kloser RJ, Green MA, Barker BA, Bax NJ, Brodie P, Hoenlinger-Schlacher MA (2009) Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar Ecol Prog Ser 397:279–294

    Article  Google Scholar 

  • Anagnostou E, Sherrell RM, Gagnon A, LaVigne M, Field MP, McDonough WF (2011) Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochim Cosmochim Acta 75(9):2529–2543

    Article  CAS  Google Scholar 

  • Anagnostou E, Huang KF, You CF, Sikes EL, Sherrell RM (2012) Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: evidence of physiological pH adjustment. Earth Planet Sci Lett 349:251–260

    Article  Google Scholar 

  • Armstrong CW, van den Hove S (2008) The formation of policy for protection of cold-water coral off the coast of Norway. Mar Policy 32:66–73

    Article  Google Scholar 

  • Blamart D, Rollion-Bard C, Meibom A, Cuif JP, Juillet-Leclerc A, Dauphin Y (2007) Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: implications for biomineralization and paleo-pH. Geochem Geophys Geosyst 8(12). doi:10.1029/2007gc001686

    Google Scholar 

  • Buhl-Mortensen L, Mortensen PB (2004) Symbiosis in deep-water corals. Symbiosis 37:33–61

    Google Scholar 

  • Cairns SD (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull Mar Sci 81:311–322

    Google Scholar 

  • Cairns SD (2011) Global diversity of the Stylasteridae (Cnidaria: Hydrozoa: Athecatae). PLoS ONE 6(7):e21670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  PubMed  Google Scholar 

  • Carreiro-Silva M, Cerqueira T, Godinho A, Caetano M, Santos RS, Bettencourt R (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33(2):465–476

    Article  Google Scholar 

  • Case DH, Robinson LF, Auro ME, Gagnon AC (2010) Environmental and biological controls on Mg and Li in deep-sea scleractinian corals. Earth Planet Sci Lett 300(3–4):215–225

    Article  CAS  Google Scholar 

  • Cathalot C, Van Oevelen D, Cox TJS, Kutti T, Lavaleye M, Duineveld G, Meysman FJR (2015) Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front Mar Sci 2:37. doi:10.3389/fmars.2015.00037

    Article  Google Scholar 

  • CBD (2008) Synthesis and review of the best available scientific studies on priority areas for biodiversity conservation in marine areas beyond the limits of national jurisdiction. Montreal, Technical Series No. 37, 63 pages

    Google Scholar 

  • CBD (2014a) An updated synthesis on the impacts of ocean acidification on marine biodiversity. Technical Series No. 75. Montreal

    Google Scholar 

  • CBD (2014b) Global biodiversity outlook 4. Convention on Biological Diversity, Montréal, p 155

    Google Scholar 

  • CBD (2015) https://www.cbd.int

  • Cheng H, Adkins J, Edwards RL, Boyle EA (2000) U-Th dating of deep-sea corals. Geochim Cosmochim Acta 64(14):2401–2416

    Article  CAS  Google Scholar 

  • Cheng W, Chiang JCH, Zhang D (2013) Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 models: RCP and historical simulations. J Clim 26(18):7187–7197

    Article  Google Scholar 

  • Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. In: Dove PM, De Yoreo J, Weiner S (eds) Biomineralization, vol 54, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, pp 151–187

    Google Scholar 

  • Cohen AL, McCorkle DC, de Putron S, Gaetani GA, Rose KA (2009) Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification. Geochem Geophys Geosyst 10:Q07005, doi:Q0700510.1029/2009gc002411

    Article  Google Scholar 

  • Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr 58(1):388–398

    Article  CAS  Google Scholar 

  • Corell H, Moksnes PO, Engqvist A, Döös K, Jonsson PR (2012) Depth distribution of larvae critically affects their dispersal and the efficiency of marine protected areas. Mar Ecol Prog Ser 467:29–46

    Article  Google Scholar 

  • Coscia I, Robins PE, Porter JS, Malham SK, Ironside JE (2012) Modelled larval dispersal and measured gene flow: seascape genetics of the common cockle Cerastoderma edule in the southern Irish Sea. Conserv Genet 14(2):451–466

    Article  Google Scholar 

  • Dahl M (2013) Conservation genetics of Lophelia pertusa. PhD thesis, University of Gothenberg

    Google Scholar 

  • Davies AJ, Duineveld GCA, Lavaleye MSS, Bergman MIN, van Haren H, Roberts JM (2009) Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol Oceanogr 54(2):620–629

    Article  Google Scholar 

  • Dodds LA, Roberts JM, Taylor AC, Marubini F (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349(2):205–214

    Article  CAS  Google Scholar 

  • Dodds LA, Black KD, Orr H, Roberts JM (2009) Lipid biomarkers reveal geographic differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar Ecol Prog Ser 397:113–124

