Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mesoscale vertical motion and the size structure of phytoplankton in the ocean

Abstract

Phytoplankton size structure is acknowledged as a fundamental property determining energy flow through ‘microbial’ or ‘herbivore’ pathways1. The balance between these two pathways determines the ability of the ecosystem to recycle carbon within the upper layer or to export it to the ocean interior1. Small cells are usually characteristic of oligotrophic, stratified ocean waters, in which regenerated ammonium is the only available form of inorganic nitrogen and recycling dominates. Large cells seem to characterize phytoplankton in which inputs of nitrate enter the euphotic layer and exported production is higher2,3,4. But the size structure of phytoplankton may depend more directly on hydrodynamical forces than on the source of available nitrogen5,6,7. Here we present an empirical model that relates the magnitude of mesoscale vertical motion to the slope of the size–abundance spectrum8,9,10 of phytoplankton in a frontal ecosystem. Our model indicates that the relative proportion of large cells increases with the magnitude of the upward velocity. This suggests that mesoscale vertical motion—a ubiquitous feature of eddies and unstable fronts—controls directly the size structure of phytoplankton in the ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Slope of the size–abundance spectrum plotted against the magnitude of vertical velocity (w ) diagnosed for mesoscale instability.
Figure 2: Size–abundance spectra of DCM phytoplankton communities at the spots of highest upward and downward vertical velocity in the range considered in Fig. 1b.
Figure 3: Vertical structure of the water column corresponding to size–abundance spectra in Fig. 2.

Similar content being viewed by others

References

  1. Legendre, L. & Le Fèvre, J. in Productivity of the Ocean: Present and Past (eds Berger, W. H., Smetaceck, V. S. & Wefer, G.) 49–63 (John Wiley & Sons Limited, New York, 1989).

    Google Scholar 

  2. Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  3. Malone, T. C. in The Physiological Ecology of Phytoplankton (ed. Morris, I.) 433–464 (Blackwell Scientific Publications, Oxford, 1980).

    Google Scholar 

  4. Chisholm, S. W. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 213–237 (Plenum, New York, 1992).

    Book  Google Scholar 

  5. Semina, H. J. Water movement and the size of phytoplankton cells. Sarsia 34, 267–272 (1968).

    Article  Google Scholar 

  6. Semina, H. J. The size of phytoplankton cells in the Pacific Ocean. Int. Revue ges. Hidrobiol. 57, 177–205 (1972).

    Article  Google Scholar 

  7. Peña, A., Lewis, M. R. & Harrison, G. Primary productivity and size structure of phytoplankton biomass on a transect of the equator at 135°W in the Pacific Ocean. Deep-Sea Res. 37, 295–315 (1990).

    Article  ADS  Google Scholar 

  8. Platt, T. & Denman, K. H. The structure of pelagic marine ecosystems. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 173, 60–65 (1978).

    Google Scholar 

  9. Rodríguez, J. & Mullin, M. M. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr. 31, 361–370 (1986).

    Article  ADS  Google Scholar 

  10. Rodríguez, J. & Li, W. K. W. (eds) The size structure and metabolism of the pelagic ecosystem. Scientia Marina 58, 1–167 (1994).

    Google Scholar 

  11. Strass, V. H. Chlorophyll patchiness caused by mesoscale upwelling at fronts. Deep-Sea Res. 39, 75–96 (1992).

    Article  ADS  Google Scholar 

  12. Harris, G. P., Ganf, G. G. & Thomas, D. P. Productivity, growth rates and cell size distributions of phytoplankton in the SW Tasman Sea: implications for carbon metabolism in the photic zone. J. Plankton Res. 9, 1003–1030 (1987).

    Article  Google Scholar 

  13. Rodríguez, J. et al. Patterns in the size structure of phytoplankton community in the deep fluorescence maximum of the Alboran Sea (southwestern Mediterranean). Deep-Sea Res. 45, 1577–1593 (1998).

    Article  Google Scholar 

  14. Smayda, T. J. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Annu. Rev. 8, 353–414 (1970).

    Google Scholar 

  15. Leach, H. The diagnosis of synoptic-scale vertical motion in the seasonal thermocline. Deep-Sea Res. 34, 2005–2017 (1987).

    Article  ADS  Google Scholar 

  16. Tintoré, J., Gomis, D., Alonso, S. & Parrilla, G. Mesoscale dynamics and vertical motion in the Alboran Sea. J. Phys. Oceanogr. 21, 811–823 (1991).

    Article  ADS  Google Scholar 

  17. Allen, J. T. & Smeed, D. A. Potential vorticity and vertical velocity at the Iceland Faroes front. J. Phys. Oceanogr. 26, 2611–2634 (1996).

    Article  ADS  Google Scholar 

  18. Cullen, J. J. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can. J. Fish. Aquat. Sci. 39, 791–803 (1982).

    Article  CAS  Google Scholar 

  19. Furuya, K. & Marumo, R. The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. J. Plankton Res. 5, 393–406 (1983).

    Article  Google Scholar 

  20. Estrada, M. et al. Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean. Mar. Ecol. Prog. Ser. 92, 289–300 (1993).

    Article  ADS  Google Scholar 

  21. Ruiz, J., García, C. M. & Rodríguez, J. Vertical patterns of phytoplankton size distribution in the Cantabric and Balearic seas. J. Mar. Systems 9, 269–282 (1996).

    Article  ADS  Google Scholar 

  22. Fiekas, V., Leach, H., Mirbach, K.-J. & Woods, J. D. Mesoscale inestability and upwelling. Part 1: Observations at the North Atlantic intergyre front. J. Phys. Oceanogr. 24, 1750–1758 (1994).

    Article  ADS  Google Scholar 

  23. Viúdez, A., Tintoré, J. & Haney, R. L. Circulation in the Alboran Sea as determined by quasi-synoptic hydrographic observations. I. Three dimensional structure of the two anticyclonic gyres. J. Phys. Oceanogr. 26, 684–705 (1996).

    Article  ADS  Google Scholar 

  24. Pollard, R. T. & Regier, L. Large variations in potential vorticity at small spatial scales in the upper ocean. Nature 348, 227–229 (1990).

    Article  ADS  Google Scholar 

  25. Allen, J. T., Smeed, D. A., Nurser, A. J. G., Zhang, J. W. & Rixen, M. Diagnosing vertical velocities with the QG omega equation: an examination of the errors due to sampling strategy. Deep-Sea Res. (in the press).

  26. Cushman-Roisin, B. Introduction to Geophysical Fluid Dynamics (Prentice-Hall, Englewood Cliffs, New Jersey, 1994).

    MATH  Google Scholar 

  27. Gomis, D., Ruíz, S. & Pedder, M. A. Diagnostic analysis of the 3D ageostrophic circulation from a Multivariate Spatial Interpolation of CTD and ADCP data. Deep-Sea Res. 48, 269–295 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the MAST III programme of the European Commision and the CICYT-CYTMAR programme (Spain). We thank M. Emelianov for translating the Russian work of H. J. Semina. We also thank the officers, technicians and crew of BIO Hesperides for their help during the OMEGA cruise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, J., Tintoré, J., Allen, J. et al. Mesoscale vertical motion and the size structure of phytoplankton in the ocean. Nature 410, 360–363 (2001). https://doi.org/10.1038/35066560

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35066560

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing