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Notation 

 

Symbol   Definition       Unit 

 
     Amplitude of tidal constituents    [m] 

     Angular speed      [deg/s] 

     Phase lag of tidal constituents    [°] 

     Time zone      [--] 

    Wind stress vector     [m.s
-1

] 

    Density of air      [kg.m
-3

] 

K1   luni-solar diurnal constituent    [°/hour] 

O1   lunar diurnal constituent     [°/hour] 

M2   principal lunar semidiurnal constituent   [°/hour] 

S2   principal solar semidiurnal constituent   [°/hour] 

Δt    Computational time step    [s] 

Δx    The length of the grid cells in x –direction   [m] 

Δy    The length of the grid cells in y-direction  [m] 

Δz    The length of the grid cells in z-direction  [m] 

u    Current velocity component in x-direction  [m.s
-1

] 

v    Current velocity component in y-direction  [m.s
-1

] 

w    Current velocity component in z-direction  [m.s
-1

] 

f    Coriolis parameter     [Hz,1/S] 

g   Gravitational acceleration    [m.s
-2

] 

h   total water depth     [m] 

ρo    Density of water     [kg.m
-3

] 

Cz   Che’zy Coefficient     [m
1/2

/s] 

td   Wind duration      [s] 

u    Wind velocity      [m.s
-1

] 

Cr   Courant Number     [---] 

d   water depth below horizontal plane of reference  [m] 

    Surface elevation above horizontal plane of reference [m] 

    Horizontal coordinate     [m] 

    Horizontal coordinate      [m] 

Q   discharge of water     [---] 

E   evaporation      [my
-1

] 

P   precipitation      [ms
-1

] 

      Local source of water per unit of volume  [1/s] 

       Local sink of water per unit of volume   [1/s] 

     Horizontal pressure     [kg.m
-2

.s
-2

] 

     Horizontal pressure     [kg.m
-2

.s
-2

] 

     Horizontal eddy viscosity    [m
2
/s] 

     Vertical eddy viscosity     [m
2
/s] 

     External momentum in x-direction   [m/s
2
] 
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     External momentum in y-direction   [m/s
2
] 

C   concentration of dissolved substances   [---] 

     Horizontal eddy diffusivity    [m
2
s

-1
] 

       The net heat flux     [W/m
2
] 

      The net incident solar radiation (short wave)  [W/m
2
] 

      The net incident atmospheric radiation   [W/m
2
] 

      The back radiation (long wave)    [W/m
2
] 

      The evaporative heat flux (latent heat)   [W/m
2
] 

      The convective heat flux (sensible heat)   [W/m
2
] 

     The specific density of water    [kg/m
3
] 

     The specific heat capacity of sea water   [m
2
 (s

2
 °C)] 

      Thickness of the top layer    [m] 

     The Stanton number     [--] 

     The Dalton number     [--] 

TCM   Turbulence Closure Model    [---] 

Z   z-coordinate system     [---] 

     -coordinate system     [---] 

    Isopycnal coordinate system    [---] 

BC   Boundary Conditions     [---] 

M E   Mean Error      [m] 

RS-Model  Red Sea Model      [---]  

MAE   Mean Absolute Error     [m] 

MAD   Mean Absolute difference    [m] 

RMAE   Relative Mean Absolute Error    [m] 

RMAD   Relative Mean Absolute difference   [m] 

THC   Thermohaline Circulation     

QuikSCAT  Quick Scatterometer satellite     

WOA01  World Ocean Atlas Data-2001     

DWD   Deutscher Wetterdienst 

SLA   Sea Level Anomaly      

RSOW   Red Sea outflow water      

RSSW   Red Sea Surface water       

GASW   Gulf of Aden Surface Water 

GAIW   Gulf of Aden Intermediate water    

SST   Sea surface Temperature     

SSS   Sea Surface Salinity      

SODA   Simple Ocean Data Assimilation 
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Abstract 
 
Marginal seas (semi-enclosed basin) have drawn the attention of the oceanographic scientists 

for many decades. They have been of such interest because in the majority of cases, they play 

a significant role socially, environmentally and economically. The semi-enclosed Red Sea 

basin presents a unique large marine ecosystem. Therefore it deserves scientific attention. 

Beside its extraordinary biotic richness, the Red Sea is an important international shipping 

path connecting eastern and southern Asia with the Middle East and Europe. In spite of its 

economic and environmental importance, very few studies of the hydrodynamic processes 

inside the Red Sea domain were carried out. During the last century, most of the previous 

studies focused in the vicinity of the Strait of Bab el Mandeb aiming at understanding the 

exchange between the Red Sea and Gulf of Aden and the spreading of the Red Sea outflow 

into the Gulf of Aden. Accordingly, the main concern of this work is to study the 

hydrodynamic processes and improve our understanding about physical processes inside the 

Red Sea domain. 

 

The processes under concern are studied using a combination of very few available 

observations (water levels and oceanographic data), remotely sensed data as well as 

numerical modelling approach. The numerical simulations are performed using the three-

dimensional modeling system Delft3D, developed by WL | Delft Hydraulics. The 

computational domain is configured to include the entire basin of the Red Sea; the two Gulfs 

located in the northern end and part of the Gulf of Aden. The Red Sea Model (hereafter RS-

Model) with high grid resolution of 5 km and 30 vertical layers has been forced by the main 

eight semidiurnal and diurnal tidal constituents, used to compute the tidal elevations at the 

boundary of the computational domain. Besides that, transport forcing of salinity (S) and 

temperature (T) were prescribed along the open boundary sections. The surface boundary of 

the model is forced by realistic high-frequency atmospheric forcing. The RS-Model was 

initialized with Simple Ocean Data Assimilation (SODA).  

 

Sensitivity analyses of the numerical and physical parameters were carried out with the aim 

of understanding the overall behavior of the model and its response to changes in the physical 

and numerical parameters adopted. An assessment of the model predictions was carried out 

using available sea level observations, CDT measurements, remotely sensed SST (AVHRR / 

Pathfinder) and on the basic of results of previous work. The model performance is found 

capable of adequately reproducing the tidal conditions in the region, the stratification 

characteristics observed in the summer field; in addition to the reversal processes of the 

seasonal exchange flow system existing at the strait of Bab el Mandeb. 

 

The first part of the present thesis investigates the tidal characteristics in the Red Sea. The 

RS-Model suggests that the dominant pattern in the region is primarily semidiurnal with the 
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appearance of diurnal character at places where amphidromic systems are established. Major 

semidiurnal and diurnal tidal constituents are M2, S2, N2 and K1. The former have three 

anticlockwise amphidromic systems that are located north of the strait (~ 13.5°N), in the 

central part of the Red Sea (19.5°N) and in the entrance of the Gulf of Suez, respectively. The 

latter have only a single amphidromic point centred around 15.5°N. Tidal hydrodynamic 

simulations predicted tidal flows of ~ 0.5 m/s at the strait of Bab el Mandeb, about 0.3 m/s at 

the Gulf of Suez and currents in the range of 0.1 m/s are prevalent inside the Red Sea domain.  

 

The second part of the thesis concerns the seasonal circulation patterns and thermohaline 

structure in the Red Sea. The simulation results revealed several interesting features of the 

circulation in the region. The model results indicate that the Red Sea basin shares several 

aspects with other semi-enclosed marginal seas such as the Mediterranean Sea, where the 

general circulation is a result of combined effect of the wind-driven and thermohaline-driven 

flow, complex measoscale eddy fields and water exchange with the open ocean. The 

simulation results show that the circulation structure in the Red Sea is complex.  

 

The major features predicted by the RS-Model include the existence of several cyclonic and 

anticyclonic gyres; small eddies as well as intensified boundary currents at both boundaries. 

The model suggests that under combined wind-stresses and thermohaline forcing, the summer 

circulation pattern is characterized by a series of organized energetic anticyclonic eddies. In 

contrast, during winter months the circulation consists of alternating cyclones and 

anticyclones eddies. The most important feature during winter period is eddies activities 

located in the northern part of the Red Sea that contributes significantly to the formation of 

the Red Sea Outflow Water (RSOW). 

 

The main site, period and mechanisms involved in the formation of RSOW are investigated 

in detail. The results suggest that the northern part of the Red Sea is the dominant formation 

site where baroclinic instability mechanism controls the formation process. The convection 

events include periods of 3-months (January-March) where three convective chimneys are 

formed. The results show that the formation process does not involve deep penetrative 

convection and the maximum depth of convection is about 150 m. A number of eddies 

produce intensified southward currents along the western boundary in addition to cross-basin 

westward currents in the middle of the basin to carry the formed RSOW towards Bab el 

Mandeb strait. High-frequency atmospheric forcing is observed as an important approach in 

studying the circulation in the Red Sea region. 

 

In the third part of the thesis, the relative importance of wind and thermohaline forcing on the 

key circulation features is investigated through additional numerical experiments. The 

numerical experiments showed that the wind-driven circulation is stronger and dominates the 

themohaline driven-circulation. The results suggest also that the wind-stress forcing 

reinforces the anticyclonic features and the inflow of water in the southern part of the basin 

while cyclonic circulation is mainly thermohaline-driven.  

 

 

 

Keywords: Red Sea, Delft3D modeling system, Amphidromic system, wind and thermohaline 

forcing, wind and thermohaline circulation, water mass formation, open-ocean convection 
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Zusammenfassung 
 

Randmeere (teilweise abgeschlossene Becken) haben die Aufmerksamkeit der 

ozeanographischen Wissenschaftler seit vielen Jahrzehnten angezogen. Sie sind von  solchem 

Interesse weil sie in der Mehrheit der Fälle eine wichtige Rolle spielen, gesellschaftlich, 

ökologisch und ökonomisch. Das halbgeschlossene Becken des Roten Meeres (RS) stellt ein 

einzigartiges großes marines Ökosystem dar, deshalb verdient es die Aufmerksamkeit der 

Wissenschaft. Neben seiner ausserordentlichen biologischen Vielfalt stellt das Rote Meer 

eine bedeutsame internationale Wasserstrasse dar, die  das östliche und südliche Asien mit 

dem Nahen Osten und Europa verbindet. Trotz seiner Bedeutung für Ökonomie und Umwelt 

wurden nur sehr wenige Studien der hydrodynamischen Prozesse im Gebiet des Roten 

Meeres ausgeführt. Im letzten Jahrhundert wurden die meisten der vorangegangenen 

Untersuchungen in der Umgebung der Strasse von Bab el Mandeb ausgeführt, die auf ein 

Verständnis der Austauschprozesse zwischen dem Roten Meer und dem Golf von Aden und 

auf die Ausbreitung des Ausstromes aus dem Roten Meer in den Golf von Aden zielten. 

Folgerichtiger Weise ist das Hauptanliegen dieser Arbeit die hydrodynamischen Prozesse zu 

untersuchen und unser Verständnis für physikalische Vorgänge innerhalb des Gebietes des 

Roten Meeres zu verbessern. 

 

Die interessierenden Prozesse werden mithilfe einer Kombination aus sehr wenigen 

verfügbaren Beobachtungen (Wasserstände und ozeanographische Daten), mit Daten aus der 

Fernerkundung sowie mit einem numerischen Modellierungsansatz studiert. Die numerischen 

Simulationen werden mithilfe des dreidimensionalen Modellierungssystems Delft3D, das von 

WL/Delft Hydraulics entwickelt wurde, durchgeführt. Die im Computer berechnete Domäne 

ist so konfiguriert, dass das gesamte Becken des Roten Meeres enthalten ist; die beiden am 

nördlichen Ende befindlichen  Meeresarme und ein Teil des Golfes von Aden. Das Model des 

Roten Meeres (kurz: RS-Model) mit einer hohen Auflösung des Gitters von 2 km und mit 30 

vertikalen Schichten ist angetrieben worden mit den acht semidiurnalen und diurnalen Tide-

Konstituenten, die benutzt wurden, um die Tidenhöhe an der offenen Grenze der Model- 

Domäne zu berechnen. Daneben wurden die Antriebskräfte für den Transport  durch Salinität 

(S) und Temperatur (T) entlang der Abschnitte der offenen Grenzen vorgeschrieben. Die 

Oberflächen-Grenzschicht in dem Model wird durch realistische atmospärische Kräfte in 

Hochfrequenz angetrieben. Das RS-Model wurde mithilfe der Einfachen-Ozean-Daten-

Assimilation (SODA, Simple Ocean Data Assimilation) initialisiert. 

 

Eine Sensitivitäts-Analyse der numerischen und physikalischen Parameter wurde 

durchgeführt… Eine Beurteilung der Model-Voraussagen wurde mithilfe verfügbarer 

Beobachtungen der Wasserstände, durch Fernerkundung gewonnene Daten der Temperatur 

an der Meeresoberfläche (AVHRR/Pathfinder) und den verfügbaren früheren Arbeiten 

durchgeführt. Es wurde festgestellt, dass die Leistungsfähigkeit des Models angemessen 

dargestellt wird anhand der Tidebedingungen in der Region, der Stratifikations-Charakteristik 
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, die im Sommer beobachtet wird, zusätzlich zu den umgekehrten Prozessen des saisonalen 

Austausch-Strömungs-System in der Strasse von Bab el Mandeb.  

 

Im ersten Teil der Thesis werden die Tidecharakeristiken im Roten Meer untersucht. Das RS 

Model legt nahe, dass das dominierende Muster in der Region primär semidiurnal mit dem 

Auftreten diurnaler Charakeristiken an Orten ist, an denen sich amphydrome Systeme 

etablieren. Die wesentlichen semidiurnalen und diurnalen Tidekonstituenten sind M2, S2, N2 

und K1   ie  or ngehenden  erfügen ü er drei    hydro e  y te  gegen den 

 hrzeiger inn  die  ich n rdlich der  tr   e   on B   el M nde       13.5°N), im zentralen 

Teil des Roten Meeres (19.5°N) beziehungsweise am Eingang des Golfes von Suez befinden. 

Letzterer h t lediglich einen    hidro en  un t  der u         zentriert i t   ie 

hydrodyn  i chen  i ul tionen der  ide   gten  ide tr  e  on   0.5 m/s in der Strasse von 

Bab el Mandeb, ungefähr 0.3 m/s am Golf von Suez vorher und Strömungen im Bereich von 

0.1 m/s sind vorherrschend innerhalb der Domäne des Roten Meeres vor.  

 

Der zweite Teil der Thesis behandelt die saisonalen Zirkulationsmuster und thermohaline 

Strukturen im Roten Meer. Simulationsergebnisse decken einige interessante Eigenschaften 

der Zirkulation in der Region auf. Die Modelresultate weisen darauf hin, dass das Becken des 

Roten Meeres verschiedene Aspekte mit anderen halb geschlossenen Randmeeren 

gemeinsam hat, wie etwa dem Mittelmeer, wo die allgemeine Zirkulation ein Resultat der 

kombinierten Effekte der windgetriebenen und der thermohalin getriebenen Strömungen ist, 

sowie komplexer mesoskaliger Stromwirbel-Felder und des Wasseraustausches mit dem 

offenen Ozean. Die Simulationsergebnisse zeigen, dass die Zirkulationsstruktur des Roten 

Meeres kompliziert ist. 

 

Die wesentlichen Eigenschaften, die vom RS-Model vorhergesagt werden, beinhalten die 

Existenz von verschiedenen zyklonalen und antizyklonalen Wirbeln, kleinen Stromwirbeln 

(Eddies) sowie intensivierte Randströmungen an beiden Landgrenzen.  Das Model legt nahe, 

dass unter kombinierter Einwirkung von Wind-Stress und thermohalinen Antriebskräften das 

Sommer-Zirkulationsmuster durch eine Serie organisierter, energiereicher antizyklonaler 

Wirbel. Im Gegensatz hierzu besteht die Zirkulation während der Wintermonate aus 

alternierenden zyklonalen und antizyklonalen Wirbeln. Das wesentlichste Merkmal während 

der Winterperiode sind Wirbel-Aktivitäten, die im nördlichen Teil des Roten Meeres 

angesiedelt sind und die wesentlich beitragen zur Bildung von aus dem Roten Meer 

ausströmendem Wasser (Red Sea outflow Water, RSOW). 

 

Die wesentlichen Bereiche, Zeiträume und Mechanismen, die an der Bildung von RSOW 

beteiligt sind, werden näher untersucht. Die Simulation legt nahe, das der nördliche Teil des 

Roten Meeres die dominierende Region für die Genese ist, wo die Instabilitätsmechanismen 

der barometrischen Gradienten den Bildungsprozess von RSOW kontrollieren. Die 

Konvektionsereignisse umfassen Zeiträume von drei Monaten (Januar bis März), in denen 

drei Konvektion -   ine ge ildet  erden   ie  e ult te zeigen  d    der Bildung  roze   

 eine tief eindringene  on e tion ein chlie  t  und die   xi  le  iefe der  on e tion liegt 

 ei   150m. Eine Reihe von Strömungswirbeln bewirken intensivierte südwärts gerichtete 

Strömungen entlang der westlichen Grenze (Küste) zusätzlich zu den Strömungen, die das 

Meeresbecken in westlicher Richtung in der Mitte des Meeresbeckens queren, um das 

gebildete RSOW in Richtung der Bab el Mandeb Strasse zu bewegen. Ein hochaufgelöster 

atmosphärischer Antrieb ist als ein bedeutsamer Ansatz für Studien der Zirkulation im Roten 

Meer identifiziert worden. 
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Im dritten Teil der Thesis wird die relative Bedeutung  von Windantrieb und thermohalinen 

Kräften für die wesentlichen Zirkulationseigenschaften mit Hilfe von zusätzlichen 

numerischen Experimenten untersucht. Die numerischen Experimente zeigten, dass die 

windgetriebene Zirkulation stärker ist und die thermohalin angetriebene Zirkulation 

dominiert. Die Resultate deuten darauf hin, dass die Antriebskräfte durch Windstress die 

antizyklonalen Merkmale und den Einstrom von Wasser im südlichen Teil verstärken, 

während die zyklonale Zirkulation im Wesentlichen durch thermohaline Effekte angetrieben 

wird. 

 

Keywords: Rotes Meer, Delft3D Modellierungssystem, Amphidrome Systeme, Wind- und 

thermohaliner Antrieb, Wind und thermohaline Zirkulation, Bildung von Wasserkörpern, Konvektion 

im offenen Ozean 
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Chapter 1  
 

Introduction 
 

1.1 Overview 
 

Marginal seas (semi-enclosed basin) have drawn the attention of the oceanographic scientists 

for many decades. They have been of such interests because in the majority of cases, they 

play a significant role socially, environmentally and economically. The Red Sea is considered 

one of these seas, where it presents a unique large marine ecosystem which deserves 

scientific attention. Beside its extraordinary biotic richness, the Red Sea is an important 

international shipping path connecting eastern and southern Asia with the Middle East and 

Europe. Recently, estimates concerning oil-related activities indicate that about 3.4 million 

barrels of oil is being transported daily through the Red Sea (WOTC, 2012).  

 

The Red Sea basin whose hydrodynamic processes are the subject of this dissertation, is a 

narrow elongated-shaped sea (semi-enclosed) separating the land masses of Africa and 

Arabia, oriented from the north-northwest (NNW) to south-southeast (SSE). Geographically, 

it is located between the latitude 30-10°N and longitude 36-45°E and extends over a distance 

of about 2000 km covering a total surface area of about 440,000 km
2
 (Figure.1.1). The Red 

Sea has an average width of approximately 280 km and the minimum width of about 26 km is 

found at the southern end. The physical boundary of the Red Sea is delineated by the 

coastline of Egypt, Sudan, Eritrea and part of Djibouti in the western side and the coastline of 

Jordan, Saudi Arabia and Yemen on the eastern side. In the southern part of the basin, it links 

with the Gulf of Aden and the Indian Ocean through a narrow, shallow strait (26 km wide, 

150 km long) known as Bab el Mandeb while in the north part it consists of the so-called 

Gulf of Suez and Gulf of Aqaba.  

 

Geologically, the Red Sea is a young widening basin and it might turn into an ocean in the 

future. It was formed as a result of tectonic plate movement the African, Arabian and 

Mediterranean shields pulling away from each other, creating a great slash in the land 

(Sheppard et al., 1992 and PERSEGA, 2006). The Red Sea experiences irregular bottom 

topography. Most of the coastlines of the Red Sea are bordered by shallow fringing reefs. The 

edges of these reefs shelve steeply into deep water or they slope gently into lagoons bordered 

by an offshore barrier reef system (Morley, 1975; PERSGA, 2006 and Albarakati, 2012).  
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The Red Sea is shallow at its northern and southern ends and its average depth is 490 m while 

maximum depth is > 2000 m found in the middle axis at 19
°
 N, 38

°
 E. In the southern part of 

the basin, there are shallow shelves on both sides of the strait of Bab el Mandeb connecting 

the Red Sea to the Gulf of Aden, the shallowest Sill known as Hanish Sill (~ 150 m) is 

located at the northern part of the Strait and the narrowest contraction is located at the Perim 

Narrows in the southern end of the Strait (Morley, 1975, Murray and Johns, 1997 and 

PERSGA, 2006). More description of the Red Sea bottom division is given in chapter 3 

(section 3.4). 