    Article  CAS  Google Scholar 

  • Douville E, Salle E, Frank N, Eisele M, Pons-Branchu E, Ayrault S (2010) Rapid and accurate U-Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry. Chem Geol 272(1–4):1–11

    Article  CAS  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Berghuis EM (2004) Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Mar Ecol Prog Ser 277:13–23

    Article  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Bergman MJN, de Stigter H, Mienis F (2007) Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bull Mar Sci 81(3):449–467

    Google Scholar 

  • EC (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora

    Google Scholar 

  • Eyre BD, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Chang 4(11):969–976

    Article  CAS  Google Scholar 

  • FAO (2009) Deep-sea fisheries in the high seas. Ensuring sustainable use of marine resources and the protection of vulnerable marine ecosystems. Food and Agriculture Organization of the United Nations, Rome, 11pp

    Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366

    Article  CAS  PubMed  Google Scholar 

  • Fillinger L, Richter C (2013) Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH. Peer J 1:e194

    Article  PubMed  PubMed Central  Google Scholar 

  • Flot JF, Dahl M, André C (2013) Lophelia pertusa corals from the Ionian and Barents seas share identical nuclear ITS2 and near-identical mitochondrial genome sequences. BMC Res Notes 6(1):144

    Article  PubMed  PubMed Central  Google Scholar 

  • Form AU, Riebesell U (2012) Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Chang Biol 18(3):843–853

    Article  Google Scholar 

  • Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K, Donner SD, Hoegh-Guldberg O (2013) Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat Clim Chang 3(2):165–170

    Article  Google Scholar 

  • Gagnon AC (2013) Coral calcification feels the acid. Proc Natl Acad Sci U S A 110(5):1567–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gates RD, Edmunds PJ (1999) The physiological mechanisms of acclimatization in tropical reef corals. Am Zool 39(1):30–43

    Article  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407

    Article  Google Scholar 

  • Gillett NP, Arora VK, Matthews D, Allen MR (2013) Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J Clim 26(18):6844–6858

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale. Cambridge University Press, Cambridge

    Google Scholar 

  • Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4(3):141–146

    Article  Google Scholar 

  • Hebbeln D, Wienberg C, Wintersteller P, Freiwald A, Becker M, Beuck L, Dullo C, Eberli GP, Glogowski S, Matos L, Forster N, Reyes-Bonilla H, Taviani M (2014) Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences 11(7):1799–1815

    Article  Google Scholar 

  • Hennige S, Wicks LC, Keamenos N, Bakker DCE, Findlay HS, Dumousseaud C, Roberts JM (2014a) Short term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep Sea Res II 99:27–35

    Article  CAS  Google Scholar 

  • Hennige SJ, Morrison CL, Form A, Buscher J, Kamenos NA, Roberts JM (2014b) Self recognition in corals facilitates deep-sea habitat engineering. Sci Rep 4:6782

    Article  CAS  PubMed  Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA, Perna G, Findlay HS, Roberts JM (2015) Hidden impacts of ocean acidification to live and dead coral framework. Proc R Soc B Biol Sci 282:20150990

    Article  CAS  Google Scholar 

  • Henry LA, Vad J, Findlay HS, Murillo J, Milligan R, Roberts JM (2014a) Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic). Sci Rep 4:5589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry LA, Frank N, Hebbeln D, Wienberg C, Robinson L, van de Flierdt T, Dahl M, Douarin M, Morrison CL, López Correa M, Rogers AD, Ruckelshausen M, Roberts JM (2014b) Global ocean conveyor lowers extinction risk in the deep sea. Deep-Sea Res I 88:8–16

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. doi:10.1017/CBO9781107415324, 1535 pp

    Google Scholar 

  • Jantzen C, Haussermann V, Forsterra G, Laudien J, Ardelan M, Maier S, Richter C (2013) Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile). Mar Biol 160(10):2597–2607

    Article  CAS  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8(9):1010–1020

    Article  Google Scholar 

  • Kiriakoulakis K, Bett BJ, White M, Wolff GA (2004) Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic. Deep Sea Res Part I Oceanogr Res Pap 51(12):1937–1954

    Article  CAS  Google Scholar 

  • Klochko K, Kaufman AJ, Yao W, Byrne RH, Tossell JA (2006) Experimental measurement of boron isotope fractionation in seawater. Earth Planet Sci Lett 248(1–2):276–285

    Article  CAS  Google Scholar 

  • Knoll AH, Bambach RK, Canfield DE, Grotzinger JP (1996) Comparative earth history and late Permian mass extinction. Science 273:452–457

    Article  CAS  Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cycles 14(2):639–654