 

Figure 1.1 Geographical Location of the study area [The Red Sea and part of Gulf of Aden]. 
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1.2 Brief information of previous studies 
 

Despite of its socio-economic and environmental importance, many authors pointed out that 

the Red Sea is one of the most unexplored areas of the Northern Hemisphere oceans (e.g. 

Edwards and Head, 1987; Sofianos and Johns, 2003 and Chen et al., 2014).  In the past 

decades, many studies have been carried out in the region however most of these studies have 

been focused on the vicinity of the southern part of the Red Sea and Bab el Mandeb Strait. 

These studies aimed at understanding the water exchange between the Red Sea and Gulf of 

Aden (e.g. Thompson, 1939; Maillard and Soliman, 1986; Murray and Johns, 1997 and 

Smeed, 2004), circulation patterns (e.g. Clifford et al., 1997; Morcos and Soliman, 1974 and 

Maillard, 1974) and the heat balance and heat transport between the Red Sea and Gulf of 

Aden (Patzert, 1974b; Yegorov, 1950 and Sofianos, et al., 2002), temperature and salinity 

variations (Vercelli, 1927), tides have been described by Defnat (1961).  

 

Inside the Red Sea domain, very little information is found concerning tides and circulation 

processes in the literature that are mainly based on few published studies and unpublished 

report. During the last century, a dynamical explanation of actual tides was supplied based on 

few analytical analyses made to determine the tides in the strait of Bab el Mandeb (Defant, 

1961) and the results of these analyses were used to explain tidal dynamics in the whole Red 

Sea basin. The conclusion drown suggests that the tidal regime in the Red Sea is essentially 

co-oscillations with those of the Gulf of Aden, characterized by its low tidal range with 

semidiurnal characteristics. Nevertheless, it has been pointed out by Edwards and Head 

(1987) that there is disagreement on a complete explanation of the Red Sea tides. On the 

other hand, the previous observation-based studies (Sultan et al., 1995 and Saad, 1997) were 

basically limited to very few observations which are confined to the coastal region. The 

details of these studies are given in Chapter 3. Studies on tides of the Red Sea using 

numerical modelling approach do not exist.  

 

On the other hand, the circulation processes inside the Red Sea domain has not received 

many investigations and therefore, it remains largely unexplored. In marginal seas there is 

often net buoyancy loss to the atmosphere either due to heat flux or fresh water flux or both. 

The Red Sea experiences many of the same features like other marginal seas (e.g. the 

Mediterranean Sea, the Labrador Sea) however; there are unique characteristics compared to 

other marginal seas. For instance, due to the large meridional extent of the Red Sea, it has 

been suggested that β-effect could be important than in other marginal sea (Fares, 1997).  

 

The current knowledge on the circulation processes inside the Red Sea domain is very limited 

due to absence of intensive field and numerical modelling studies. Most of the observational 

efforts preformed inside the Red Sea domain during the winter were carried out in the 

northern part of the basin (Morcos, 1970; Morcos and Soliman, 1974; Maillard, 1974; 

Clifford et al., 1997) in addition to very few observations sparse in space (Vercelli, 1927; 

Vercelli, 1931). The conclusion drawn from these observational studies provide only a simple 
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story about the circulation regime during the winter season. On the other hand, observational 

studies concerning the summer season are mainly based on few field data which were 

collected along the main axis of the basin (Quadfasel and Baudner 1993; Sofianos and Johns 

2007). However, such observations can only reflect the status at the time of the research 

period including the size and the nature of the area involved.  

 

Numerical modelling studies in relation to the Red Sea circulation are very limited and 

mainly initiated during 1997-2003 (Eshel and Naik 1997; Al Barakati et al. 2002; Sofianos 

and Johns 2003) and a very recent studies conducted by Yao et al. (2014a, b). The general 

emerged features of these studies indicate that the Red Sea circulation consists of a complex 

three-dimensional circulation including features of cyclonic and anticyclonic gyres or eddies 

and intensified boundary currents which extended over hundreds of kilometres along eastern 

and western boundaries with different spatial structures. It should be mentioned that there is a 

controversy among them on for instance the structure and location of the sinking process, the 

dense water formation processes, the general circulation pattern and its seasonal variability 

and role played by the wind and buoyancy flux. A description of the previous observational 

and modelling studies is provided in Chapter 3. 

 

In view of the above mentioned, it is obvious that the current study aims towards a better 

understanding of hydrodynamics in the Red Sea region since there is a need to carry out more 

researches to broaden our understanding about the tides and circulation processes in the Red 

Sea. Therefore, in this study we attempt to produce an additional contribution to the present 

knowledge of the spatial and temporal variability of the circulation in the Red Sea region.  

 

The question comes up why we should learn more about these processes. The answer to this 

question would be simply; such processes may play significant role in sediment transport, 

nutrient distribution as well as in pollutant dispersion. Most of the Red Sea coasts are 

bordered by extensive coral reefs and the intensified boundary currents may transport 

nutrients and organism along the reef. Furthermore, carrying out ecological and other relevant 

environmental studies in the region should be built on enough knowledge about the 

hydrodynamic processes. Therefore, this study will provide and produce significant 

information for future studies.  

 

1.3 Numerical Models and Field Data 
 

There is no doubt that observations and field measurements are necessary components and an 

early step should be considered on the one hand to gain idea about the dominant processes in 

the area of interest, and on the other hand to be used for calibration and validation purposes 

the numerical models. Furumai (2010) for instance pointed out that the model development 

cannot proceed without scientific information and knowledge on the processes exists in a 

particular area. However, the data should be collected over a continuous and long period of 

time in order to reflect and provide accurate insights into the nature of the parameters that 

impact on the system (Schwartz, 2005). From another angle, it should be taken into account 
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the high costs of field data collection including other requirements involved in the processes 

such as research vessels and instruments.   

With the measuring several parameters that include synoptic coverage and advancement in 

numerical modelling, larger data sets for further researches in the area of interest can be 

obtained. However, numerical models are not without problems since algebraic 

approximations to the differential equations are used, which can produce spurious solutions 

(Swapna, 2005). In general, at the present time numerical models have proven to be a very 

practical tool and are widely used.  

 

In the last decades, numerical modelling capabilities have improved considerably as a result 

of increasing computer technology, improved methods in computational fluid dynamics and 

improved knowledge in ocean circulation. Thus, nowadays numerical models are highly used 

to simulate and determine the combined processes that cannot be achieved using a way or 

another. Nowadays, computer models allow users to simulate in one, two, and three 

dimensions. In addition, they enable users to model water bodies that are either steady state 

or dynamic systems.  

 

Several authors have been thrown light on the necessity of the use of computer-based models 

in order to gain insight into the complex interactions between processes such as winds, 

currents and waves, tide, etc (e.g. Black, 1995). This means that the modellers have the 

possibility to setup different conditions in the same domain area and study their influences 

and interactions together. It should be considered that the performance of the numerical 

models is largely dependent upon the available field information that play significant role for 

a proper calibration and validation of the models (Adkins and Pooch, 1977; Reeve, D. et al., 

2004). More information about numerical modelling including the aspects and concept of the 

mathematical representations is presented in chapter 2. In the present study, the Delft3D 

modelling system developed by Delft Hydraulic has been implemented. The details of this 

model and its applications are presented comprehensively in chapter 4.  

 

 

1.4 Motivation and Scientific Goals  
 

The unique features of the Red Sea represented by the environmental and economic 

importance make it very interesting basin water to study. From the brief introduction of the 

previous works, it was found that for example the tidal observations used by the previous 

researchers were confined to the coastal region. The hydrographic data sets used by the 

previous researchers were also restricted to a small region under specific timing. Another 

example is that the relative importance about the main mechanism that controls the 

circulation in the Red sea is highly debated. In this content, numerical models became the 

only way to understand the influences of various parameters involved in the problem. One of 

the biggest advantages lies in the fact that they can produce the required results for 

everywhere defined in the model and for any time. 
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The overall aim of this study is to improve our understanding about the hydrodynamic 

processes in the Red Sea basin where there is lack of information. In order to achieve the 

main aim, a number of specific objectives were considered: 

 

i. To study the tidal characteristics in the Red Sea region. 

 

ii. To describe the seasonal cycle of circulation and hydrographic properties. 

 

iii. To investigate the relative importance of the wind forcing and thermohaline fluxes 

on the modelled key features of the circulation. 

 

iv. To identify the physical mechanisms that controls the circulation. 

 

v. To identify the main causes of generating features like eddies and gyres. 

 

vi. To identify the major source of the seasonal cycle in the exchange flow system 

exists through the Bab el Mandeb at the entrance to the Red Sea. 

 

vii. To investigate how, where and when the saline, dense Red Sea Outflow Water are 

formed. 

 

viii. To provide recommendations for future work. 

 

 

1.5 Methodology 

 

In order to fulfil the aim and objectives, the following methodology was adopted:  

 

 

i. Studying the physical system of the Red Sea by means of a detailed literature study 

including the available measurements and other data source such as satellite 

technique. 

 

ii. Establishing a 2-D dimensional hydrodynamic model incorporating the whole Red 

Sea region and part of the Gulf of Aden. 

 

iii. Extending the 2-D model into 3-D hydrodynamic model. 

 

iv. Calibrating and validating the hydrodynamic model with available measurements as 

well as remote sensing data. 

 

v. Obtaining the necessary data for the purposes of model forcing, calibration and 

validation processes. 
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1.6 Outline of the dissertation 
 

This thesis has been organized in a total of eight chapters and briefly presented below as 

follows: 

 

Figure 1.2 shows the structure of this thesis.  

 

 

 
 

Figure 1.2 Structure of the thesis. 

 

 



  Chapter 1. Outline of the dissertation 

 
8 

 

Chapter 1 Introduction 

 

Here, the introduction, main scope, objectives and outline of this dissertation is presented. 

 

Chapter 2 Literature review 

 

Here, the state of the art knowledge on numerical modelling as well as description of the 

physical factors that derive the ocean circulation is presented.  

 

Chapter 3 Study area, The Red Sea 

 

Here, the general characteristics of the study area in terms of its physical settings, the state of 

its topography, climate characteristics, hydrodynamic conditions and sea water properties 

based on the available literature and other data sources are described. Subsequently, the 

available data obtained during the course of this investigation, their sources and analysis is 

presented. 

 

Chapter 4 Delft3D modelling system 

 

A brief description of the numerical modelling system used in the present study (Delft3D 

modelling system) commencement with general information of the system is given; then the 

basic theoretical information on the governing equations of the numerical model and their 

discretization and implementation is presented.   

 

Chapter 5 Regional Red Sea model development 

 

A description of the model setup is presented here. This includes the definition of the model 

domain, grid generation, bathymetry and boundary conditions. Afterwards, an extensive 

sensitivity test with respect to numerical and physical parameters is presented. In addition to 

that, the general aspects of calibration and validation processes are presented. This includes 

the comparison between the model simulations and measurements graphically as well as 

statistically. 

 

Chapter 6 Simulation of Tides 

 

Here, the characteristics of tides in the Red Sea based on the model simulation are presented. 

 

Chapter 7 Simulation of Circulation and thermohaline structure 

 

Here, the seasonal features of circulation and thermohaline structure based on the model 

simulation are given and discussed. Afterwards, additional numerical experiments aiming at 

investigating the relative importance of the main mechanisms controlling the circulation are 

presented. In addition, the period, possible sites and processes involved in the Red Sea 

outflow water formation are identified. 

 

Chapter 8 Conclusions and recommendations 

 

Here, the main conclusions of this study in addition to recommendations for further studies 

are provided. 
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Chapter 2               

 

Literature Review 
 

2.1 Introduction 
 

The motions in the oceans are turbulent and cover a wide range of temporal and spatial scales 

(Swapna, 2005). The main processes that derive oceanic circulation are the internal density 

structure of the water mass, radiative and turbulent heat fluxes and the forcing imposed at the 

sea surfaces mainly the wind and buoyancy fluxes. Among the methods to study such 

phenomenon are the field measurements and numerical models. Field measurements 

however, alone cannot provide enough information on the variability of circulation on larger 

space and time scale. In spit the fact that field observation and measurements are considered 

essential elements in this regard, there are some issues concerning the field data collection 

that must be considered. One of these issues is that field measurements usually are carried out 

in a small and localized area for limited periods. Therefore, this kind of field data and their 

analysis can only reflect a picture on the behaviour of the water system under the conditions 

exist during the period of measurements. It is well known that most of the processes occur 

over long time and have large spatial extents. Thus the costs involved in the data collection 

are high. 

 

The overall structure of the oceans and patterns for circulation have been obtained by in-situ 

measurements, however, studies based only on observations cannot provide quantitative 

information about the nature of circulation and their variability under different atmospheric 

conditions. With the recent developments in satellite techniques in measuring several 

parameters that include synoptic coverage in addition to advancement in numerical 

modelling, significant amount of data sets for further research in the area of interest can be 

obtained. However, remote sensing technique has some limitations. This includes measuring 

some processes only near or at the surface, low spatial resolution, lack of data near the 

coastlines and missing data due to clouds and dust in the atmosphere. On the other hand, 

numerical models are not without problems since algebraic approximations to the differential 

equations are used, which can produce spurious solutions (Swapna, 2005).  
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As defined in chapter [1] the main aim of this study to improve our understanding about 

hydrodynamics in the Red Sea using a numerical modelling approach. Therefore, a survey of 

literature about numerical modelling on the one hand and the main processes that play major 

role in the ocean circulation on the other hand was found essential.  

 

This chapter gives a brief general introduction about the numerical modelling including its 

definition and importance in sections (2.2).  This is followed by pointing out the main 

advantages and disadvantages of numerical models in section (2.3). Subsequently, types and 

dimensions of a numerical model are given in section (2.4). This is followed by introducing 

the steps of numerical model evaluation including sensitivity analysis, calibration and 

validation processes in section (2.5). Afterward, section (2.6) gives information about the 3-D 

circulation models including theory and basic approximation and aspects of 3-D modelling. 

This is followed by throwing the light on the main processes controlling the oceanic 

circulation in section (2.7).   

 

2.2 Definition and Importance of Numerical Models 
 

During the past 50 years, the developments of numerical models have shown considerable 

progress associated with the developing computer technology. In the present time, with the 

support of increasing capacity in the computational resources, the applications of numerical 

models have proven to be a very practical tool and are widely used in the analysis of several 

processes interacting in the same domain area. It is very important to mention that the 

performance of the numerical models is highly dependent upon the field information that play 

significant role in calibration and validation processes of the models (Adkins and Pooch, 

1977; Reeve, et al., 2004). 

 

Some researchers indicated that the definition of modelling may vary based on the 

application but in general the basic idea remains the same. In general, numerical modelling 

can be defined as a mathematical representation of the actual physical world (Adkins and 

Pooch, 1977; Reeve, et al., 2004; Sisson, 2010).  In this frame, a hydrodynamic model is used 

to reproduce the flow conditions as realistically as possible by means of a set of algebraic 

equations in addition to suitable model inputs. However, it is necessary to consider the 

essential steps, the processes to be simulated and the modelling sequence.  

 

Several authors have been thrown light on the necessity of the use of computer-based models 

in order to gain insight into the complex interactions between processes such as winds, 

currents and waves, tide, etc (e.g. Schwart, 2005;  Swapna, 2005; Black, 1995). This means 

that the modellers have the possibility to setup different conditions in the same domain area 

and study their influences and interactions together. Accordingly, numerical models have 

been used to simulate some physical phenomenon that cannot be carried out adequately in 

any other ways in addition to provide detailed data on both temporal and spatial scale.  
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Ji (2008) have categorized numerical models in terms of model representations of space and 

time as following:  

 Steady state or time dependent (dynamic),  

  Zero, one, two, or three dimensional.  

The temporal characteristics involves whether the model is steady state or time dependent, 

depending upon the treatment of the time derivative in the governing equations. However, 

understanding the field and data collection is considered the first and most important step to 

derive reasonable results from the numerical models (Ji, 2008). 

 

2.3 Advantages and Disadvantages of Numerical Modelling 
 

All methods and consequently numerical models have their own advantages and 

disadvantages. Adkins and Pooch (1977) pointed out that one of the major advantages of 

numerical models is that simulation experiments can be run many times to test different 

scenarios with varying input parameters and check the behaviour of the system under a 

variety of conditions. Another advantage is that time compression in which operation of the 

system over extended periods of time can be simulated in minutes particularly with fast 

computers. In addition to that, sensitivity analysis by changing the input variables can be 

carried out. Besides that, they are quicker and cheaper comparing to other methods and also 

provide detailed results.  

 

On the other hand, there are some main problems associated with numerical models. One of 

the problems in numerical simulation is that capturing the main features of the flow requires 

understanding of the underlying physics in detail. Nevertheless, a complete description of the 

flow would yield a complex system of equations; therefore they require and consume more 

time to be solved. Generally, it is not possible to have a complete description since there are 

some terms not well understood and have to be approximated or modelled empirically such as 

turbulent shear stresses and bed stresses (Adkins and Pooch 1977).  

 

The numerical models use algebraic approximations to the differential equations which do 

not always consider the underlying physics. Therefore, these approximations can produce 

large errors in the solution (Swapna, 2005). In addition to that, numerical models provide 

only information at grid points of the model. This means that they do not provide information 

about the flow between the points. The ocean is turbulent, and to resolve such processes, it 

needs grid points spaced millimetres with time steps of millisecond. Practical ocean models 

contain grid points spaced tens to hundreds of kilometres in the horizontal and tens to 

hundreds of meters in the vertical. In this case, turbulence cannot be computed directly and 

therefore, the influence of turbulence must be parameterized (Swapna, 2005). 

 

It has been pointed out by Denner (1989) that one of the troublesome aspects in numerical 

modelling is the open boundaries of the model. This includes the boundary conditions 

prescribed at the open boundaries which must be appropriate with physical processes being 

simulated within the interior of the model domain. Another issue in the numerical simulation 

method associated with the gridding of the computational domain. Usually these kinds of 
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problems appear particularly with complicated geometries with highly irregular coastlines, in 

addition to the presence of islands and complex harbour and breakwater configurations 

(Abbot et al., 1973). However, curvilinear coordinates in such cases assist in solving this kind 

of problem with producing a boundary fitted grid (Tevfik, 2006). 

 

2.4 Dimensions of a Numerical Model 

 

Classification of numerical models depends on the number of spatial dimensions over which 

variables are permitted to change. They are classified into three types namely, one, two and 

three dimensions. Therefore, there are clear differences in the approach and capabilities 

among these types. In a one-dimensional flow model (1-D), flow parameters like currents are 

averaged over two dimensions (width and depth) and vary only in one direction (longitudinal 

direction). In two-dimensional models (2- ) ‘‘de th-  er ged  odel ’’    ri  le   re 

averaged over one spatial dimension, over the water depth or width. It should be mentioned 

that averaging always causes loss of information. Three dimensional models (3-D) do not 

average the flow parameters and solve equations accounting for variation of the variables in 

all three dimensions (longitudinal, vertical and transverse axes). More information about the 

three types of spatial dimensions is discussed in the following sections. 

 

2.4.1 One-Dimensional model 

 

In general, one-dimensional models can be set up quickly and require fewer amounts of field 

data for calibration, in addition to the least amount of computer time and capacity. According 

to Martin and McCutcheon (1999) one-dimensional models solve the unsteady, cross-

sectionally averaged equation for the hydrodynamic without solving the details over the 

cross-section. This means that this approach does not provide details of vertical and 

horizontal velocity distribution, salinity stratification or circulation within large water basins. 

In this approach, model parameters have the same value over the entire width of the cross 

section. Therefore, one-dimensional models are not appropriate option for simulating two- or 

three-dimensional phenomena.  

 

2.4.2 Tow-Dimension Model 

 

Two-dimension of depth integrated models are based on the depth-integrated equations of 

motion and continuity (McAnally et al., 1986; Tevfik, 2006). The water surface elevation, 

depth-averaged velocity are computed at each of many points across the cross-section. 