    Article  CAS  Google Scholar 

  • Larsson AI, Jarnegren J, Stromberg SM, Dahl MP, Lundalv T, Brooke S (2014) Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS ONE 9(7):14

    Article  Google Scholar 

  • Lomitschka M, Mangini A (1999) Precise Th/U dating of small and heavily coated samples of deep sea corals. Earth Planet Sci Lett 170:391–401

    Article  CAS  Google Scholar 

  • Longworth BE, Robinson LF, Roberts ML, Beaupre SR, Burke A, Jenkins WJ (2013) Carbonate as sputter target material for rapid 14C AMS. Nucl Inst Methods Phys Res Sect B Beam Interact Mater Atom 294:328–334

    Article  CAS  Google Scholar 

  • Lunden JJ, McNicholl CG, Sears CR, Morrison CL, Cordes EE (2014) Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front Mar Sci 1:78

    Article  Google Scholar 

  • Maier C, Hegeman J, Weinbauer MG (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680

    Article  CAS  Google Scholar 

  • Maier C, Bils F, Weinbauer MG, Watremez P, Peck MA, Gattuso JP (2013a) Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences 10:5671–5680

    Article  Google Scholar 

  • Maier C, Schubert A, Sanchez MMB, Weinbauer MG, Watremez P, Gattuso J-P (2013b) End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PLoS ONE 8(4):e62655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason HE, Montagna P, Kubista L, Taviani M, McCulloch M, Phillips BL (2011) Phosphate defects and apatite inclusions in coral skeletal aragonite revealed by solid-state NMR spectroscopy. Geochim Cosmochim Acta 75(23):7446–7457

    Article  CAS  Google Scholar 

  • McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates. I. Patterns. Geochim Cosmochim Acta 53(1):151–162

    Article  CAS  Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012a) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Chang 2(8):623–633

    Article  CAS  Google Scholar 

  • McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Foersterra N, Lopez Correa M, Maier C, Ruggeberg A, Taviani M (2012b) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34

    Article  CAS  Google Scholar 

  • McIntyre CP, Roberts ML, Burton JR, McNichol AP, Burke A, Robinson LF, von Reden KF, Jenkins WJ (2011) Rapid radiocarbon (14C) analysis of coral and carbonate samples using a continuous-flow accelerator mass spectrometry (CFAMS) system. Paleoceanography 26(4). doi:10.1029/2011pa002174

  • Miller KJ, Rowden AA, Williams A, Haussermann V (2011) Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change. PLoS ONE 6(5):e19004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagna P, McCulloch M, Taviani M, Mazzoli C, Vendrell B (2006) Phosphorus in cold-water corals as a proxy for seawater nutrient chemistry. Science 312:1788–1791

    Article  CAS  PubMed  Google Scholar 

  • Montagna P, McCulloch M, Douville E, López Correa M, Trotter J, Rodolfo-Metalpa R, Dissard D, Ferrier-Pagès C, Frank N, Freiwald A, Goldstein S, Mazzoli C, Reynaud S, Rüggeberg A, Russo S, Taviani M (2014) Li/Mg systematics in scleractinian corals: calibration of the thermometer. Geochim Cosmochim Acta 132:288–310

    Article  CAS  Google Scholar 

  • Morrison CL, Ross SW, Nizinski MS, Brooke S, Järnegren J, Waller RG, Johnson RL, King TL (2011) Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean. Conserv Genet 12(3):713–729

    Article  Google Scholar 

  • Movilla J, Gori A, Calvo E, Orejas C, Lopez-Sanz A, Dominguez-Carrio C, Grinyo J, Pelejero C (2014) Resistance of two Mediterranean cold-water coral species to low-pH conditions. Water 6(1):59–67

    Article  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2013) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs 32(3):749–754

    Article  Google Scholar 

  • Nir O, Vengosh A, Harkness JS, Dwyer GS, Lahav O (2015) Direct measurement of the boron isotope fractionation factor: reducing the uncertainty in reconstructing ocean paleo-pH. Earth Planet Sci Lett 414:1–5

    Article  CAS  Google Scholar 

  • O’Leary BC, Brown RL, Johnson DE, Von Nordheim H, Ardron J, Packeiser T, Roberts CM (2012) The first network of marine protected areas (MPAs) in the high seas: the process, the challenges and where next. Mar Policy 36(3):598–605

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686

    Article  CAS  PubMed  Google Scholar 

  • Palanques A, Martín J, Puig P, Guillén J, Company JB, Sardà F (2006) Evidence of sediment gravity flows induced by trawling in the Palamós (Fonera) submarine canyon (northwestern Mediterranean). Deep-Sea Res I Oceanogr Res Pap 53(2):201–214