However, the flow characteristics are assumed to be uniform through the water column at 

each computational point, so stratification is not described. 

 

According to Moffatt and Nichol (2000), two-dimensional models can be categorized into 

two-dimensional horizontally averaged (2-DH) and two dimensional vertically averaged (2-

DV) models. The former scheme is used where depth-averaged velocity or other parameters 

relevant to hydraulic and transport can adequately describe the variation of the parameters 

across a channel. In this case, the flow field does not show large variations in vertical 

direction and the fluid density is stable (e.g. tidal flow in well-mixed estuaries). The later 
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scheme is used where width-averaged hydraulic and transport parameters can adequately 

describe the condition in the vertical direction. In this case, the flow in one horizontal 

direction is uniform but it shows large variations in vertical direction (e.g. wind-driven 

circulation perpendicular to the coast).  

 

It has been pointed out by Moffatt and Nichol (2000) that 2-DH models have the capability to 

handle several features such as Coriolis Effect, transverse components of flow, realistic 

friction and non-linearity by means of the distribution of flow through arbitrary cross-section. 

On the other hand, 2-DH cannot describe secondary circulation, whether transverse and 

vertically sheared like at bends, or driven by lateral differences in salinity due to differential 

ebb or flood currents. Furthermore, 2-DH models cannot represent water circulation. 2-DH 

models are more time consuming to set up compared to 1-D model and require more 

computer time to run in addition to more field data for calibration and validation processes 

(Moffatt and Nichol, 2000).  

 

2.4.3 Three-dimension model 

 

Three-dimension models are similar to two-dimension models except that the vertical 

dimension is modelled through a number of layers. The thickness of layers may be of uniform 

type, or may represent the water depth in a number of layers of unequally spaced. Therefore, 

three-dimension models can handle the vertical structure of the water column and provide 

more details about the hydrodynamic system.   

 

It is well known that the flow phenomena in nature have three dimensions. Therefore, to 

simulate the hydrodynamic and transport processes more realistically, three dimensional (3-

D) model schemes are necessary. Turbulence is basically three-dimensional phenomenon 

(Moffatt and Nichol 2000), and three-dimensional models are very useful for the simulation 

of turbulent heat and mass transport. These models are based on the Reynolds-averaged form 

from the Navier-Stokes equations, using additional equations of various degree of complexity 

for the turbulence closure.  

 

Three-dimensional modelling is a very powerful tool; the flow is integrated and computed for 

each time step taking into account both horizontal and vertical components. However, the 

data required for setup, calibration and validation processes are extensive and expensive due 

to the necessity of a comprehensive field program to capture the complexity of flow in three 

directions. In addition to that, the computational time consumes longer computer simulation 

times as compared to two schemes (Moffatt and Nichol, 2000).  

 

Many researchers (e.g. Moffatt and Nichol, 2000; Tevfik, 2006) pointed out that the major 

problem faced by 3-D modelling is the determination of suitable, realistic initial and 

boundary conditions. This often involves a very extensive and expensive field measurement 

program. On the other hand, they also pointed out that the suitability of the use of 3-D models 

is related to the number of the grids applied in the vertical direction. If the vertical 

distributions are not defined accurately, the desirable results cannot be obtained from the 3-D 
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model. This means that in some cases refined grids are required in order to obtain efficient 

and accurate results. 

 

2.5 Model Evaluation 
 

Model evaluation composes of analysing the model errors and comparing simulated outputs 

with field measurements. The main aim of evaluation is to get an estimate about the 

usefulness of a model and judging the predictive ability of the model. If the simulation results 

are in a good agreement with the measurements then the model can be considered reliable.  

 
2.5.1 Sensitivity Analysis  

 

Sensitivity analysis is one of the essential steps in the model set up processes. The major aim 

of sensitivity analysis is to obtain an estimate on the general performance of the model and 

determine the influences of input variation on the model results (Furbringer and Roulet, 1999; 

Palacio et al., 2005). Sensitivity analysis requires changing the  odel’  in ut  y      ll 

  ount  nd chec ing their  ignific nce on the  odel’  re ult   It h    een  ointed out  y 

Law and Kelton (1982) that if the output varies significantly due to a small change in an input 

parameter, that input parameter may require reconsideration. It is suggested that multiple runs 

are necessary to assess the sensitivity of the model to different parameters values. A 

comprehensive sensitivity analysis can give the modellers idea about the robustness of the 

model in addition to provide insights into whether the obtained simulation results conform to 

reality. Based on the sensitivity analysis, the numerical parameters (grid resolution and time 

step) are fixed while the physical parameters (e.g. boundary conditions, bottom roughness 

and wind drag coefficients) that influences the simulation results are identified.  

 

2.5.2 Calibration 

 

Calibration process appears as a second phase in model development which highly depends 

on data availability and researchers opinion. The main aim of calibration is to adjust the 

physical parameters in the numerical model to reproduce the conditions exist in the studying 

area. This means that calibration processes involve adjustments to the physical parameters in 

the model which were identified during the sensitivity analysis in order to match the field 

measurements as realistic as possible.  In case of hydrodynamic modelling, the calibration is 

frequently made by qualitative comparison of time series of predicted and measured data for 

the same location and period of time (Metha, 1995; Hsu, et al., 1999).  

 

It is worth mentioning that measurements may contain inaccuracies and errors. In addition to 

that, it should be taken into consideration that adjusting certain model parameters to match 

observations at one location and time, may decrease the quality of the model results with 

respect to the measurements in other locations in the model domain area. Therefore, the 

modeller in such cases should arrive at balance during calibration phase for a certain 

  r  eter  nd  ee  on the ‘‘good enough’’ condition (Palacio et al., 2005). However, the 

modeller cannot over-calibrate the model because the calibration is made with one parameter 

at a specific time while in reality all parameters are acting simultaneously.  
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2.5.3 Validation 

 

The validation processes is considered the last phase in the model development before the 

application. The aim of this process is to assess the credibility of the simulation models. This 

step involves that, the calibrated models are used to predict another different measured 

period. Therefore, the degree to which the models can predict this period is a measure of its 

predictive ability (Metha, 1995; Hsu, et al., 1999). 

 

However, a comprehensive validation of such models against field data cannot be carried out 

because of the lack of field data with sufficient spatial coverage. According to Palacio et al., 

(2005), validation of numerical model for field condition requires a data set of sufficient 

length to cover variations in the tidal cycle and varying wave and wind conditions. In 

addition to that, he pointed out the importance of availability of dense spatial instrumental 

coverage within the modelling area in order to obtain an accurate representation of the spatial 

flow pattern.  

 

2.6 Three-dimensional circulation models 
 

Three dimensional models to simulate oceanic circulation witnessed high development in 

1980s taking the advantages from the increase in computing capacity and in the 

breakthroughs in turbulence modelling (Moore et al., 2004). In 1990s, hydrodynamic models 

were consolidated and a number of models with great visibility started to appear. In the 

second half of the 1990s, with the technology advances in the hardware and software, 

integrated models and coupled modules started to emerge. Currently, research efforts on 

modelling is taking place towards operational modelling systems integrating different 

disciplines and assimilating as much field data as possible  with special emphasis to remote 

sensing (Moore et al., 2004). The improvements in the development of 3-dimensional 

numerical models in the field of hydrodynamic and oceanography have assisted in 

simulating, understanding and predicting several phenomena. The following sections briefly 

throw the light on the range of numerical methods available to represent and identify some 

key phenomena in ocean modelling. 

 

2.6.1 Theory and basic approximation  

 
The movement of ocean currents and other fluid flow phenomena is governed by the Navier-

Stokes (momentum), continuity and energy equations (more details about the general form of 

the basic equations can be found in the literature e.g. Metha, 1995; Bryan, 1969). In most 

cases, the variable to be solved are the velocity components u,v,w, the pressure P, the 

volumic mass of the fluid  , the temperature T and salinity S of the fluid. These variables are 

functions of space and time coordinate. According to Metha (1995), the basic hypotheses 

applied in ocean modelling are as follows:   
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 Fluids in ocean modelling are treated as incompressible. 

 The Coriolis force and the gravity force are taken into account while the centrifugal 

forces can be neglected. 

 The density variation can be neglected in all terms of the equations except in the 

gravity force due to their significant effects. (Boussinesq approximation) 

 The internal energy is only temperature dependent because the fluids are considered 

incompressible. 

 The energy equation is simplified into one temperature equation and one salinity 

equation. 

  

2.6.2 Aspects of 3-D Modelling 

 

Three dimensional numerical models are based on the same set of governing equations but 

their performance differs widely. It has been pointed out by Swapna (2005) that, when the 

same equations are discretized for solution on a digital computer, the behaviour of the 

resulting descretized forms of governing equation can differ because of the horizontal and 

vertical descretization schemes used, time stepping methods adopted and the way of handling 

important terms like advection and diffusion. Each modelling case requires specific model, 

and the decision to select a suitable model should be made based on modelling needs. 

Modellers should therefore, choose a suitable model to resolve the phenomena of concerned 

taking into consideration accuracy and efficiency. In order to decide which horizontal and 

vertical discretization schemes are appropriate for the Red Sea domain, a detailed description 

of these schemes is given in the following sections. 

 

2.6.3 Grids, Horizontal and Vertical Discretization 
 

To solve the hydrodynamic equations of motion (fluid movement, pressure and transport of 

constituents) numerically, approximations are introduced. These approximations are algebraic 

equations that are solved at separate points or cells (Tevfik, 2006). This means that the 

domain of the area of interest is represented as a grid. There are two types of grids usually 

adopted for such purpose i.e. structured and unstructured Grids. The former type is used if the 

computational domain is selected to be rectangular in shape and the interior points are 

distributed along the orderly defined gridlines. The latter is used when the grid points cannot 

be associated with orderly defined gridlines. The same as all methods, and consequently grid 

types have some advantages and disadvantages. Tevfik (2006) indicated that there is no 

unique approach to decide which method is better, but the geometry plays a role in this regard 

and gives one type more advantages than the other. However, a grid selection depends mainly 

upon the problem of interest. 
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2.6.3.1 Horizontal discretization 

 

To solve the three-dimensional hydrodynamic equations, two commonly methods known as 

finite difference and finite element methods are used. In case of rectangular domains, it is 

suggested that finite difference equations are most efficiently solved with equal grid spacing. 

But in reality it is impossible to have rectangular domains. Therefore, the non-rectangular 

physical domain in this case should be transformed into rectangular computational domain 

where grid points are equally spaced (Tevfik, 2006).  In finite difference approach, usually 

the variables are staggered in space by using staggering techniques such as Arakawa C-grid 

(see chapter 4). 

 

On the other hand, if the domain is very irregular such as bays and river branches, 

unstructured grids are appropriate to represent the irregularities. The triangular elements are 

flexible in shape to fit any type of boundary. Finite element methods are generally used with 

unstructured grids (Tevfik, 2006).  However, finite element methods are complicated and 

require larger CPU memory space and also time. Therefore, the finite difference method is 

frequently preferred over the finite element method. According to Moffatt and Nichol (2000), 

finite difference calculations are more computationally efficient for a given net size than 

finite element calculations.  

 

2.6.3.2 Vertical Discretization 

 

The choice of the vertical coordinate system is one of the most important aspects in the ocean 

model design. This is because the bottom topography and its gradients are very important to 

the circulation and to the horizontal and vertical transport of properties such as temperature 

and dissolved substances (Swapna, 2005; Chassignet et al., 2002). In numerical ocean 

models, there are three different vertical discretization systems  no n   ; “z-coordinate 

 odel”  e g  Modul r Oce n Model  Bry n   969)  ‘‘I o ycn l coordin te  odel’’  e g  

Mi  i I o ycnic Coordin te Oce n Model  Blec   nd   ith   990)  nd “ -coordinate 

model”  Phillips, 1957). Figure 2.1 gives a picture about the main types of vertical 

discretization currently being used in ocean modelling. It can be seen clearly differences 

among the three vertical coordinates (e.g. the mixed layer depth).  

 

 
Figure 2.1 Main types of vertical coordinate representation in ocean modelling, Z (left),   

(middle) and   (right) coordinate system [Chassignet et al., 2002] 
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2.6.3.2.1 Z-coordinate model 

 

Z-coordinate systems are the simplest numerical discretization and have been used for many 

decades. In the z-coordinate system, the model domain is divided using equal spacing layers 

over the vertical. The Z-grid has horizontal co-ordinate lines that are almost parallel with 

density interfaces (isopycnals) in regions with steep bottom slopes (Swapna, 2005; 

Chassignet et al., 2002). The bottom and free surface is usually not a co-ordinate line and is 

represented as a staircase. The number of grid cells in the vertical varies from grid point to 

grid point and it depends on the local depth. The advantage of this type of system is the 

ability to represent the horizontal pressure gradient terms accurately. These models are 

suitable to areas that are well-mixed because they can provide the very fine resolution needed 

to represent three-dimensional turbulent processes (Chassignet et al., 2002). However, Z-

coordinates have a disadvantage in regions of sloping topography where the levels intersect 

the bathymetry (unrealistic vertical velocities near the bottom can result). To overcome this 

problem, the number of vertical layers needs to be increased to improve the representation of 

bottom topography and thus, flow in the near bottom area. However, the computational time 

in this case would be high (Chassignet et al., 2002).  

 

2.6.3.2.2  -coordinate model 

 

In the  -coordinate system, the vertical coordinate follows the bathymetry, keeping the same 

number of vertical grid points everywhere in the domain, regardless of the local water depth. 

Due to the nature of this type of model, the layer thickness is non-uniform changing with 

time and space (Tevfik, 2006; Swapna 2005; Chassignet et al., 2002). This type is usually 

important and appropriate for wind-driven flows, heat exchange with the atmosphere and the 

near bed area (sediment transport). The disadvantage of sigma-coordinate system is that it has 

difficulties to represent the horizontal pressure gradient accurately where stratified flow can 

occur in combination with steep topography (Swapna, 2005; Haney, 1991; Chassignet et al., 

2002)  Bec u e the “ ” le el i   ound ry fitted  it will not have enough resolution around the 

pycnocline which is strictly horizontal in the physical space. Pressure gradient error can give 

rise to unrealistic flows. To overcome such problems, increasing the horizontal resolution and 

smoothing bathymetry is recommended (Haney, 1991; Chassignet et al., 2002).  

 
2.6.3.2.3  -coordinate model 

 

The  -coordinate system uses the potential density referenced to given pressure as the 

vertical coordinates (Bleck and Smith, 1990; Chassignet et al., 2002). In the  -coordinate 

models, the water column is divided into distinct homogeneous layers and the thicknesses of 

these layers vary from place to place and from one time step to the next. The advantage of 

isopycnal models is the ability to represent the horizontal pressure gradients and keeping the 

conservation of the mass between the equipotentials. However, this type of model has limited 

application in coastal areas and in the surface and bottom boundary layers because the cross-

isopycnal mixing is not available in this coordinate system. Therefore, the representations of 

the surface mixed layer and the bottom boundary are considered large weaknesses.  
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2.7 Hydrodynamics and Circulation 

 
Circulation of a marine environment in general is highly complex. It can be derived from 

both barotropic and baroclinic forces. The former forces are those where density is 

considered constant and pressure is a function of the vertical depth only      whereas the 

latter are those where density of the fluid is not assumed constant and functions of x, y, and z.   

 

A Barotropic flow includes tides, wind induced currents and atmospheric pressure, which are 

usually uniform throughout the water column (Apel, 1987; Paul, 2003). Because tides are 

considered to be long waves (wavelength greater than wave height), tidal velocities do not 

change with respect to vertical distance below the sea water surface with exception at the 

ocean bottom where frictional forces are effective. 

 

Baroclinic flows on the other hand are derived from pressure gradients and variations in the 

vertical. They are characterised by lower frequencies and take longer to spread and propagate 

in comparison to barotropic flows (Apel, 1987; Paul, 2003). Examples of baroclinic flows are 

flows caused by salinity and temperature gradients caused by heating, evaporation and 

freshwater inflow or a combination of them. It should be pointed out that there are some 

additional factors that have constantly active role with different degrees such as Coriolis 

effects, freshwater and storm surge. More information about the circulation driven forces is 

discussed in the following sections. 

 

2.7.1 Tides 

 

Tides are defined as the periodic motion of the water surface resulting from the gravitational 

attraction of the moon and the sun in combination with the centrifugal force. The lunar effect 

is larger than the solar influence due to the distances between the moon and the earth is 

significantly less in comparison to the sun. When the earth, moon and sun form one line, the 

full or new moon, the solar and lunar tides produce large tidal amplitudes. This is known as 

spring tide phenomenon (the tidal range at a maximum). Another phenomenon occurs when 

solar and lunar tides are 90° out of phase, their influences are reducing each other resulting 

less tidal amplitude. This phenomenon is known as neap tide (the tidal range at a minimum). 

 

Tides propagate as long waves on the rotating earth. The combined constraint of ocean basin 

geometry in addition to the influence of the Coriolis force leads to the development of 

amphidromic system which make the tidal wave rotates around the amphidromic point in 

counter-clockwise direction in the northern Hemisphere and in clockwise direction in the 

Southern Hemisphere. The tidal range at amphidromic point is zero and increases outward 

away from it. The locations of these points in an ocean basin depend mainly upon factors like 

the geometry of the basin including the coastal configuration and bathymetry (Pugh, 1987 

and Paul, 2003). 

 



  Chapter 2. Literature Review 

 
20 

Tide can be represented by number of harmonic constituents. Table 2.1 lists the major tidal 

constituents, their period and angular speeds. The general form of describing each of the tidal 

constituents is expressed as: 

 

                                                                                                                             (2-1) 

Where:    is the amplitude,    is the angular speed (related to period    as         ), 

   is the phase lag of the observed constituents relative to the theoretical Equilibrium Tide 

o t ined  y  dju ting ‘   ’ to     rticul r ti e  eridi n  ‘  ’ i  the  h  e l g of the 

constituent on the Equilibrium Tide at Greenwich, in Greenwich Mean Time. The relation 

between the two phase lag is expressed as: 

 

                                                                                                                            (2-2) 

 

Where:    is the time zone defined as the shift in time at any place with respect to the 

Greenwich Mean Time. 

 

Tides in narrow water bodies such as marginal seas and estuaries act quite differently due to 

the shape of these areas. Bathymetry and configuration of sea bed play also role in the 

propagation of tide. When tides propagate into shallow water, the non-linear mechanism 

causes transfer of tidal energy to other frequencies (Pugh, 1987; Paul, 2003). These 

frequencies are represented as shallow-water tidal constituents known as overtides and 

compound tides (Table 2.2). The frequency of overtides (e.g. M4 and M6) is an exact 

multiplies of the frequency of the constituents that subject to transformation in shallow water. 

On the other hand, a compound tide is produced from the shallow water-interaction of two 

major tidal constituents (e.g. MS4 is produced by the interaction of M2 and S2).  

 

To represent the propagation of tides in the ocean and marginal seas, so-called co-range and 

co-tidal charts are used. The former is used mainly for visualizing the amplitude of the tide 

while the latter chart is used to illustrate the progression of tides. Co-range line indicates 

locations that have equal tidal range and the co-tidal line connects locations where the phase 

of tide is the same. 

 

2.7.2 Wind Stress 

 

When wind blows over the ocean, it will supply momentum and kinetic energy to the upper 

layer of water. Therefore, this energy drives surface water movements as a result of its 

frictional drag on the surface (Apel, 1987; Paul, 2003). This dragging generates a shear stress 

along the water-air interface. According to Paul (2003), stress acting on the sea surface by the 

wind is measured as the horizontal force per unit area. To estimate the shear stress ( ) caused 

by the wind, empirical equations are available in the literature. The following relationship 

represents how wind is related to surface shear force: 

 

                                                                                                                                    (2-3) 
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Where:   represents wind stress vector,   represents the density of air, C represents the 

atmospheric drag and U represents the wind velocity vector measured at a certain height. 

 

 

Table 2.1 Major tidal constituents [Pugh, 1987] 

Types Tidal species symbol Speed [°/hour] Period [hour] 

Semi-diurnal 

Principal Lunar M2 28.9841 12.4206 

Principal Solar S2 30.000 12.0000 

Larger elliptical lunar N2 28.4397 12.6584 

Smaller elliptical lunar L2 29.5285 12.1916 

Declinational lunar K2 30.0821 11.9673 

Diurnal 

Luni-solar K1 15.0411 23.9344 

Principal lunar O1 13.9430 25.8194 

Principal solar P1 14.9589 24.0659 

Larger elliptical lunar Q1 13.3987 26.8684 

Elliptical lunar J1 15.5854 23.0984 

Smaller elliptical lunar M1 14.4920 24.8412 

Long period 

Lunar semi-monthly Mf 1.0980 327.85 

Lunar monthly Mm 0.5444 661.31 

Solar Annual Sa 0.0411 8765.76 

Solar semi-annual Ssa 0.0821 4383.05 

 

       Table 2.2 Important shallow water tidal constituents 

Tidal species symbol Speed [°/hour] 

Long period Msf 1.016 

Semi-diurnal 
2SM2 13.016 

2MS2 27.968 

Fourth diurnal 

M4 57.968 

MS4 58.984 

S4 60.000 

Sixth diurnal 
M6 86.952 

2MS6 87.968 

 

 

2.7.3 Atmospheric Pressure Variations  

 

Changes of atmospheric pressure are associated according to the seasons. Changes in the 

pressure exerted by weather systems produce influences on the water levels in the ocean. The 

measurement of these atmospheric pressure variations is known as barometric pressure. A 
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decrease in barometric pressure of 1 hPa results in an increase of sea level by 1cm. This 

relationship is known as inverse barometric effect and is evaluated using the following 

formula:  

 

                                                                                                                            (2-4) 

 

Where:    represents the change in water level [cm] and       represents the changes in 

barometric pressure [hPa]. 

 

The inverse barometric phenomenon is difficult to measure since there are other factors 

influence the mean water level such as continental shelf waves and wind (Paul, 2003 and 

Apel, 1987). However, it is important to identify the barometric pressure as a variable in 

affecting the water levels. 

 

2.7.4 Surface circulation 

 

Surface ocean currents respond mainly to the wind field. The wind-driven circulation occurs 

mainly in the upper few hundred meters and therefore is considered as a horizontal 

circulation. However, vertical motions can be induced when the geometry of surface 

circulation results in convergences (down-welling) or divergences (upwelling) (Paul, 2003; 

Rahmstorf, 2006). The depth to which the surface circulation can reached depends mainly 

upon the water column stratification. For instance, in the equatorial region the currents 

expand to 30-500 m whereas in the circumpolar region (where stratification is weak) the 

surface circulation can extend to the sea floor (Paul, 2003).  

 

When the wind blows across the sea surface, it drags the surface along and puts this layer in 

motion. The direction of water motion is not always the same as the wind direction in case of 

other factors. Due to the earth rotation this shallow layer is deflected to the right (left) of the 

wind direction in the Northern (Southern) Hemisphere. For instance, in the Northern 

Hemisphere the surface currents deflect to the right at (45°) and pushes the beneath layer 

slightly to the right direction (slightly weaker current) and next layer pushes next layer 

slightly to right producing a spiral of the current vectors with decreasing speed associated 

with increasing depth (Figure 2.2a). This phenomenon or feature is known as the Ekman 

spiral.   

 

Under the influence of a strong, persistent wind, the Ekman spiral may extend to a depth of 

between 100 and 200 m, below which wind-induced effects are negligible (Paul, 2003; 

Rahmstorf, 2006). Ekman calculated the net transport over the wind-driven spiral (called 

Ekman transport) to be 90° to the right of the wind in the Northern Hemisphere and to the left 

in the Southern Hemisphere (Figure 2.2b). This calculation represents the average of all the 

directions and speeds of the current spiral.  

 

It is important to mention that Ekman transport plays important role in other types of surface 

water currents. That is, when the wind blows parallel to a shore (this depends on the 

hemisphere), the resultant Ekman transport moves the near-surface water offshore. As a 
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result, water rises from below to compensate for the seaward surface flow. This vertical 

process is known as upwelling. The sinking of surface water (known as downwelling) on the 

other hand is caused along a shoreline by winds blow parallel to the coast; Ekman transport 

drives water against the land and causes surface water to sink. However, these vertical 

processes are not limited to the edges of continents but they also can occur in the open ocean 

where winds cause surface waters to diverge from a region (causing upwelling) or to 

converge toward some region (down-welling) (Paul, 2003; Rahmstorf, 2006). 

 

 

 

Figure 2.2 Ekman Spiral describes how the horizontal wind sets surface waters in motion. As 

represented by vectors, the speed and direction of water motion change with increasing depth. 

[Adopted from Paul, 2003] 

 

In the oceans, over time scales longer than several days and at spatial scales longer than 

several kilometres, the equilibrium of forces in the horizontal is between the pressure gradient 

force and the Coriolis force (Pual, 2003). The steady currents resulting from a balance 

between the two forces is known as geostrophic currents. When the flow is geostrophic, other 

forces (except the pressure gradient and Coriolis forces) become negligible. Under 

geostrophic equilibrium, the pressure gradient derives the water parcel to move from high to 

low pressure, but Coriolis force moves the parcel to the right in the Northern Hemisphere and 

to the left in the Southern Hemisphere. On the other hand, in a steady geostrophy state, the 

water parcel moves exactly perpendicular to the pressure gradient force. The vertical force 

balance that associates with geostrophy is hydrostatic balance (Paul, 2003). The mathematical 

formula for the geostrophy is as following: 
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                                                                   (2-6) 

The hydrostatic balance is  

                                                       
  

  
                                                                     (2-7) 

Where:   represents the Coriolis force,     represent the components of the horizontal 

velocity,   and    represent the density and a constant reference value respectively, 

      represent Cartesian coordinates with   oriented upward and   represents the pressure. 

 

2.7.5 Deep Circulation and Water Mass Formation 

 

As mentioned above the geostrophic currents of the ocean are largely limited to the upper 

layer of the water column as a result of direct affect of wind power. Deep water is not 

influenced directly by the wind however, is in motion at all depths. These subsurface currents 

are referred to as thermohaline circulation (THC) which resulting from density differences 

between water masses. It has been pointed out by Paul (2003) that studying the thermohaline 

circulation is difficult and expensive since it occurs in the subsurface of Open Ocean. In 

addition to that, these subsurface currents tend to flow very slowly making their speeds 

technically challenging to measure directly. Nevertheless, physical oceanographers have 

successfully identified the general pattern of subsurface water motion.   

 

Temperature (thermo) and salinity (haline) are the most important characteristics of seawater 

which determine and control the density of the water (the major factor governing the vertical 

movement of ocean waters). The so-c lled ‘‘ther oh line circul tion’’ i  the   rt of the 

ocean circulation driven mainly by fluxes of heat and freshwater at the surface and by density 

differences in the internal ocean (Rahmstorf, 2006 and Paul, 2003). In contrast to the wind 

driven-currents, the thermohaline circulation is not limited to the surface water but can be 

regarded as overturning of the world ocean from top to bottom. As the ocean is not a linear 

system, it is difficult to separate the thermohaline driven circulation from the wind driven 

circulation (Gill, 1982). For example, buoyancy forcing depends upon wind speed.  

 

Studies of the circulation and identification of water masses started in the second half of the 

19
th

 century. For example, Nansen (1906) was the first to observe the Greenland Seas Deep 

Water and later observed dense overflows in the Denmark Strait and at the Iceland-Faroe 

Ridgw. Helland-Hansen and Nansen (1909) carried out comprehensive and detailed survey to 

study the statues of circulation and hydrograph in the Nordic Seas (Blindheim and Østerhus, 

2005). In 1916, they introduced the TS-diagram which has become valuable oceanographic 

tool in classifying different water masses. A schematic representation of the global 

thermohaline circulation is shown in Figure (2.3).  
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As already mentioned the density of the water is the major factor governing the vertical 

movement of ocean waters. Therefore, in terms of vertical structure, the ocean is divided into 

three horizontal depth zones according to density (exception at high latitudes). These are the 

mixed layer, pycnocline and deep layer (Figure 2.4). Surface currents are subject to changes 

as a result of continuous variations in the wind, precipitation, and heating or cooling. 

Movements of surface waters due to wind produce a well-mixed layer of almost uniform 

density. Therefore, the surface layer of the ocean is called the mixed layer. The pycnocline 

layer is situated between the mixed layer and the deep layer where density increases with 

depth as a result of changes in temperature and salinity. When temperature is responsible for 

the increase in density with depth, the pycnocline is known as thermocline while if an 

increase in salinity is responsible for the increase in density with depth, the pycnocline 

known as a halocline. The layer below the pycnocline is the deep layer that accounts for most 

of the oce n’        In thi  l yer  the den ity gr du lly incre  e   nd   ter   o e  lo ly  

However, only at a few locations near the bottom the water moves fast enough to be 

considered currents (Paul, 2003). 

 

 

Figure 2.4 A cross-sectional longitudinal profile of the Atlantic Ocean from 60° N to 60° S 

showing the location of the mixed layer, pycnocline and deep layer adopted from [Rahmstorf, 

2006] 
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Open-ocean deep or intermediate convection is one of the most important mechanisms 

involved in the water mass formation in the ocean. Open-ocean deep convection occurs 

usually in winter in few regions of the world ocean. Deep water formation by convection 

process has been observed in the western Mediterranean (Leaman and Schott, 1991), eastern 

Mediterranean (Lascaratos, 1993), Labrador Sea (Clarke and Gascard, 1983), Greenland Sea 

(Schott et al., 1993); Weddell Sea (Gordon, 1978; Muench, 1988), Gulf of Lion (Grignon et 

al., 2010) and commonly is believed to be driving the thermohaline circulation. Three phases 

of convection have been described earlier by MEDOC-Group, (1970): the preconditioning 

phase, the violent mixing phase and the sinking plus spreading phase (Figure 2.5).  

 

Three conditions are required for open-ocean convection to take place: i) the water column is 

largely homogenized or weakly stratified, ii) the cyclonic gyre with doming isopycnals 

carries the densest deep water towards surface and iii) strong sea surface buoyancy loss to the 

atmosphere due to cooling and evaporation (MEDOC-Group, 1970; Swallow and Caston, 

1973). Once, these conditions are fulfilled, strong vertical mixing take place in the 

preconditioned area. In the violent mixing phase, convection is observed in the centre of the 

convective area, leading to strong mixing and deepening of the mixed layer. Relevant studies 

showed that sinking occurs in plumes of horizontal scale of (1 km) where the dense water 

sinks at vertical speeds of about 10 cm/s (Leaman and Schott, 1991; Grignon et al., 2010). In 

the l  t  h  e ‘‘the  in ing  nd   re ding’’ the  ixed   ter  in    nd   re d     y fro  the 

formation site horizontally.  

 

 
Figure 2.5 Schematic diagram of the three phases of open-ocean convection: (a) 

precondition, (b) deep convection, (c) lateral exchange and spreading. Surface buoyancy loss 

and the water mixed by convection is represented by curly and shaded arrows. 
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Chapter 3  
 

Overview of the Study Area 
 

3.1. Introduction 
 

As defined earlier in chapter [1] the underlying thesis focuses on the simulation of tides, the 

circulation patterns and thermohaline processes in the Red Sea. The study area is an inlet of 

the Indian Ocean lying between Africa and Arabia. As the first step in developing the 

hydrodynamic numerical model for the Red Sea as to obtain overview about the study area 

and to identify the most relevant processes in the site in question by means of literature 

review. This overview will be supported using data based from satellite technique or field 

measurements to verify and study the information found in the literature and to provide more 

insight into the physical system. Based on this information, the key and major processes that 

have to be resolved by the model are identified.  

 

This chapter presents general view of the characteristics of the area of investigation.  This 

includes the geographical location, geology and topography background of the Red Sea 

(section 3.2 to 3.4). This is followed by a description of the climate characteristics in section 

(3.5). Subsequently, the hydrodynamic processes of the Red Sea including tidal conditions, 

circulation patterns, exchange processes with surrounding system and hydro-graphic 

properties are given in section (3.6). The available field measurements that have been used 

for calibration and validation purposes, their sources and analysis are given in section (3.7). 

 

3.2 Geographical Location of the Red Sea 
 

The Red Sea is a narrow elongated-shaped sea (semi-enclosed) separating the land masses of 

Africa and Arabia, oriented north-northwest (NNW) and south-southeast (SSE). 

Geographically, it is located between the latitude 30-12° N and longitude 36-45° E and 

extends over a distance of about 2000 km covering a total surface area of about 440,000 km
2
 

(Figure 3.1). The physical boundary of the Red sea is defined by the western and eastern 

coastlines. The coastline of Egypt, Sudan, Eritrea and part of Djibouti define the western 

boundary of the Red Sea, while the coastline of Jordan, Saudi Arabia and Yemen define the 

eastern coastline. In the south, the Red Sea meets the Gulf of Aden and the Indian Ocean 

through a narrow strait (26 km wide and 200m deep) known as Bab el Mandeb. In the north, 
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at about 28°N the Red Sea consists of two gulfs known as Gulf of Aqaba and Gulf of Suez. 

 he  ed  e ’  width is about 180 km in the north and increases towards the middle region to 

350 km and starts to narrow southwards reaching about 28 km at Bab el Mandeb strait.  

 

 

 

Figure 3.1 Map of the study area (Red Sea) including the Gulfs of Suez and Aqaba in the 

northern part of the Red Sea and part of the Gulf of Aden. 

 

 

3.3 Geological history and formation of the Red Sea 
 

A brief description concerning the Red Sea formation is presented here. For a detail 

description reference is made to Sheppard et al., (1992).The region was formed as a result of 

tectonic plate movement of the African, Arabian and Mediterranean shields pulling away 

from each other, creating a great slash in the land. Rifting has not been continuous but paused 

in the first half of the tertiary, during which important episodes of volcanic activity led to the 

extrusion of volcanic islands.  
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3.4 Topography and Bathymetry 
 

Figure 3.2 shows the bathymetric map of the study area. The Red Sea experiences irregular 

bottom topography. It is shallow at its northern and southern ends and the average depth is 

524m while maximum depth is > 2000 m found in the axial trough at 19
°
 N, 42

°
 E. In 

addition to that, there are shallow shelves in southern part of the Red Sea on both sides of the 

strait of Bab el Mandeb connecting the Red Sea to the Gulf of Aden. Most of the coastlines of 

the Red Sea are bordered by shallow fringing reefs. The edges of these reefs shelve steeply 

into deep water or they slope gently into lagoons bordered by an offshore barrier reef system 

(Morley, 1975; PERSGA, 2006).  The bottom of the Red Sea is divided into six regions 

mainly the coral reef zone, coastal shelves, the main trough, the axial trough, the hot brines 

region and the Strait of Bab el Mandeb (Drak and Girdler 1964; Knolt et al., 1966; Morcos, 

1970). Table 3.1 presents a brief description of this division.  

 

 

Figure 3.2 Bathymetry map of the Red Sea [Institute of Hydrological and Oceanic Sciences, 

Taiwan]. 
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Table 3.1 Regions of bottom of the Red Sea. 

Region Description 

Coral reef 

zone 

Growing vigorously of depth less than 50m. Development occurs along 

Saudi Coast about 400 km long and several km wide. 

 

Coastal 

Shelves 

 

Extending from the shore to a depth of 300 m to 600m. The coastal shelf is 

wider on the Asiatic side than on the African side and increases in width 

south of 19°N 

 

The main 

trough 

 

Extending from a depth of 600m to 1100m. Deepening more than 1000m 

depth extends to the southern tip of the Sinai Peninsula. South of 15° N, 

depth is generally less than 500m, indicating the absence of the main 

trough. Isolated deep pockets of water occur in the main trough between 26° 

N and 23°N 

 

Axial trough Between 23° N and 17° N, the 1000 m isobaths encloses a continues deep. 

Between 22
°
 N and 19

°
 N, a continuous isobaths encloses more than 1500 

m. In places, the axial trough in more than 2000m deep and more than 20 

km wade. 

 

The hot 

brines 

region 

Located in the central part of the axial trough between 21° 10
´
 N and 21° 30

´
 

N at depth greater than 2000m, characterized by temperatures greater than 

60oC, salinity greater than 300‰. 

 

Strait of Bab 

el Mandeb 

Extending between Bab Al-Mandeb and Siyan. Divided by Miyurn Island 

into two channels, [I] 4km wide and 25 deep in the eastern side [II] 20 km 

wide and 300m deep south west of Miyurn Island. In the southern side of 

the Strait, the bottom slopes down to the Gulf of Aden. 

 

 

3.5 Climate Characteristics  
 

The Red Sea region is characterized by a typical desert and semi-desert climate with high 

temperatures in summer (June-September) ranging between 30-35°C and in winter (October-

May) between 24-28°C. As a result, the Red Sea has higher rate of evaporation (E) among 

most oceans and seas which exceeds the precipitation (P) rate in the region. The average 

evaporation rate for the Red Sea as a whole has been estimated by Sofianos et al., (2002) to 

be 2.1my
-1

. However, they reviewed the previous estimates of the evaporation rates in the 

Red Sea and concluded that the estimates range from 2.3 m/year to 1.5 m/year. The rainfall 

over the Red Sea is low and the annual rainfall is subject to great variations from year to year 

(Morcos, 1970). In addition to that, there is no rivers inflow in the Red Sea.  In general, the 

average annual rainfall is estimated to be less than 250 mm. 
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3.5.1 Prevailing Winds 
 

The wind patterns over the Red Sea have been described by several authors (e.g. Patzert, 

1974a; Quadfasel and Baudner, 1993; Sofianos and John 2003). In general, the wind field 

over the Red Sea blows mainly along the axis of the basin due to high mountains and plateaus 

on both sides of the basin. In the northern part of the basin (north of 20°N) the winds blow 

from north-northwest (NNW) throughout the year. The climate of the southern part of the 

Red Sea (south of 20° N) including Bab el Mandeb and the Gulf of Aden are subject to two 

monsoonal events (Northeast and Southwest). During the NE monsoon (October to May), 

winds blow into the Gulf of Aden from an easterly direction and into the Red Sea from the 

SSE. In contrast, during the SW monsoon (June to September) winds are from the NNW over 

the southern Red Sea and from SW over the Gulf of Aden, causing strong upwelling along 

southern Arabia (Quadfasel and Baudner, 1993). On the whole, the winds over the Red Sea 

region are stronger during the winter months compared to summer months. The surface winds 

can reach speeds of more than 10 m/s. 

 

To confirm the monsoon cycle described above, wind data from satellite derived QuikSCAT 

are used  ‘‘Qui  CA  d t   re  roduced  y  e ote  en ing  y te    nd   on ored  y the 

NASA Ocean Vector Winds Science Team, data are available at 

http://podaac.jpl.nasa.gov/quikscat/ ). These data cover the period from January-2000 to 

December-2007. The data were averaged to construct the patterns of monthly mean winds 

under different months. The patterns of monthly mean winds under different months over the 

Red Sea region are shown in Figure 3.3. As can be seen from the plots, the general wind 

patterns over the Red Sea is directed along the main axis of the basin and the monsoon wind 

directions are clearly visible. According to the figure, wind conditions of the Red Sea can be 

divided into three main regions as following:  

 

 Northern Red Sea (Northward of Latitude 20° N): In this region, the prevailing winds 

are mainly NNW all the year round.  

 Southern Red Sea (Southward of Latitude 20

 N): This region including Bab el 

Mandeb and the Gulf of Aden are subject to two annually changing monsoonal 

events.  From May to September winds blow from the same direction as in the 

northern Red Sea. In October, winds gradually change to SSE and retain this direction 

until April.  

 Intermediate Region (Latitudes between 18

 and 20


 N): This region develops in the 

winter months due to the weak NNW winds (2.5-4.5 ms
-1

) of the northern part and the 

strong SSE winds (6.8-9.5 ms
-1

) of the Southern part of the Red Sea. It is 

characterized by relatively low-pressure resulting in calm conditions.  By the 

beginning of summer it moves gradually to the south, giving way to a transition as the 

prevailing wind changes from SSE to NNW. 

 

 

http://podaac.jpl.nasa.gov/quikscat/
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The description of wind patterns over the Red Sea in the previous studies suggests a uniform 

definition; nevertheless, Sofianos and John (2003) mentioned that, details of the wind field 

estimates differ between different data sets particularly in the northern part of the Red Sea. 

However, in their study data from Comprehensive Ocean Atmosphere Data Set (COADS) 

were used, which showed similar patterns (see Figure 2 in their paper), indicating that the 

basic seasonal cycle in the region is a very robust feature. 

 

 

 

Figure 3.3 Monthly mean wind climatology over the Red Sea and part of Gulf of Aden, 

Obtained from QuikSCAT, averaged over 2000-2007. 
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3.6 Hydrodynamic Processes 
 

3.6.1 Tidal conditions 

 

From the available literature, it was found that very few attempts have been carried out to 

study the tides in the red Sea. Due to the few published work, most of the general information 

presented in this section about the tidal conditions in the red Sea were obtained from a 

unpublished report which was prepared by Intergovernmental Organization known as 

Regional Organization for the Conservation of the Environment of the Red Sea and Gulf of 

Aden (PERSGA).  