    Article  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25(8):459–467

    Article  PubMed  Google Scholar 

  • Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29(2–3):195–210

    Article  Google Scholar 

  • Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Elva Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL (2011) Man and the last great wilderness: human impact on the deep sea. PLoS ONE 6(8):e22588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed TE, Schindler DE, Waples RS (2011) Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv Biol J Soc Conserv Biol 25(1):56–63

    Article  Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9(1):18–27

    Article  CAS  Google Scholar 

  • Roberts JM (2005) Reef-aggregating behavior by symbiotic eunicid polychaetes from cold-water corals: do worms assemble reefs? J Mar Biol Assoc U K 85:813–819

    Article  Google Scholar 

  • Roberts JM, Shipboard Party (2013) Changing oceans expedition 2012. RRS James Cook 073 cruise report. Heriot-Watt University, Edinburgh, UK, 224 pp

    Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312(5773):543–547

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, Cairns SD (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge, Edinburgh, UK, 334pp

    Google Scholar 

  • Rodolfo-Metalpa R, Montagna P, Aliani S, Borghini M, Canese S, Hall-Spencer JM, Foggo A, Milazzo M, Taviani M, Houlbrèque F (2015) Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Glob Chang Biol. doi:10.1111/gcb.12867

    PubMed  Google Scholar 

  • Rollion-Bard C, Erez J (2010) Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: implications for δ11B vital effects and paleo-pH reconstructions. Geochim Cosmochim Acta 74(5):1530–1536

    Article  CAS  Google Scholar 

  • Rovelli L, Attard KM, Bryant LD, Flögel S, Stahl H, Roberts JM, Linke P, Glud RN (2015) Benthic O2 uptake of two cold-water coral communities estimated with the non-invasive eddy correlation technique. Mar Ecol Prog Ser 525:97–104

    Article  Google Scholar 

  • Silbiger NJ, Donahue MJ (2015) Secondary calcification and dissolution respond differently to future ocean conditions. Biogeosciences 12:567–578

    Article  CAS  Google Scholar 

  • Stanley GD Jr (2003) The evolution of modern corals and their early history. Earth Sci Rev 60(3–4):195–225

    Article  Google Scholar 

  • Stern N, Taylor C (2010) What do the appendices to the Copenhagen accord tell us about global greenhouse gas emissions and the prospects for avoiding a rise in global average temperature of more than 2°C? Policy Paper, Centre for Climate Change Economics and Policy, p 26

    Google Scholar 

  • Stone RP (2014) The ecology of deep-sea coral and sponge habitats of the central Aleutian Islands of Alaska. NOAA Prof Pap NMFS 16:1–52

    Google Scholar 

  • Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté É, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 408(1–2):58–78

    Article  Google Scholar 

  • Thiagarajan N, Adkins J, Eiler J (2011) Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects. Geochim Cosmochim Acta 75(16):4416–4425

    Article  CAS  Google Scholar 

  • Thiagarajan N, Gerlach D, Roberts ML, Burke A, McNichol A, Jenkins WJ, Subhas AV, Thresher RE, Adkins JF (2013) Movement of deep-sea coral populations on climatic timescales. Paleoceanography 28(2):227–236

    Article  Google Scholar 

  • Thresher RE, Tilbrook B, Fallon S, Wilson NC, Adkins J (2011) Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar Ecol Prog Ser 442:87–99

    Article  Google Scholar 

  • Venn A, Tambutté E, Lotto S,D (2009) Imaging intracellular pH in a reef coral and symbiotic anemone. Proc Natl Acad Sci 106(39):16574–16579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venn A, Tambutte E, Holcomb M, Allemand D, Tambutte S (2011) Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS ONE 6(5):e20013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venn AA, Tambutte E, Holcomb M, Laurent J, Allemand D, Tambutte S (2013) Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc Natl Acad Sci U S A 110(5):1634–1639

    Article  CAS  PubMed  Google Scholar 

  • Veron JEN (2008) Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs 27(3):459–472

    Article  Google Scholar 

  • Wicks LC, Roberts JM (2012) Benthic invertebrates in a high-CO2 world. Oceanogr Mar Biol Annu Rev 50:127–188

    Article  Google Scholar 

  • Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Biol Ecol 366(1–2):187–197

    Article  Google Scholar 

  • Wisshak M, Schoenberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7(9):e45124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2005) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam

    Google Scholar 

  • Zoccola D, Tambutte E, Kulhanek E, Puverel S, Scimeca JC, Allemand D, Tambutte S (2004) Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochim Biophys Acta 1663(1–2):117–126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Murray Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roberts, J.M. et al. (2016). Cold-Water Corals in an Era of Rapid Global Change: Are These the Deep Ocean’s Most Vulnerable Ecosystems?. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_36

Download citation

Publish with us

Policies and ethics