 

The tide in the Red Sea has been described earlier by Defant (1961). He supplied a dynamical 

explanation of actual tides based on few analytical analyses made to determine the tides in 

the strait of Bab el Mandeb. The results of these analyses were used to explain tidal dynamics 

in the whole Red Sea basin. The conclusion drawn suggests that the tides are essentially co-

oscillations with those of the Gulf of Aden and the astronomical forces producing small 

modifications in the phase of the semidiurnal tide. However, Edwards and Head (1987) 

pointed out that a complete explanation of the Red Sea tides is not yet agreed. According to 

PERSGA (2006) the tide of the Indian Ocean and Gulf of Aden does not propagate into the 

Red Sea due to the narrow connection between them. As a result, the tides of the Red Sea are 

relatively small. 

 

The tidal conditions of the Red Sea are characterized by its low tidal range with semidiurnal 

characteristics. There is a difference of six hours between the time of high water in the north 

and south. This means that when it is high water at the southern end of the Red Sea signals 

low water at the northern part and vice versa. The tidal range changes from north to south 

with greatest values at the two ends. In the north at the entrance of Suez and Aqaba Gulfs the 

spring range is about 0.6 m while in the southern part of the Red Sea (at Massawa and 

Kamaran Island) is around 0.9 m. However, the range decreases towards the central part of 

the Red Sea near Jeddah and Port Sudan where amphidromic system (counter-clockwise) 

exists. In the central part of the Red Sea there is no appreciable semidiurnal tide. There are 

also another two nodal zones across the Red Sea with negligible tidal ranges occurring to the 

north of Bab el Mandeb and at the entrance of Gulf of Suez. It has been pointed out by 

PERSGA, (2006) that in places where the semi-diurnal tides are very weak, diurnal character 

may appear. This happens at the nodal zones, where some diurnal type of tide may appear, 

but only for short periods and in very restricted positions.  

 

In the literature, very few published studies on tidal observations are found. Sultan et al., 

(1995) used time series of hourly sea level records for one year to classify the type of tidal 

regime at two stations located in the central part of the Red Sea (Jeddah and Port Sudan). 

Their analysis showed that the tide at Jeddah can be classified as mixed type dominated by 

semidiurnal tide. On the other hand, they found that the semidiurnal components (M2, S2) at 

Port Sudan are smaller in comparison with those at Jeddah and the amplitudes of the 



  Chapter 3. Hydrodynamic Processes 

 
34 

fortnightly and monthly components are large. Based on the form ratio (F) value, the tide at 

Port Sudan was found to be of diurnal type. This was attributed to the proximity of Port 

Sudan to the amphidromic point. Saad (1997) performed harmonic analysis of hourly sea 

level records for the period (1992-1994) in the southern part of the Red Sea at JIZAN (Lat 

16° 53´49´´N, Long 42° 35´05´´ E). His analysis showed that the tide at JIZAN is dominated 

by the large amplitudes of the major semi-diurnal constituents M2, S2, and N2. Diurnal 

components on the other hand (O1, K1) showed the smallest amplitudes among the others. 

Using the form ratio (F) to determine the character of the tide, a ratio less than 0.25 is found, 

indicating the type of semidiurnal tide. 

 

3.6.2 Circulation patterns  

 

From the available literature, similar to the tides, it was found that very few attempts have 

been made to study the circulation inside the Red Sea domain. During the past century most 

of the studies carried out in the Red Sea were focused on the southern part of the Red Sea 

mainly at the strait of Bab el Mandeb, aiming at understanding the water exchange between 

the Red Sea and Gulf of Aden or the spreading of Red Sea outflow into the Gulf of Aden as 

well as the Arabian Sea (see section 3.6.3). Inside the Red Sea domain, observational studies 

are very limited and sparse in space which leads to difficulties in constructing a picture of the 

three-dimensional circulation in the Red Sea.  

 

There is a general agreement that the large-scale circulation in the Red Sea is derived and 

controlled by two main mechanisms namely the wind and the thermohaline forcing. 

However, there has been disagreement over the relative importance of the thermohaline and 

wind forcing and their role in the circulation and stratification of the Red Sea. Several authors 

such as Maury (1855); Phillips (1966); Eshel et al., (1994) and Tragou and Garrett (1997) 

believe that circulation in the upper layer could be attributed to thermohaline forcing. This 

was explained by the incoming fresh warm water from the Gulf of Aden into the Red Sea 

which moves northwards and become cools due to the high evaporation in the northern 

region. As a result, formation processes of very saline and denser water take place; therefore, 

it sinks and flows out of the Red Sea over the shallow sill of Bab el Mandeb. On the other 

hand, Thompson, (1939), Siedler (1969) and Patzert, (1974a) argued that the wind plays 

primary role while the thermohaline forcing plays a secondary role in determining the 

circulation patterns.  

 

3.6.2.1     Wind driven circulation 

 

As described earlier in section 3.5.1 the monthly-mean surface winds over the Red Sea flow 

mainly parallel to the axis of the basin due to the high mountain on both sides. In the northern 

part of the basin (north of 20°N) the winds blow from NNW throughout the year while in the 

southern part (south of 20° N) the winds reverses its direction seasonally from NNW in 

winter to SSE in summer (Figure 3.3). Thus, the surface circulation in the Red Sea is 

influenced by the monsoon winds (Thompson, 1939; Patzert, 1974a; Edwards & Head 1987 

and PERSGA, 2006). In the following, the main features of circulation driven by wind in the 

Red Sea are described. 
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During the northeast Indian monsoon (October-May), the winds in southern region (south of 

20° N) increase in strength in winter time and derive the surface current from the Gulf of 

Aden towards the Red Sea with a mean surface flow of 15-20 cms
-1

. The current flows 

northwards against the weak prevailing NNW wind in the northern region (Thompson, 1939 

and Patzert, 1974a).  

 

During the SW monsoon (June-September), the prevailing wind (NNW) derives the surface 

currents south towards the strait of Bab el Mandeb and the mean surface currents flow to the 

southeast towards the Gulf of Aden. During summer, the strong NNW wind increases the 

speed of the south southeast current in the north of the Red Sea (north of 26° N). However, 

during July and August the wind over the southern region are weak and there is strong 

surface current flowing south in the central part of the Red Sea at about 18° and 20° N. The 

strongest outflowing surface current is found to be over 20 cms
-1

 in early July in the vicinity 

of Bab el Mandeb (Patzert, 1974a).  

 

3.6.2.2     Observational and Modelling Studies  

 

Observational studies preformed inside the Red Sea domain are very limited, thus, very few 

circulation features can be identified. Vercelli (1927) carried out measuring campaign during 

winter season in the southern part of the Red Sea and observed significant northward currents 

close to the coasts, especially the African coast (western side of the Red Sea). In winter 1929, 

he also carried out another cruise in the central part of Red Sea near Port Sudan and observed 

a southward counter-current at depths greater than 250 m in the open sea but less than 150 m 

near the coast (Vercelli, 1931).  

 

In the northern part of the basin (north of 23° latitude), two winter cruises (1935 on the R/V 

MABAHISS and 1963 on the R/V CDT ROBERT GIRAUD) consisting of several 

hydrographic sections were carried out (Morcos, 1970; Morcos and Soliman, 1974 and 

Maillard, 1974). The analyses of these measurements in general suggested that there is a 

cyclonic gyre at the extreme north which penetrates up to 300 m depth and an anti-cyclonic 

gyre about 2° to the south. During 1993–1994, a series of five drifter tracks were released in 

the northern part of the Red Sea also confirm the presence of cyclonic eddy patterns north of 

26° N (Clifford et al., 1997). In addition to that, Quadfasel and Baunder (1993) analyzed 

temperature observations and the results also support the existence of these features with 

colder water at the centre of the cyclonic flow and much warmer in the centre of the anti-

cyclonic flow. It has been pointed out by Clifford et al., (1997) that the formation of eddies in 

the Red Sea depends upon the wind direction. They suggest that there are more eddies when 

the wind has a cross-basin component. Recently, in 2010 King Abdullah University of 

Science and Technology (KAUST) released surface drifters in the central and northern part of 

the Red Sea between 20° and 28° N. The trajectories of these surface drifters also suggest the 

presence of a well-defined anti-cyclonic eddy (200-km diameter) between 22° and 24° N. 

The eddy appears in March and becomes stronger in April with velocities of about 1 m/s. 
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In terms of modelling studies, very few attempts have been carried out to describe the 

circulation in the Red Sea (Eshel and Haik, 1997; Sofianos and Johns, 2003; Yao et al., 

2014a, 2014b). However, these studies showed inconsistent results. The models employed in 

these studies were different; an Ocean General Circulation Model (OGCM) was used in the 

study of Eshel and Haik (1997), the Miami Isopycnic Coordinate Ocean Model (MICIM) in 

the study of Sofianos and Johns (2003) and the MITgcm model in the study of Yao et al., 

(2014a, 2014b). The earlier modelling studies have been forced by monthly means 

(climatological forcing) conditions and used similar low horizontal resolution (10 km) while 

the very recent study of Yao et al., (2014a, 2014b) was forced by high-frequency atmospheric 

forcing and used higher horizontal resolution. These modelling studies suggested that the Red 

Sea circulation has a complex three-dimensional structure. It should be mentioned that in the 

study of Eshel and Haik (1997), eddy features observed in the field (in the northern part of 

the Red Sea) were not resolved by the model. In contrast, the general picture drawn from the 

study of Sofianos and Johns (2003) suggests that the surface circulation of the Red Sea is 

complicated consisting of series of eddy-like features as well as intensified flow towards the 

coasts. However, all these studies showed different spatial structures of the Red Sea 

circulation. On the other hand, the study of Eshel and Haik (1997) and Yao et al. (2014b) 

showed disagreement on the location of the sinking processes in the Red Sea. The study of 

Sofianos and Johns (2003) suggested that the hypersaline intermediate water is formed in a 

cyclonic gyre in the northern Red Sea.  

 

Sofianos and Johns (2003) calculated the mean of surface circulation over nine years of 

simulation and found that there is a strong surface and westerly inflow during winter in the 

strait of Bab el Mandeb (Figure 3.4a). These currents generated a mesoscale anti-cyclonic 

gyre located between 15º and 16ºN; with velocity exceeding 50 cm/s. In the vicinity of 16º N 

the currents were interrupted by the north-northwest wind along the western boundary during 

summer as shown in Figure (3.4b). In addition, an easterly boundary current was observed 

following the northward, however it is weaker compared to the southern currents. During 

summer, the westerly boundary current in the southern part of the Red Sea disappears. The 

main feature for the summer season is irregular patterns of currents and the circulation is 

weaker than winter. In addition to that, a strong feature of cyclonic gyre in the northern part 

between 24° and 26° N with velocities of about 50 cm/s was observed. 

 

The influences of wind stress and the thermohaline forcing in the study of Sofianos and Johns 

(2003) were analyzed by separating the two forces by means of numerical experiments. The 

results of this analysis suggest that the thermohaline effect is the dominant forcing 

mechanism in the Red Sea. Nevertheless, it should be noted that these results are based from 

model simulations forced by climatological conditions of the Red Sea. Taking into 

consideration the effect of the variability of the atmospheric forcing at frequencies higher 

than the seasonal is very important in understanding such process. Therefore, in the current 

study, realistic high-frequency forcing of atmospheric forcing was considered to investigate 

the relevance of the atmosphere forcing on the circulation in the Red Sea. 
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Figure 3.4 Mean winter (left panel) and summer (right panel) of surface circulation over 9 

years of simulation [Sofianos and Johns, 2003]. 

 

 

In order to increase the general picture about the surface features and confirm the existence of 

rotating ocean currents in the Red Sea, the satellite altimeter derived sea level anomaly (SLA) 

data were considered. The SLA data were obtained from AVISO (Archiving, Validation and 

Interpretation of Satellite Oceanography Data) and averaged over a 10 years period. Figure 

3.5 shows the monthly mean distribution of SLA over the Red Sea which clearly reflects the 

existence of cyclonic and anticyclonic gyres and small eddies in the region. As can be seen, 

there are spatial variations concerning the location of the eddy or gyres features over the 

months. 
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Figure 3.5 Monthly mean of altimeter-derived sea level anomaly (SLA) distribution over the 

Red Sea and part of Gulf of Aden, obtained from AVISO data sets [average over 10 years]. 

 

 

3.6.2.3     Deep circulation and water mass formation 

 

There are no direct deep current measurements in the Red Sea. The major source of the 

present information about subsurface and deep circulation is based on tracer observations. In 

general, three different sources for the formation of deep water in the Red Sea have been 

suggested by Maillard (1974); Wyrtki (1974) and Cember (1988). The first source is the Gulf 

of Suez which is characterised by higher salinity (42 psu) than salinity of the deep basin (40.5 

psu). The second source is the outflow of dense water from the Gulf of Aqaba over the 

shallow sill (300 m depth) of the Strait of Tiran. The third source is the open-ocean deep 

convection at the northern end of the Red Sea.  
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Morcos (1970), Manins (1973) and Cember (1988) suggested that the formation of deep 

water in the Red Sea occurs in the north basin. Figure 3.6 shows a simple schematic of the 

suggested formation processes. The figure shows that the surface water in the southern part of 

Gulf of Suez and Aqaba sinks to the bottom (due to increase in density when evaporation and 

cooling at maximum) and moves southwards. In the southern part of the Red Sea near the sill, 

part of the bottom upwells back to the upper layer and then the water returns northwards at 

depths of about 300-500 m. As the intermediate water moves northwards, it mixes with the 

pycnocline water.  Maillard (1974) argued that the deep water of the Red Sea is an equal 

mixture of the high dense outflow from the mouth of the Gulf of Suez and the water in the 

upper layers (0-150 m) formed during the winter. This argument was based on temperature 

and salinity measurements in the winter season. 

 

Figure 3.6 Schematic of the circulation pattern in the upper layers (single arrows), upper 

deep layers (double arrows, driven by open ocean convection) and deep layers (bold arrows, 

driven by plume convection) in the Red Sea (Quadfasel, 2001). Dotted topography represents 

the Gulf of Aqaba. 

 

3.6.3 Water Exchange with surrounding system 

 

As mentioned earlier that the Red Sea is connected in the south to the Gulf of Aden and the 

Indian Ocean via a narrow Strait (26 km) so-called Bab el Mandeb. During the past century 

most of the studies carried out in the Red Sea were focused on the southern part of the Red 

Sea mainly at the strait of Bab el Mandeb. The main aim of these studies was to improve the 

understanding about the water exchange between the Red Sea and Gulf of Aden or the 

spreading of Red Sea outflow into the Gulf of Aden as well as the Arabian Sea. Many studies 

pointed out that there is seasonal variation in the exchange flow associated with monsoon 

winds (e.g. Thompson, 1939; Morcos, 1970; Maillard and Soliman, 1984; Murray and Johns, 

1997 and Smeed, 2004). These studies indicate that there is a 2-layer exchange flow system 

in the winter (October-May) and a 3-layer exchange flow system in the summer season (June-

September). Figure 3.7 shows the sketch explaining the exchange flow patterns between the 

Red Sea and Gulf of Aden. In the 2-layer system (Figure 3.7-left panel) the Red Sea outflow 

water (RSOW) flows out with a cool temperature of 23° C and higher salinity of 40.5 psu (as 

a result of higher density) beneath the incoming surface water (SW) layer from the Gulf of 

Aden with a warm temperature of 25° C and salinity of 36.5 psu which is driven by SSE 

winds. The volume flux of inflow water and outflow through the strait of Bab el Mandeb has 

been estimated by Souvermezoglou (1989) to be 0.38 Sv (1 Sv = 10
6
 m

3
/s) and 0.352 Sv 

respectively with evaporation rate of 0.025 Sv. 
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Contrary to the winter situation, the exchange flow system in the summer season is replaced 

by a 3-layer structure (Figure 3.7-right panel). These are the surface flow from the Red Sea 

(SW) towards the Gulf of Aden with a shallow depth of about 20 m characterized by a warm 

temperature (~29° C) and a high salinity (~37.5 psu), the incoming Gulf of Aden 

Intermediate water (GAIW) between the depth of 30-80 m (~18° C, low salinity ~36 psu) and 

the deep Red Sea outflow water (RSOW) characterized by ~21° C and a high salinity of 40.0 

psu. It is believed that the observed 3-layer system during the summer is due to the upwelling 

in the Gulf of Aden which induced by SW monsoon winds (Patzert, 1974a; Cromwell and 

Smeed 1998 and Smeed, 2004). The volume transport with 0.035 Sv evaporation rate was 

found to be 0.1 Sv and 0.06 Sv for the Red Sea surface and deep outflow layer respectively 

while for the intermediate inflow layer was found to be 0.19 Sv (Souvermezoglou, 1989). 

 

Murray and Johns (1997) carried out analysis of moored ADCP and hydrographic 

o  er  tion  l  ting  8  onth’   eriod of the exch nge flo   t the  tr it of B   el M nde   

Their analyses suggest that the average transport of RSOW in winter (November-March) is 

0.6 Sv with speed of 0.8-1 m/s. In contrast, the RSOW transport in summer (July-September) 

is reduced to 0.05 Sv with a speed of 0.2-0.3 m/s. The speed of the upper layer was found to 

be 0.4-0.6 m/s in winter and maximum exchange was observed in the mid of February. 

 

 

Figure 3.7 Sketch of water masses exchange (circulation patterns) in the Bab el-Mandeb 

strait, (A) winter and (B) summer season, where SW: surface water, GAIW: Gulf of Aden 

intermediate water and RSOW: Red Sea outflow water [adopted from Smeed 2004]. 

 

3.6.4 Hydrographic Properties (Salinity &Temperature) 

The Red Sea is characterized by very high temperature and salinity. The surface salinity and 

temperature distributions in the Red Sea experiences seasonal variations (Eshel et al., 1994; 

Maillard and Soliman, 1984; Patzert, 1974a; Quadfasel and Baudner, 1993 and PERSGA, 

2006). In general, there is a linear relationship between the surface water temperature (SST) 

and the air temperature. Both increase southwards to about 14° N and after that they decrease 

towards the Strait of Bab el-Mandeb. The highest sea surface temperature (SST) reaching a 

maximum of (~33ºC) at about 14ºN occurs in late summer. In early winter, the temperature 

decreases and becomes 26 °C in this region and migrates toward the north until it reaches at 

20º N. The seasonal changes are attributed to the monsoons events. 
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From an oceanographic point of view, the Red Sea is a data sparse region. Therefore, to 

describe the distribution of sea surface temperature and salinity in the Red Sea, data from 

World Ocean Atlas Data-2001 (WOA01) at spatial resolution of 0.25° × 0.25° were used. 

Figure (3.8-upper panel) shows the horizontal distribution of monthly mean sea surface 

temperature (SST) over the Red Sea region and part of Gulf of Aden. The mean SST clearly 

reflects the distribution of the seasonal variations of sea surface temperature. As can be seen 

from the figure the seasonal variation of the SST varies meridionally to about 8°C in the 

northern part of the Red Sea and 5°C in the southern Red Sea (Bab el Mandeb Strait). 

Moreover, SST on the eastern coast in the winter is higher than on the west coast as a result 

of cyclonic circulation. In the summer season however the situation is opposite.  

 

During the summer season, the wind blows from NNW along the main axis of the Red Sea 

generating a clockwise circulation at right angles to the direction of the winds. This is due to 

the piling up of surface warm water along the west coast and the upwelling of deeper water 

moving in an easterly direction. On the other hand, the opposite occurs in the winter months 

when the wind blows from SSW direction (Thompson, 1939; Morcos, 1970). It has been 

reported by Morcos (1970), that the eastern coast of the Red Sea is characterized by higher 

water temperatures at all depths as compared to the western coast with exception to the wind 

convergence zone (18-19°N) where the situation is reversed. 

 

In ter   of   linity  the  ed  e  i  the  o t   line   ter  ody of the entire  orld’  oce n. 

This is due to the high rate of evaporation, negligible precipitation and absence of river 

discharge. The result of the very high evaporation leads to a gradual increase in salinity. The 

sea surface salinity (SSS) in the region increases from 36.5 psu in the southern part of the 

Red Sea (near Bab el-Mandeb Strait) to 41 psu in the north at the entrance of the Gulf of 

Aqaba and Gulf of Suez (Edwards and Head, 1987; Cember, 1988; Sofianos, et al., 2002 and 

PERSGA, 2006). Generally, the salinity in the Red Sea is higher in summer than winter. 

Figure (3.8-lower panel) shows the horizontal distribution of monthly mean sea surface 

salinity (SSS) over the Red Sea region. The climatology clearly illustrates the distribution of 

the seasonal variations of sea surface salinity. It has been reported by Morcos (1970) that the 

seasonal variation in the northern and southern parts of the Red Sea is about 1 psu and 0.5 

psu respectively. 
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Figure 3.8 Horizontal distribution of Sea Surface Temperature [SST] (upper panel) and Sea 

Surface Salinity [SSS] (lower panel) over the Red Sea and part of Gulf of Aden for the 

months January, April, July and October, obtained from (World Ocean Atlas-2001). 

 

To describe the vertical distribution of the hydrographic properties (temperature and salinity), 

measurements taken during the summer periods along the main axis of the Red Sea are 

available. These data were analyzed from the cruise, of R/V Mauric Ewing during August 

2001 (Sofianos and Johns, 2007). The vertical distribution of the salinity, temperature 

obtained from the summer cruise is shown in Figure 3.9. Quadfasel (2001) reported that the 

upper layers in the Red Sea experience significant variations due to atmospheric forcing 

variations between the two monsoons. The Figure shows that a layer of cool and fresh water 

from the Gulf of Aden flows below the shallow warm and saline mixed layer leading to 

unstable stratification. On the other hand, the vertical temperature stratification is stable 

throughout the basin in the winter season with the inflow of a warm and fresh water layer at 

the surface and outflow of a cool and saline water layer at the bottom. 

 

Below the thermocline layer, as can be seen, there is a gradual decrease of the temperature to 

a minimum of 21.6°C at a depth of 300 m. However, the temperature variation in the bottom 

layer of 1000-2000 m is less than 0.5°C as a result of isolation from the Gulf of Aden by the 

sill at a depth of 160 m in the southern region (Sofianos and Johns, 2007). In contrast, in the 

Gulf of Aden, the temperature decreases steadily from 10°C to 3°C at the same level due to 

the free connection with the Indian Ocean (Morcos, 1970). In terms of salinity, there is an 
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increase with depth and the depth gradient is larger in the southern Red Sea due to the 

influence of low salinity water from the Gulf of Aden.  

 

Beneath 300 m, the Red Sea basin is characterized by water of remarkably homogenous 

temperature, salinity and potential density of about 21.5-21.6°C, 40.5-40.6 psu and 28.6 kg 

m
-3

 respectively (Sofianos and Johns, 2007). However, Woelk and Quadfasel (1996) 

observed a remarkable change in the northern part of the Red Sea (north of 26° N) between 

1982 and 1983. The properties of the new deep water (cooler and fresher) suggested to be 

originated from the Gulf of Suez from vertical convection and mixing with fresher surface 

water masses. 

 

 

 

 
 

 

 

Figure 3.9 Hydrographic-section along the main axis of the Red Sea, temperature in °C 

[upper panel], (b) salinity psu [lower panel] based on the cruises, of R/V Mauric Ewing 

during August 2001. [Sofinos and Johns, 2007]. 

 

 

a 

b 



  Chapter 3. Available Measurements 

 
44 

 

3.7 Available Data 
 

Field data are essential elements in the processes of numerical models set up, calibration and 

validation. Hardisty, (2007) pointed out that the amount of data requirements for 

hydrodynamic modelling can be quite huge depending upon the model used and the accuracy 

requirements. In this study, two types of data were used. They are characterized as input data 

for setting up and running the model and the data used for the model calibration and 

validation. The necessary data used in the model setup were undergone through several 

processes to be ready for the required format by Dleft3D modelling system. These include 

coastline, bathymetry, astronomical tides, temperature and salinity, winds and surface fluxes 

(see chapter 5). On the other hand, the available measured data for model calibration and 

validation processes include time series of water level, instantaneous temperature and salinity 

measurements. Details about these data, their sources and analysis are presented in the 

following sections. It should be mentioned that satellite data of sea surface temperature (SST) 

were also used for validation processes of the hydrodynamic model (see chapter 6).   

 

3.7.1 Water Level 

 

Measurements of water levels are very important in both calibration and validation processes 

of numerical hydrodynamic models. In addition to that, a tidal analysis can be performed in 

order to determine the astronomical constituents that govern the tide in the area of interest. 

During this research the available data used are tidal elevations from five tide gauges stations 

along the eastern coast of the Red Sea (indexed as JIZAN, JEDDAH, YANBU, RABIGH and 

DUBA) operated by Saudi ARAMCO Oil Company. In addition to that, in 2011, an intensive 

cooperation between Faculty of Marine science at King Abdulaziz University in Jeddah 

(Saudi Arabia) and Research and Technology Centre-CORELAB at Kiel University 

(Germany) was carried out aiming at development and application of a Coastal Monitoring 

System (CMS) covering the coastal areas of Jeddah. As a result, three ultrasonic acoustic tide 

gauges were installed along the coast of Jeddah at Obhor Creek (northern side of Jeddah), 

Gahaz (Jeddah) and Saroom (southern side of Jeddah). On the other side of the basin, only 

one tidal station of water level located on the western coast of the Red Sea (Port of Sudan) 

was made available during this study. Since the model domain extends to the Gulf of Aden at 

48° N (see chapter 5), time series of water level records from two additional stations located 

in the Gulf of Aden (at Aden and Djibouti) obtained from the Sea Level Centre at University 

of Hawaii (UHSLC) were also made available (See Figure 3.10 for their location). All these 

time series of water levels are at hourly intervals.  

 

These data were used on the one hand to perform tidal analysis and determine the major 

semidiurnal and diurnal constituents and on the other hand is to be used for calibration and 

validation of the Red Sea hydrodynamic model. As was stated earlier in Chapter 1, that one 

of the main objectives of this study is to simulate tides and generate the co-range and co-chart 

of the major tidal constituents. Thus, once the major tidal constituents (semidiurnal and 
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diurnal) are determined, separate simulations of the dominant tidal constituents will be 

carried out in order to generate the co-range and co-chart (see chapter 6). 

Moreover, based on the amplitudes and phases derived by means of a tidal analysis, relative 

comparisons will be carried out between observation and model results (see chapter 5). 

 

Figure 3.10 shows map of the study area including positions of the tide gauges stations which 

are marked by black dots. The remaining coloured dots along the main axis of the Red Sea (A 

to F) and cross-sections are mainly related to salinity and temperature measurements which 

will be discussed in the next section. The selected periods for calibration and validation 

processes of the Red Sea model are listed in Table 3.2. Note that two different periods 

(Period I and Period II) are used for the calibration and validation purpose. 

 

 

 

Figure 3.10 Study area map showing locations of the available measurements, water level 

(Black-dots), and salinity and temperature marked by three cross-sections and six stations 

distributed along the main axis (A-F). 

 

 

 

 

Table 3.2 Periods of available measured water levels 

Station ID Period I Period II 

ADEN 01/10/2008 to 31/10/2008 ---- 

DJIBOUTI 01/10/2008 to 31/10/2008 ---- 

JIZAN 01/02/2001 to 28/02/2001 01/04/2001 to 30/04/2001 

JEDDAH 01/02/2001 to 28/02/2001 01/04/2001 to 30/04/2001 

RABIG 01/02/2001 to 28/02/2001 01/04/2001 to 30/04/2001 

DIBA 01/02/2001 to 28/02/2001 01/04/2001 to 30/04/2001 

OBHOR 01/07/2011 to 31/07/2011 ---- 

SAROOM 01/07/2011 to 31/07/2011 ---- 
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As can be seen all water level stations are confined to the coastal regions and their spatial 

distribution is not ideal. However, they reflect considerable insight to how the tidal 

parameters vary in the region. An example of the characteristic observations of the water 

level fluctuations at ADEN and DJIBOUTI stations as well as JIZAN, JEDDAH, RABIGH 

and DUBA stations is shown in Figure (3.11-A and 3.11-B). The time series obviously 

display a change in the tidal range and regime. It is clear that the tides of the Red Sea are 

relatively small and the magnitude varies according to the location. On the other hand, the 

magnitude of the tidal signal at ADEN and DJIBOUTI behaves differently indicating 

different tidal regime characterized by a mixed type with diurnal and semidiurnal 

fluctuations. However, in the northern and southern part of the Red Sea characterized by the 

JIZAN and DUBA stations, the semidiurnal fluctuations dominate the record. In addition to 

that, the time series illustrate a reduction in the tidal range between the northern and southern 

part of the Red Sea towards the central part at Jeddah where amphidromic system (counter-

clockwise) exists as was reported previously by several authors (see section 3.6.1). 

 

 

 

Figure 3.11 (A) tidal variations at two locations in the Gulf of Aden at ADEN and DJIBOUT 

stations for period of October-2008, and (B) tidal variations at four locations along the 

eastern side Red Sea at JIZAN, JEDDAH, RABIGH and DUBA stations for period of April-

2001. 
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3.7.2 Harmonic Analysis 

 

The hourly tide gauge data at ADEN, DJIBOUTI, JIZAN, JEDDAH, RABIGH and DUBA 

were used to compute the amplitudes and phases of the eight primary semidiurnal and diurnal 

tidal constituents (Q1, O1, P1, K1, N2, M2, S2 and K2). Tidal harmonic analyses were performed 

using the World Tides program ver.2009 (Boon, 2004). This program is a GUI-based 

program for tidal analysis and prediction using up to 35 tidal harmonic constituents under 

Matlab package based on the least squares method. (For details about this program, the reader 

can refer to Boon, (2004)).  

 

The amplitudes of the eight primary semidiurnal and diurnal tidal constituents derived from 

the tidal analysis of observed water levels are shown in Figure 3.12. At ADEN (A) and 

DJIBOUTI (B), it was found that M2 and S2 tide are among the semidiurnal constituents 

relatively significant while the diurnal components K1 and O1 are also significant 

respectively. Inside the Red Sea domain, it is clear that M2 amplitude is higher at JIZAN (C) 

and DUBA (F) stations while at RABIGH (D) and JEDDAH (E) it is quite small. These 

analyses showed the clear dominance of the semidiurnal constituents namely the M2 inside 

the Red Sea domain. The figure shows that the major semidiurnal constituents are M2, S2 and 

N2 respectively, while the major diurnal tide is K1. The contribution of the semidiurnal 

constituents M2, S2 and N2 for the total astronomical tide represents about 90%. This indicates 

that the total astronomical tide is well represented by the major tidal constituents. On the 

other hand, the contribution of other constituents on the total astronomical tide suggests that 

the constituents with smaller amplitude than the K1 may be neglected. 

 

 

Figure 3.12 the amplitudes of semidiurnal and diurnal constituents as derived from harmonic 

analysis of the available data at A) ADEN, B) DJIBOUTI, C) JIZAN, D) JEDDAH, E) 

RABIGH and F) DUBA stations. 
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The general type of the tidal regime can be determined on the basis of the factor F which is 

used to classify the characteristics of the local tide in terms of diurnal and semidiurnal 

amplitudes of the constituents. The equation of F factor is written as (Pugh, 1987): 

 

                                               
     

     
                                             (3-1) 

 

where: K1 represents luni-solar diurnal constituent, O1 represents lunar diurnal constituent, 

M2 represents principal lunar semidiurnal constituent and S2 represents principal solar 

semidiurnal constituent. 

 

Based on the value of F, the following classification can be considered: 

 

  F < 0.25, the tide is fully semi-diurnal (two HW and LW per day of about the same 

height). 

  0.25 < F < 1.5, the tide is mixed, mainly semi-diurnal (two HW and LW per day 

which are different in height and time). 

  1.5 < F < 3, the tide is  mixed, mainly diurnal (most of the time one HW per day and 

for a short time two HW with a strong inequality in height and time) 

  F > 3, the tide is fully diurnal (one HW per day and one LW per day) 

Table 3.3 lists the computed values of F factor. The calculation of the ratio F gives a 

value of 0.86 and 0.84 at ADEN and DJIBOUTI respectively indicating that the tides of 

mixed type with the semidiurnal tide dominate. In the case of JIZAN and DUBA the 

values are smaller than 0.25. In consequences the tide is classified as semidiurnal. 

However, at JEDDAH and RABIGH stations the ratio ranges between of 0.25 and 1.5 

indicating that the tides are of mixed type mainly semidiurnal. 

 

      Table 3.3 Tidal type based on F factor 

ID station Factor F Type of tides 

ADEN 0.86 Mixed, mainly semi-diurnal 

DJIBOUTI 0.84 Mixed, mainly semi-diurnal 

JIZAN 0.08 Fully semi-diurnal 

JEDDAH 0.65 Mixed, mainly semi-diurnal 

RABIGH 0.37 Mixed, mainly semi-diurnal 

DUBA 0.08 Fully semi-diurnal 

 

 



  Chapter 3. Available Measurements 

 
49 

 

3.7.3 Salinity & Temperature Data 

 

As clearly mentioned this study concerns with the simulation of thermohaline structure in the 

Red Sea. Therefore, measurements of temperature and salinity are necessary. It was 

mentioned earlier in section (3.6.4), that most of the available hydrographical data in the Red 

Sea domain are based from hydrographic stations and/or data sets from ships that follow the 

central axis of the basin. During the course of this study, few measurements of salinity and 

temperature represent the summer season were made available. These data is very useful in 

terms of calibration processes of the hydrodynamic model. Positions of the salinity and 

temperature measurements are shown in Figure (3.10) (marked by coloured dots along the 

main axis of the Red Sea as well as three cross sections taken in the north, middle and south 

of the basin). The interpolated data are presented in Figure 3.13 and 3.14 respectively. 

Typical vertical profiles of temperature and salinity along the main axis of the Red Sea are 

shown in Figure 3.13. It is clear from the plot that the mixed layer occurs from the surface 

until depths of almost 50 m while the thermocline layer extends from 50 m to 200 m. The 

distribution of the temperature and salinity in the deep layers is remarkably homogenous. 

 

 

Figure 3.13 Typical profiles of temperature and salinity at locations along the Red Sea axis 

 

Figure 3.14 shows the Vertical distributions of the hydrographic properties (salinity and 

temperature) at three sections marked in the location map (Figure 3.10). The plots illustrate 

that the sea surface salinity (SSS) increases from the south (section III) at about 38 psu 

towards the northern part of the Red Sea (section I) reaching about 40.2 psu. On the other 

hand, the sea surface temperature (SST) increases southwards from about 29 °C to 33 °C. The 

observations show a surface mixed layer which is about 50 to 70m thick, salty and warm due 

to heating and evaporation.  
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Figure 3.14 Northern I, Middile II and Southern III hydrographic sections As) Temperature 

and Bs) Salinity. 
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Chapter 4 
 

Model Description 
 

4.1 Introduction 
 

The present study concerns with the simulation of tides, the circulation and thermohaline 

structure in the Red Sea. In order to model these phenomena, the Delft3D modelling system 

developed by WL Delft Hydraulics in the Netherlands is used. Based on the model 

discretization and forcing, the identified processes in chapter 3 should be reproduced by the 

model. 

 

In this chapter, brief general information concerning the Delft3D modelling system is 

introduced in section (4.2). As this study focuses only on hydrodynamics, a brief description 

of the Flow-module is presented in section (4.3). It is followed by the model formation 

including the numerical methods, overview of hydrodynamic and transport equations; 

information on turbulence closure models and boundary conditions in section is provided 

(4.4). Section (4.5) presents a brief description concerning the heat flux model used in the 

present investigation.  It should be noted that most of the information about the modelling 

system were taken from the Delft3D-Flow user-manual (2011).  

 

4.2 General Information of the Modelling System 
 

The numerical modelling system implemented in this study is Delft3D modelling system 

developed by WL Delft Hydraulics in the Netherlands. The system is an integrated modelling 

scheme (Delft3D package) where it comprises basic modules that simulate the time and space 

variations of six phenomena, namely hydrodynamics (Delft3D-Flow), Sediment transport 

(Delft3D-SED), Morphology (Delft3D-MOR), Waves (Delft3D-Wave), Water Quality 

(Delft3D-WAQ) and Ecology (Delft3D-ECO). The system is applicable to shallow seas, 

coastal areas, estuaries, lagoons, rivers and lakes and has the ability to carry out the 

interactions between these processes. Delft3D system has been widely applied in a number of 

studies for instance South-Eastern German Bight (Palacio et al., 2005), Egmond the 

Netherlands (ELias et al., 1998) and San Diego Bay and Coastal region (Dongeren, 2009). It 

has been used successfully to simulate tidal, wind driven flow conditions in Lunenburg Bay 
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and used to study the hydrodynamics and morphology of a seasonally forced tidal inlet 

system (Nghiem et al., 2008).  

 

In the present study, only the Delft3D-Flow module was used. Some additional programs 

included in the package such as RGFGRID, QUICKIN, QUICKPLOT modules and TRAINA 

tool were utilized. For using Delft3D-FLOW the first two auxiliary software tools are 

important for preparing input files. For post-processing purposes the last two packages were 

used. Table 4.1 presents a brief description of the additional programs. For more information 

about these programs and their use, the reader refers to the User-Manual-2011. 

 

Table 4.1 A brief description of the tools used in the study 

Module Description 

RGFGRID 

Program to construct, modify and visualise a grid in Cartesian or 

Spherical co-ordinates for the Delft3D-Flow module. The program 

includes tools that can optimise the criterions of the grid (orthogonality 

and smoothness). 

 

QUICKIN Program to construct, interpolate, modify and visualise bathymetries 

for the Delft3D-Flow module. 

 

QUICKPLOT Program to visualise and animate the results produced by Delft3D 

modules. The program is based on MATLAB. 

 

TRAINA 

Tool to perform tidal analysis of Delft3D output. The program is 

capable of analysing time series of water levels generated by Delft3D-

Flow module and also compare the results with known values for tidal 

constituents statistically. 

 

4.3 Delft3D-Flow Module 
 

Delft3D-Flow is a multi-dimensional (2DH, depth-averaged) or (three-dimensional, 3D) 

hydrodynamic model aiming to solve unsteady flows and transport phenomena that result 

from tidal and meteorological forcing including the effects of density differences (due to a 

non-uniform temperature and salinity distribution) on a rectilinear or curvilinear boundary 

fitted grid. The flow model aims to simulate flow phenomena of which the horizontal length 

and time scales are considerably larger than the vertical scales. The flow is forced by water 

levels or tides at the open boundaries, wind stresses at the free surface, pressure gradients due 

to free surface gradients (barotrobic) or density gradients (baroclinic). The discharge and 

withdrawal of water can also be included in the equations. 

 

Delft3D-flow is structured to execute hydrodynamic computations and computation of the 

transport of salinity, transport and heat transfer simultaneously. It should be pointed out that 

the accuracy of the model outputs for flow characteristics depends largely upon the physical 

and numerical parameters settings used in the model. The former parameters are those which 

reflect the nature of the area and that can be measured directly in the field or calculated 

indirectly via other field parameters. The latter parameters like grid resolution, time step, the 
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marginal depth and smoothing time are employed as a matter of modelling. Delft3D-Flow 

should however resolve the physical processes described earlier in chapter 3. Therefore, the 

requirements that should be met by Delft3D-Flow can be summarized as following: 

 It has to take into account the space and time varying wind and atmospheric pressure 

system. 

 It should be able to resolve temperature and salinity transport. 

 It should be able to resolve the net heat flux cycle. 

 It should be able to resolve transport forcing (lateral) and circulation forcing at the 

open boundaries. 

 It should be able to resolve large-scale effects related to bathymetry constraints. 

 It should be able to resolve vertical temperature variability and stratification over the 

water column. 

4.4 Model Configuration 
 

The system of equations in Delft3D modelling system includes the momentum equation, the 

continuity equation, the transport equation and turbulence closure model. To solve the 

hydrodynamic equations, a Cartesian rectangular, orthogonal curvilinear or spherical grid is 

available in the modelling system. Brief reviews of these equations are introduced in 

following sections. 

 

4.4.1 Grid and Coordinates 
 

The numerical methods of Delft3D-Flow system is based on finite differences in solving the 

partial difference equations. To discretise the 3D shallow water equations in space, the model 

area is represented by rectangular, curvilinear or spherical grids. In 3-D simulations, Delft3D-

Flow provides two different vertical grid systems. A multi-layer is known as sigma co-

ordinate system ( -grid) introduced by Phillips (1957) for atmospheric models and the 

Cartesian Z co-ordinate system (Z-grid). Figure 4.1 displays the two vertical systems 

employed in Delft3D. In the sigma grid system, the vertical coordinate follows the 

bathymetry, keeping the same number of vertical grid points everywhere in the domain. The 

relative layer thickness usually is non-uniformly distributed to allow for increased vertical 

resolution in the area of interest. In the z-coordinate system, this type of model divides the 

domain using equal spacing between each layer (the vertical coordinate is depth).  The 

number of grid cells in the vertical varies for each horizontal grid point. 

 

Figure 4.1 Layout of the vertical co-ordinate systems,  -grid (left) and Z-grid (right) 

[Delft3D-Flow, User-Manual, 2011]. 
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All the variables which describe the flow are defined in the so-called staggered grid 

(Arakawa C-grid). Figure 4.2 displays the pattern of the staggered grid of Delft3D-Flow 

system. In a staggered grid, each grid cell consists of a water level point, concentration of 

constituents, a point for the depth, a point for the velocity in the x-direction and y-direction. 

As can be seen in the figure, the water level points (pressure points) and the concentration of 

constituents are defined in the centre of a cell, whereas the velocity components are located 

perpendicular to the grid cell faces and the depth points are situated on the corner of the grid 

cell.  

 

 

Figure 4.2 Staggered grid used in Delft3D-Flow [Delft3D-Flow, User-manual-2011] 

 

4.4.2 Numerical Stability 

 

In Delft3D-Flow system, the applied numerical scheme is an alternating direction implicit 

(ADI). There are a number of limitations on the allowable model step size due to stability and 

accuracy requirements for time integration of the shallow water equations. Computational 

stability in Delft3D is a function of the Courant number (indicator for numerical stability and 

accuracy). The Courant number provides the relation between the propagation speed and time 

step. In the case of places with large differences in bottom geometry or coastline, it is 

suggested that the Courant number should not exceed the value of 10. However, the total 

computational time depends upon the magnitude of the time step. Thus, in order to reduce the 

total computational time, one should select the largest time step possible, but taking into 

consideration the accuracy and stability. The Courant number formulation is expressed as: 

 

                                                        
 

   
 

 

   
      < 10                                         (4-1) 

 

where:    is the Courant number (Courant-Friedrich-Levy number); Δt i  the ti e step (s),   

is the gravity acceleration [m/s
2
],   denote  the tot l   ter de th [ ]  Δx  nd Δy re re ent 

the grid spacing in x and y direction [m]. 
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Some other numerical approximation parameters included in the flow module are 

summarized as following: 

 

I. Threshold depth: indicates the limit height above the bottom where the grid 

cell will be considered dry. This prevents the water depth to become negative 

in just one time step. 

II. Marginal depth: is the depth value after which the local gradients will be 

calculated by one-side differences. 

III.  Smoothing time: is the time period to have a smooth transition between initial 

and boundary conditions. The model adjusts the initial and the boundary 

conditions prescribed. As the initial values are closer to the actual values, the 

warming-up period (adjustment of the initial conditions) will be shorter. 

4.4.3 Hydrodynamic Equations 

 

The hydrodynamic model computes the non-steady shallow water equations derived from the 

three dimensional Navier Stokes for incompressible free surface flow, under the Boussinesq 

assumption, in two (depth-averaged) or  three dimensions. The system of equations consists 

of the horizontal equations of motion, the continuity equation, the transport equation and a 

turbulence closure model. The vertical momentum equation is simplified assuming 

hydrostatic pressure as the vertical acceleration are assumed to be small compared to 

gravitational acceleration thus are not taken into account. In 3-D simulations, the vertical 

velocities are computed from the continuity equations. The set of partial differential 

equations including the initial and boundary conditions are solved on a finite difference grid 

(orthogonal curvilinear co-ordinates or in spherical co-ordinates). In the following, the 

hydrodynamic equations employed in Delft3D system are presented. It should be mentioned 

that the hydrodynamic equations described here are similar for both the  - and Z-co-ordinates 

systems. 

 

4.4.3.1     Continuity equation 

 

The depth-averaged continuity equation in Delft3D (in 2D and 3D) is defined as: 

 

 

                   
  

  
 

 

        

             

  
 

 

        
 

             

  
  Q                             (4-2) 

 

where:    is water depth below some horizontal plane of reference [m]. t is time;     is free 

surface elevation above some horizontal plane of reference [m].   and   are horizontal 

coordinates [m].      is coefficient used to transform curvilinear to rectangular coordinates 

[m]. u and v represent flow velocity in      direction [m/s] and Q represents discharge 

source or sink per unit area. Furthermore, Q represents the contributions per unit area due to 

the discharge or withdrawal of water, precipitation and evaporation; therefore it could be 

expressed as: 
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                                                     (4-3) 

where:       represents the local source of water per unit of volume [1/s] and      is the local 

sink of water per unit of volume [1/s]. P is the non-local source term of precipitation and E is 

the non-local sinks term of evaporation.   represents the vertical direction of the co-ordinate 

system which is given as: 

 

                                                             
   

   
                                                                      (4-4) 

 

4.4.3.2     Momentum equations  

 

The momentum equation in Delft3D is expressed as: 
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where           (x, y,    ) are the velocity components in the horizontal x, y and vertical 

 -directions, respecivley [m/s].   is the Coriolis parameter.          describe horizontal 

pressure terms [kg/m
2
/s

2
];         describe horizontal viscosity terms;    is the vertical 

eddy viscosity coefficient which is determined by a turbulence closure model [m
2
/s] (see 

section 4.4.3.1);        is the reference density of water [kg/m
3
] and       are the external 

momentum due to source and sinks in x-y-direction [m/s
2
]. 

 

4.4.3.3     Hydrostatic pressure assumption 

 

 nder the ‘‘ h llo    ter    u  tion’’ the  ertic l  o entu  equ tion i  reduced to the 

hydrostatic pressure equation. The vertical acceleration is assumed to be small (due to 

buoyancy effects) in comparison with gravitational acceleration and therefore is not taken 

into account. The resulting formula therefore is expressed as following: 

 

                                                               
  

  
                                                                 (4-7) 

 

where: g  is the gravitational constant  [m/s
2
]  nd ρ i  den ity of   ter [ g/ 

3
]. 

 

4.4.3.4     Vertical velocity 

 

The vertical velocity   is computed from the continuity equation: 
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In the 3-D simulation, the vertical velocity is computed considering horizontal velocities, 

water depth, water levels and vertical velocities as follows: 
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4.4.4 Transport Equations 

 

In Delft3D-Flow, the transport of matter and heat is solved by an advection-diffusion 

equation in the three co-ordinate directions. The equation is expressed as: 
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where: C represents concentration of dissolved substances, salinity or heat;   ,    are the 

horizontal and vertical diffusivity, respectively,    represents first order decay processes and 

     represents the exchange of heat through the free surface. 

 

4.4.4.1     Turbulence Closure Model 

 

Delft3D-Flow solves the shallow water equations for an incompressible fluid on a 

computational grid. Turbulence is responsible for most of the vertical exchange. Usually the 

grid in both horizontal and/or vertical directions is too coarse and the time step large to 

resolve the turbulent scales of motion. In Delft3D system, the turbulent processes are carried 

out using a sub-grid method. In this process, details of the turbulent are neglected and only 

the effect of turbulence on the mean flow behaviour are accounted for. The contribution of 

3D turbulent eddies to the vertical exchange of horizontal momentum and mass is modelled 

through a vertical eddy viscosity and eddy diffusivity coefficient (eddy viscosity concepts). 

In general, the horizontal eddy viscosity coefficients     and eddy diffusivity coefficient     

are much larger than the vertical coefficients    and   . In Delft3D-Flow system, there are 

four closure models implemented to determine the vertical viscosity coefficient    and the 

eddy diffusivity coefficient   . Table 4.2 presents a summary of the four models including 

their concepts. The coefficient can be specified as a constant or computed by means of an 

algebraic, k-L or K-  turbulence model where K is the turbulent kinetic energy; L is the 

mixing length and   is the dissipation rate of turbulent kinetic energy. In the present 

investigation, the turbulence closure model K-   was selected. For detailed information about 

these closure models, the reader is referred to the User-Manual (2011). 
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Table 4.2 Turbulence Closure Models implemented in Delft3D-Flow system 

Model Description 

Constant 

coefficient 

This model is the simplest closure model based on a constant value. 

The constant eddy viscosity leads to parabolic vertical velocity profiles, 

which is correct for laminar flow. 

 

AEM 
Algebraic eddy 

viscosity model 

This model does not involve transport equations for the turbulent 

quantities. This so-called zero order closure scheme is a combination of 

two algebraic formulation.  This model uses analytical formula to 

determine K and L. 

 

K-L 

This model involves one transport equation for k and is called a first 

order turbulence closure scheme. The mixing length L is prescribed 

analytically and the same formulation is used for the AEM model. 

 

K-  

This model is a second order turbulence closure model. In this model 

both the turbulence energy k and dissipation rate of turbulent kinetic 

energy   are calculated by a transport equation. From k and   the 

mixing length L and viscosity    are determined. The mixing length 

now is a property of the flow, and in the case of stratification no 

damping functions are needed. 

 

 

4.4.5 Boundary Conditions  

 

Boundary conditions are very important components in numerical modelling. Therefore, in 

order to obtain satisfactory results from the numerical model, well-defined boundary 

conditions are necessary. In this regard, hydrodynamic and transport conditions must be 

specified as correct as possible at the open boundaries. To solve the systems of equations, the 

following boundary conditions need to be specified. 

 

4.4.5.1     Vertical Boundary Conditions 

 

In the  -coordinate structure, the bed and the free surface correspond with  -planes. 

Therefore, the vertical velocities at these boundaries can be simply: 

 

                                                                                                                   (4-11) 

Where:   represents velocity in the   direction. 

 

4.4.5.2      Bottom Roughness  

 

The bottom roughness in Delft3D-Flow program can be defined in several ways. In the case 

of depth-averaged flow (2D) the shear stress on the bed in the x- and y-direction induced by a 

turbulent flow is given by a quadratic friction law: 
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                                                           (4-12) 

                                                 

                                                 

                                                           
    

  
                                                           (4-13) 

 

The 2D-Chézy coefficient C may be determined with the following formulations: 

 

1- Chézy formulation:   C = Chézy coefficient [m
1/2

/s] 

2- Manning formulation:     
  
 

 
 

h = total water depth [m],  

n = Manning coefficients. [m
1/3

/s] 

3- White Cole roo ’  for ul tion:           
   

  
   

h = total water depth [m],  

ks = Nikuradse roughness length [m]. 

In the case of a 3D computation, the bed stress formulation is quite similar. In these 

computations the bed shear stress is related to the current in the first layer, using ub (velocity 

at bed boundary layer) instead of U and C2D instead of C3D.  

 

 

4.4.5.3     Lateral Boundary Conditions 

 

There are two types of lateral boundaries basically closed boundaries which are the land-

water lines and open boundaries which are artificial. The former are natural boundaries and 

the fluxes along them set to zero (known as free-slip condition), preventing interaction with 

the outside world   he l tter i   l  y  ‘‘  ter-  ter’’  ound rie   The use of open 

boundaries in numerical flow model aims at limiting the computational area that is modelled 

and hence the computational time. However, open boundaries must be defined far enough 

from the area of interest to avoid their influences on the area under investigation. To run the 

hydrodynamic model, external forcing to start computations is required. There are four types 

of open boundaries available in Delft3D system mainly water level, velocity, discharge or 

linearised Riemann invariant (weakly reflective boundaries). However, the selection of the 

type of boundary conditions depends upon the phenomena to be studied and also the 

availability of field data. Boundary conditions however, can be obtained from measurements 

or by extracting the needed boundary conditions from a larger model in the case of absence 

measurements. 
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4.5 Heat Flux Models 
 

The exchange of heat at the surface is determined by a number of physical processes. In 

Delft3D-Flow the heat exchange at the free surface is modelled by taking into account the 

separate effects of solar (short wave) and atmospheric (long wave) radiation, and heat loss 

due to back radiation, evaporation and convections. Solar radiation and incident atmospheric 

radiation are the sources of energy input to the system whereas back radiation, evaporation 

and convection are the processes where the system loses energy. The total heat flux through 

the free surface can be formulated as following: 

 

                                                                                                                           (4-14) 

 

 

where:      is the net heat flux;     is the net incident solar radiation (short wave);      is 

the net incident atmospheric radiation (long wave);     is the back radiation (long wave);     

represents the evaporative heat flux (latent heat) and     denotes the convective heat flux 

(sensible heat) [W/m
2
] 

 

The change in surface layer temperature due to the net heat flux presented in equation (4-14) 

is formulated as: 

 

 

                                                           
   

  
 

    

       
                                                            (4-15) 

 

 

where:      is the net heat flux through the free surface [W/m
2
];    is the specific density of 

water [kg/m
3
];    is the specific heat capacity of sea water [m

2
/(s

2
 °C)] and     represents the 

thickness of the top layer [m]. In Delft3D-Flow, the heat exchange at the bed is assumed to 

be zero. This may lead to over-prediction of the water temperature in shallow areas. On the 

other hand, the effect of precipitation on the water temperature is not taken into account. 

 

Equation (4-15) is added to the transport equation to include advection and diffusive terms 

and therefore the formula becomes:  

 

                                          
   

  
                     

    

       
                                (4-16) 

 

 

 

In Delft3D-Flow system five different heat models are implemented for various model 

requirements and based on data availability.  In this study the ocean heat flux model is used 

for the Red Sea model. General information about this model is given in the following 

section. 
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Ocean Heat Flux Model 

 

The individual terms presented in equation (4-14), as formulated in the ocean heat model are 

described in details in the Appendix-A. Only brief description about the ocean heat flux 

model and its required coefficients are presented here. 

 

In the ocean heat flux model, the net short wave solar radiation is calculated for a clear sky 

   ed on the declin tion  et een the  un  nd the E rth’   urf ce   hi  declin tion de end  

upon the geographical position on the earth and the local time. The total long wave 

atmospheric and back radiation and the heat losses due to evaporation and convection are 

computed by the model based on prescribed meteorological fields. Evaporation and 

convection depend on the air temperature, the water temperature near the free surface, 

relative humidity and wind speed (Delft3D-Flow, User-manual-2011).  

 

Using the ocean heat flux model requires several coefficients that play a role in controlling 

the magnitude of heat flux terms. These are, the Stanton number (  ) which is a transfer 

coefficient which controls the magnitude of the convective heat flux. The Dalton number (  ) 

which is a transfer coefficient controlling the magnitude of the evaporative heat flux. The 

Ozmidov length scale (    ) which specifies the magnitude of turbulent mixing by internal 

waves (See appendix-A). 

 

There are some advantages provided by the ocean heat model compared with other models 

implemented in the Delft3D-Flow system. In this heat model, the short wave flux is 

prescribed using time and latitude-dependent relations and an average solar flux. Therefore, 

the formulation gives a higher temporal and spatial short wave flux resolution than those 

prescribed by atmospheric datasets prescribing clear day-night variation (Delft3D-Flow, 

User-manual-2011). As a result of latitude dependency, the model is applicable for large 

water bodies and suitable for regions like the Red Sea which is almost over 20 degree in 

latitudinal direction. Another advantage is that, space varying meteorological surface forcing 

can be prescribed. Therefore, the total net flux calculated by the model is both time and space 

dependent which is a desirable property considering the model domain (see chapter 5). De 

Goede et al., (2000) pointed out that this heat model is the best model of available 

temperature models in Delft3D-Flow due to practicality, robustness and simplicity.  
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Chapter 5  
 

Development of the Red Sea Model (RS-Model) 
  

5.1 Introduction  
 

The main aim of this study is the simulation of tides, circulation and thermohaline structure in 

the Red Sea region. To achieve this goal, a numerical hydrodynamic model based on Delft3D 

modelling system is setup.  Brief overview of the modelling system and its general 

characteristics was given in chapter 4. This model should be able to resolve the processes 

identified in chapter [3] using forcing data described in this chapter.  

 

In this chapter a numerical model covering the entire Red Sea region and extending to the 

eastern part of the Gulf of Aden at longitude 48°E have been setup, calibrated and validated. 

Initially a detail description about the relevant processes is provided. This includes the 

hydrodynamic model setup including definition of the model domain in section (5.2), the 

processes of generating the grid and its properties in section (5.2.2), the bathymetry data and 

their interpolation methods in section (5.2.3) and the definition of the open boundary 

condition in section (5.3). This is followed by introducing the main numerical and physical 

parameters settings applied in the model in section (5.3.1).  

 

Sensitivity analysis of the numerical and physical parameters and heat model coefficients is 

given in section (5.6). Based on the results of the sensitivity analysis, decisions on model 

forcing and parameterizations are made for final model runs. Consequently, the Red Sea 

model has been validated using sea surface elevation data from a number of tide gauge 

stations located along the eastern coastline of the Red Sea as well as two additional stations 

located in the Gulf of Aden, in-situ measurements of temperature and salinity and 

climatology of sea surface temperature SST based on satellite technique obtained from 

AVHRR / Pathfinder (Casey et al., 1010) (section 5.7). Accordingly, a conclusion of the 

model performance is drawn in section (5.8). 
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5.2 Flow Model Setup 
 

A description of the Delft3D-Flow module is given in chapter 4. To setup a model, several 

processes including the definition of the model domain, construction of grid, open boundary 

definition and the model bathymetry, numerical and physical parameters are required. On the 

other hand, some decisions have to be made related to the choice of 2-D (depth-averaged) or 

3-D (three-dimensional approach) model and the definition of the boundary conditions which 

include the forcing of the hydrodynamic in the model. In the following sections, all these 

issues are discussed and addressed. 

 

5.2.1 Model Domain of the RS-Model 

 

The first and most important step in the setup of a hydrodynamic model is the definition of 

the model domain. On the one hand, the modeller should take into consideration the area of 

interest in terms of evaluation and analyses the model results, the surrounding systems that 

have influences on the hydrodynamics, the location of the model boundaries (open/closed), 

the boundary conditions to be imposed. Besides, the computational requirements and also the 

processes to be simulated in the selected area should be accounted for.  

 

Based on the aforementioned considerations and taking into consideration the processes to be 

resolved by the model, the model domain of the Red Sea has been defined. The Red Sea is 

elongated-shaped sea extending from the north to the south between 30
°
 N to 10

°
 N over a 

distance of about 2000 km (oriented NNW to SSE). In the southern part, it links with the Gulf 

of Aden and Indian Ocean through a narrow strait (26 km wide and 200m deep) known as 

Bab el Mandeb. Therefore, to ensure a proper representation of the hydrodynamics in the 

region, the model domain of the RS-Model as shown in Figure 5.1 (limited by the Red 

dashed-line) was selected to include the entire Red Sea region, the Gulf of Aqaba, the Gulf of 

Suez and extends towards Gulf of Aden at longitude 48°E.  

 

The Gulf of Aden was included due to the fact that the strait of Bab el Mandeb is the only 

open boundary of the water basin where advective freshwater and heat fluxes can occur to 

balance the air-sea fluxes over the basin. As the water exchange in the region play significant 

role in the flow process it must be included. Besides tidal wave propagation from the Gulf of 

Aden is the major forcing of tidal motion in the Red Sea as pointed out by Defant (1961).  

Moreover, Patzert (1974) pointed out that important water masses and dynamics involved in 

the seasonal circulation may be located in the area outside the Red Sea basin. Most 

importantly, as mentioned previously in chapter [3], most of the previous studies focused in 

the southern part of the Red Sea including Bab el Mandeb and Gulf of Aden; therefore, 

covering this part in the domain assists in validation of the model results. Based on the model 

results, the model domain was found to be adequate for resolving the processes involved in 

the study area. 
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Once the model domain was selected, a grid was constructed to describe the bathymetry of 

the Red Sea. A detailed description of the grid generation and its properties is given in the 

following section (5.2.2). 

 

 
Figure 5.1 Border of the Red Sea model (RS-Model) domain indicated by red dashed-line. 

 

5.2.2 Constructing the Grid  

 

Numerical models require construction of a mesh for the selected domain in order to solve 

the equations governing the physical processes. Once the model domain has been defined, the 

grid configuration and resolution is defined. The design processes of the grid and the 

resolution together should involve systematically the optimal representation of the modelled 

processes and underlying bathymetry, the fulfilling of grid requirements taking into 

consideration the computational costs (computational time and computer requirements). 

 

5.2.2.1     Grid Requirements 

 

As already mentioned the equations are solved on finite difference grids. An optimal 

numerical accuracy requires some criterions to be taken into consideration within the 

preparation processes of the grid. The main requirements to be considered during building the 

grid are the so-called orthogonality and smoothness criterions. The former means that at each 

grid cell, the two lines drawn from the adjoining; opposite grid cell centres should intersect as 

perpendicular as possible (the angles between the horizontal and vertical grid lines should be 

close to 90 degrees). The latter means that the grid spacing must vary smoothly (M and N 

direction) over the computational region. These two factors are of great importance due to 

their significant role in the accuracy of the numerical solution of the flow equations.  
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The order of the orthogonality of a grid is determined by the cosine of the angle between the 

crossing grid lines in horizontal direction. According to Delft3D manual (2011), values in the 

range of 0.02 (angle: 88.85 - 91.15 degrees) in the area of interest to 0.04 (87.7-92.3 degrees) 

in remote areas are suggested. For the RS-Model, the values of the orthogonality in the entire 

grid are zero (see Appendix B-II).  

 

The factor of grid smoothness is defined as the ratio between adjacent grid cell lengths in 

horizontal direction. This factor should be considered in order to minimize errors in the 

difference approximations. The recommended values of smoothness in the area of interest are 

1.2 (see Delft3D Manual). The distribution of smoothness of the grid along the coordinates M 

and N direction for the RS-Model are fulfilled (see Appendix B-III).  

 

5.2.2.2     Model Grid  

 

The previous section has thrown light on the grid requirements that should be taken into 

consideration through the processes of building up the grid. Based on the model domain 

defined and the described grid requirements, the model grid of the Red Sea was generated. 

Tevfik (2006) suggests that in case of rectangular domains, finite difference equations are 

most efficiently solved with equal grid spacing.Therefore, some modifications on the grid 

should be carried out to arrive at adequate level of representation of the modelled area. The 

decision was made to schematize the grid on a rectangular mesh with a uniform grid spacing 

horizontally. To generate the computational grid, the Delft3D-RGFGRID generator program 

was used for this purpose. In early step, the configuration of the grid was selected to give a 

rough shape of the initial grid and also to make sure the final grid scheme will follow the 

expected flow direction avoiding numerical diffusion in the calculations. The final layout of 

the grid is based generally on depth data and land boundary outlines.  

 

The resolution of the model grid is very important factor in terms of ability to resolve the 

spatial variability of the flow characteristics. Therefore, the model should have sufficient 

spatial resolution to represent the desired processes.  Moffatt and Nichol (2000) pointed out 

that in some cases the grid has to be finer than the optimum grid size in order to capture 

particular features of importance. For the Red Sea model (RS-Model), the final grid 

resolution was chosen to be 2 km based on the sensitivity tests (see section 5.6 for sensitivity 

analysis).   The model grid covers the entire Red Sea and extends to the eastern part of Gulf 

of Aden at longitude 48°E. 

 

Figure 5.2 shows the resulting computational grid of the RS-Model. The model has only one 

open boundary situated in the eastern part of Gulf of Aden at longitude 48° E and divided 

into 25 segments. The open boundary has been selected far enough from the area of interest 

to avoid its effects on the hydrodynamics and model results. The coordinates system of the 

grid is spherical and therefore the variation of the Coriolis force is determined in the latitude 

direction. Considering the Courant number criterion (   =<10), the selected time step is set at 

1 min (see section 4.4.2 for more details about the Courant number). 

  



Chapter 5. Development of the Red Sea Model (RS-Model) 

 
66 

 
Figure 5.2 Computational grid of the Red Sea model, RS-Model 

 

 

5.2.3 Shoreline and Bathymetry of the RS-Model 

 

In order to setup a hydrodynamic model, bathymetric information on the area under 

investigation is necessary. It should be mentioned that the performance of a numerical model 

depends highly upon accurate representation of sea bottom levels. Currently there are several 

bathymetric datasets available with different coverage, resolutions and accuracies. Among 

them there is the GEBCO_08 (General Bathymetric Chart of the Oceans) bathymetric grid. 

GEBCO_08 is a 30 arc-second bathymetry grid produced largely by combining quality 

controlled ship depth sounding with predicted depths between the sounding points guided by 

satellite-derived gravity data.  

 

The bathymetric data of the RS-Model were sourced from the global bathymetry dataset for 

the  orld oce n ‘‘GEBCO_08’’ d t    e  t   30  rc-second horizontal resolution (The 

GEBCO_08 Grid, version 20090202, http://www.gebco.net). Data for the Red Sea model 

domain were extracted and converted into the appropriate file format required.  

 

To schematize the bathymetry of the RS-Model, the QUICKIN-Module of the Delft3D 

modelling system package was used. QUICKIN-Module is used for constructing, preparing 

and interpolating the bathymetry data onto the model grid. The program provides three 

methods to interpolate the samples into the grid. These are the so-c lled ‘‘Grid cell 

  er ging’’  ‘‘tri ngul tion inter ol tion’’  nd ‘‘intern l diffu ion’’. For more explanations 

with respect to interpolation methods, reference is made to Delft3D-QUICKIN user manual, 

2011.  

 

The selection of the method is very much related to the density of the sample. For High 

re olution d t   ‘‘Grid cell aver ging’’  ethod i  u ed  ‘‘ ri ngul tion inter ol tion’’  ethod 

is best suited for le   nu  er of     le    nd ‘‘intern l diffu ion’’  ethod i  u ed to fill the 

http://www.gebco.net/
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areas that do not contain samples.  For the RS-Model, the interpolation of the bathymetric 

data onto the computational grid was made initially  y    lying ‘‘Grid Cell   er ging’’ 

method. This is followed by ‘‘Intern l diffu ion’’ approach. Figure 5.3 shows the resulting 

bathymetry map for the RS-Model.  

 

The Red Sea as described earlier in chapter [3] experiences irregular bottom topography. 

Different gradients in the bathymetry are found along the coastlines where depths range from 

20 to 150 m and then slope into deep waters. It can be seen from the figure that most of the 

deepest areas in the Red Sea are found in the central axis where water depth can reach more 

than 2000 m. In the northern part of the Red Sea the deepest areas reach around 1200 m while 

in the south the maximum depth is about 200m. This is particularly the case at Bab el 

Mandeb strait where the shallow shelves connect with the Gulf of Aden.  

 

 
Figure 5.3 Bathymetry for the Red Sea model (RS-Model) based from GEBECO_8. The depths are 

in meter. 

 

5.2.4 Two dimension (depth-averaged) and three-dimensional model approximation 

 

The decision on the choice to use two and/or three-dimensional model approximating 

essentially on the main physical characteristics of the water system in the area of interest 

which basically based on the field measurements. Therefore, the importance of three-

dimensional approach becomes essential for processes that cannot be adequately represented 

by the depth-integrated model.  

 

As stated previously the Red Sea links with the Gulf of Aden via Bab el Mandeb strait. The 

model domain was defined to include the entire Red Sea and part of the Gulf of Aden (Figure 
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5.1) for the reasons discussed above (section 5.2.1). Therefore, the selected model domain 

should provide information about the flow velocity and temperature and salinity for both the 

horizontal plane and the water column. On the basis of literature, it was found that the 

circulation in the region of Bab el Mandeb is characterized by two-layer exchange flow 

during winter season. In contrast, this pattern is replaced during the summer season by three 

layers flow (see chapter 3). In addition to that, the available field measurements of salinity 

and temperature that were collected along the main axis of the Red Sea during summer-2001 

have shown stratified water column. Taking these considerations, 2D models (depth-

averaged) are unable to describe the vertical distribution of current or density variations 

throughout the water column. Therefore, in simulating the circulation and thermohaline 

processes in the Red Sea, a two dimensional model cannot be used in this regard. 

Accordingly, a three-dimensional approach has been selected to simulate the processes in 

question. 

 

5.3 Definition of the Open Model Boundary  
 

The definition of the open sea boundary is of major importance because it reflects the relation 

between the hydrodynamics in the model domain and surrounding areas. Open boundaries are 

 l  y   rtifici l ‘‘  ter-  ter’’  ound ry  Selecting the type of boundary forcing depends 

mainly on the model requirements on the one hand and on the available data set on the other 

hand. 

 

The open boundary of the RS-Model is selected far away from the area of interest in the Gulf 

of Aden at longitude 48°E to avoid its influences on the hydrodynamics and model results 

(see figure 5.2 for position). This boundary has been divided into a number of segments to 

ensure appropriate representation of the varying conditions along them. At the beginning and 

end of each segment conditions are prescribed and linearly interpolated. 

 

5.3.1 Model Forcing 

 

In order to simulate tides, circulation and thermohaline structure in the Red Sea adequate, 

model forcing should be applied. However, the applied data should have adequate spatial and 

temporal resolution to represent the desirable results. These data include the momentum 

transfer and pressure at free surface, momentum and transport forcing at the open boundaries 

and the heat exchange at the free surface. In the following, description about the model 

forcing data used is given. 

 

As mentioned previously the Red Sea is a deep sea with depths changing from a hundred 

meters along its west and east coast to few thousand meters along the centre.  Therefore, to 

compute the hydrodynamics the model must include the tide generating forces on the water 

body in addition to the ocean tide wave that enters through the strait of Bab el Mandeb. 
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5.3.1.1     Tidal Forcing 

 

Since the first part of the current study concerns the simulation of tides, in a first step a two 

dimensional (depth-averaged) model driven by tide alone has been considered. Therefore, 

this step on the one hand assists in reducing the computational time and on the other hand 

leads to faster calibration procedure. This is followed by efficient validation of the model 

with locally available surface elevation records. The tidal model can then be modified to 

incorporate meteorological forcing, transport forcing to simulate the circulation and 

thermohaline structure.  

 

Tidal forcing plays an important role in the dynamics of the ocean; therefore, it should be 

included as accurately as possible. The best approach for identifying the tidal forcing of flow 

models is the use of water levels of gauge stations located along or near the open sea 

boundaries. In the absence of measured data, large-scale models can be forced by 

astronomical constituents extracted from a global Ocean tide model. In the present study, 

water levels data near the open boundaries are not available for specifying boundary 

conditions in the model domain; thus the decision was made to extract the required boundary 

conditions from the global ocean tide models. It should be mentioned that the global tidal 

models can provide reliable predictions of tide in the oceans. However, in the shallow areas 

and near the coast of some regions the accuracy of these models usually is limited. 

 

There are several global tide models that produce tidal constants with different resolutions 

and accuracies. Among them is the TPXO7.2 (on ¼ x ¼ degree resolution global grid) 

developed at Oregon State University by assimilating satellite altimetry data of the 

TOPEX/Poseidon project (T/P). This model is one of the most accurate global tidal solutions 

(Egbert and Erofeeva, 2002). The model produces the eight primary semidiurnal and diurnal 

tidal components and other components. As a starting point, the TPXO7.2 model was used to 

compute the astronomical constituents for each boundary cell of the open sea boundary. The 

model results were evaluated by comparing the results with available observations. Details 

about this scenario and its outcomes are discussed in the following section. The model 

settings used in the simulations are listed in Table 5.9.  

 

Boundary Forcing based on TPXO7.2 global tidal model 

 

In the first scenario the global tidal model TPXO7.2 has been used to compute the 

astronomical constituents at the open boundary cells. The tidal constants of the model include 

the eight primary semidiurnal and diurnal components (M2, S2, N2, K2, K1, O1, P1, and Q1), 

and other components (Mf, Mm, M4, MS4 and MN4). Table 5.1 presents the amplitudes and 

phases of the astronomical constituents obtained from TPXO7.2 for only three selected 

segments. The assessment of this scenario was carried out by comparing the simulation 

results with the available measured water levels. The location of JIZAN and DUBA gauge 

stations were selected to compare the predicted tidal signal with the observed water level time 

series. A comparison between predicted and observed water levels from 19
th

 until 25
th

 of 
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April-2001 at the two locations is shown in figure 5.4. In general, it was found that the model 

produces similar trend of variations of computed and observed water level, however, 

discrepancies related to phase lag conditions are observed. 

 

In addition to that, the model slightly underestimates the high and low water. Therefore, 

adjustments to the tidal constituents prescribed on the open boundary are necessary to reach a 

reasonable level of agreement with observations. To adjust and calibrate the open boundary 

conditions, the simulated water levels have been harmonically analysed and compared with 

harmonic constants of measurements. For this purpose, the Delft3D-TRIANA module was 

used.  In this program, errors of amplitude and phase of the harmonic constants between the 

simulated and observed are computed (see section 5.6.2 for more details about the calibration 

process).  

 

Table 5.1 Amplitude and phase of the astronomical constituents extracted from TPXO7.2 

Tidal 

Constituents 

Section I Section II Section III 

Amplitude 

[m] 

Phase 

[Deg] 

Amplitude 

[m] 

Phase 

[Deg] 

Amplitude 

[m] 

Phase 

[Deg] 

 

M2 0.358 136.1 0.359 136.3 0.359 136.4 

S2 0.165 157.4 0.166 157.6 0.166 157.7 

N2 0.092 133.7 0.092 133.8 0.093 133.9 

K2 0.036 157.7 0.036 157.8 0.036 157.9 

K1 0.372 347.2 0.372 347.3 0.372 347.4 

O1 0.192 351.4 0.192 351.5 0.192 351.6 

P1 0.115 348.3 0.115 348.4 0.115 348.5 

Q1 0.041 352.2 0.041 352.3 0.041 352.4 

Mf 0.013 11.12 0.013 11.10 0.013 11.07 

Mm 0.006 4.81 0.006 4.80 0.007 4.74 

M4 0.001 286.3 0.001 283.8 0.001 281.3 

MS4 0.0 -21.1 0.0 -21.3 0.0 -22.3 

MN4 0.0 -112.4 0.0 -106.4 0.0 -107.2 

 

 

 
Figure 5.4 Comparison of measured and modelled water level at DUBA and JIZAN Stations 

based on TPXO7.2.  
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Based on the amplitude ratio and phase differences computed by Delft3D-TRIANA, the 

amplitudes and phases of the eight primary semidiurnal and diurnal constituents (M2, S2, N2, 

K2, K1, O1, P1, and Q1) have been adjusted. Note that the tidal components Mf, Mm, M4, MS4 

and MN4 were not considered due to their small contribution to the tidal behaviour. Table 5.2 

presents the adjusted amplitudes and phases of the primary semidiurnal and diurnal 

constituents. The assessment of this scenario was carried out by comparing the simulations 

results with the measured water level time series at the same locations considered previously 

(JIZAN and DUBA). Figure 5.5 shows a comparison between predicted and observed water 

levels from 19
th

 until 30
th

 of April-2001. As can be seen in the figure, good improvements 

have been achieved. After tuning the tidal constituents at the open boundary, the model 

produces the high and low water with good accuracy. With respect to occurrence time, there 

is almost no phase lag between the model predictions and measurements. At high and low 

tide the simulated water level was always in phase with the observed tide.  

 

Table 5.2 Amplitude and phase of the adjusted astronomical constituents 

Tidal 

Constituents 

Section I Section II Section III 

Amplitude 

[m] 

Phase 

[Deg] 

Amplitude 

[m] 

Phase 

[Deg] 

Amplitude 

[m] 

Phase 

[Deg] 

M2 0.55 252 0.55 252 0.55 252 

S2 0.251 257 0.251 257 0.251 257 

N2 0.176 285 0.176 285 0.176 285 

K2 0.086 275 0.086 275 0.086 275 

K1 0.38 32 0.38 32 0.38 32 

O1 0.17 120 0.17 120 0.17 120 

P1 0.048 83 0.048 83 0.048 83 

Q1 0.039 125 0.039 125 0.039 125 

 

 

 

 
 

Figure 5.5 Comparison of the measured and modelled water level at DUBA, and JIZAN 

Stations after adjustment to the open sea boundary conditions. 
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5.3.1.2     Atmospheric forcing 

 

Wind and Pressure forcing 

 

As stated in chapter [3] the characteristics of the monsoon wind regime in the Red Sea region 

are very important in defining the circulation and thermohaline processes. To resolve the 

large-scale monsoon driven circulation, wind and pressure forcing have to be prescribed as 

space and time varying through the model domain. In addition to that, this data is required to 

determine the net heat flux at the free surface.  

 

The wind speed and direction, pressure data were obtained from the German Metrological 

Service (the climate centre of Deutscher Wetterdienst, DWD) and interpolated to the model 

grid. This data has a spatial resolution of 1.5 degree at 6 hrs interval. These resolutions are 

adequate to resolve the large-scale monsoon system and also to resolve the large-scale 

seasonal heat flux cycle. The data considered in this study covers the period of eight years 

from January 2000 to December 2008.   

 

Heat flux forcing 

 

As mentioned in chapter [3] the seasonal temperature cycle in the Red Sea region is 

controlled by the net heat fluxes.  The seasonal cycle of the heat flux is modelled by the 

shortwave flux, cloud coverage and monsoon wind. Delft3D-Flow system includes five 

different heat flux models to calculate the surface heat flux (see section 4.5). In this study, the 

ocean heat model was used. This model is considered to be the best (De Goede et al., 2000) 

because it provides the possibility to apply the required space and time dependent heat flux 

forcing. The ocean heat model requires space and time varying cloud coverage, wind, air 

temperature and relative humidity as input fields. Similarly, the data covers the period of 

eight years from January 2000 to December 2008. The data are obtained from the German 

Metrological Service (the climate centre of Deutscher Wetterdienst, DWD) and interpolated 

to the model grid. The data has a spatial resolution of 1.5 degree at 6 hrs interval. These 

resolutions are also adequate to resolve the large-scale seasonal heat flux cycle. 

 

5.3.1.3     Transport forcing at the open boundary 

 

As described in chapter [3] exchange between the Red Sea water and surrounding system 

occurs via Bab el Mandeb Strait. There is seasonal variation in the exchange flow associated 

with monsoon winds. During the NE monsoon, water from the Red Sea flows out (RSOW) 

with a cool temperature and high salinity beneath the incoming surface water (SW) from the 

Gulf of Aden of a warm temperature and lower salinity. In contrast, during the SW monsoon, 

surface flow from the Red Sea towards the Gulf of Aden characterized by a warm 

temperature and high salinity takes place. Moreover, intermediate water (GAIW) between 

depths of about 40-80 m (18° C and 36 psu) from the Gulf into the Red Sea and deep outflow 

characterized by 21° C and high salinity (40 psu) into the Gulf was observed. Therefore, at 

the open boundary, temperature and salinity transport forcing has to be prescribed to account 

for influxes/outfluxes processes. 
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Measurements of temperature and salinity near to the open boundary are not available. The 

salinity and temperature data on the open boundary of the Red Sea model were obtained from 

SODA data (Simple Oceanic Data Assimilation). SODA data is produced by an Ocean 

General Circulation Model (OGCM), with horizontal resolution of 0.5°×0.5°, and 40 vertical 

levels with 10-m spacing near the surface (Carton and Giese, 2008). This data is available 

every five days and considered to provide the best three dimensional TS distribution.  

 

SODA data is prescribed at fixed depth levels, the spacing of which increases with depth. The 

data is linearly interpolated to the model grid in both horizontal and vertical directions. 

Therefore, it is prescribed as vertical profiles in Delft3D-Flow. This implies that at the open 

boundary, temperature and salinity are prescribed with time and vertically varying data. Thus, 

the values of temperature and salinity are calculated by linear interpolation between the 

boundary end points. Figure 5.6 shows an example of the temperature distributions over the 

Red Sea and close view of cross section along the open boundary.  

 

 
Figure 5.6 Temperature distribution [°C] over the Red Sea and part of Gulf of Aden based 

from SODA and close view of cross section along the open boundary. 
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5.4 Numerical and physical parameters 
 

In the present study, the main considerations of the model are tides, circulation and 

thermohaline processes. Setting up a hydrodynamic model involves determination of the 

numerical and physical parameters. These parameters are usually subject to sensitivity tests 

aiming at understanding their influences on the model results. Accordingly, the major 

parameters that have influences on the model results are identified. Therefore, the optimal 

values of the parameters are chosen to improve the model results based on observations. 

However, there are some constant values which have definite values in all simulation cases 

such as the gravitational acceleration and water density.  

 

With respect to numerical parameters in the model, all the parameters except time step have 

been kept at their default values. Since the model stability and accuracy depends highly on 

time step (section 4.4.2), selection of optimal time step for the hydrodynamic model should 

be based on the sensitivity tests. On the other hand, relevant physical parameters like bottom 

roughness, wind drag coefficient and eddy viscosity parameters have been subjected to the 

sensitivity analysis. Salinity and temperature values have been considered space and time 

varying. The variation of the Coriolis force is taken into account in the latitude direction by 

setting the spherical coordinate system. The optimal values of the numerical and physical 

parameters employed in the hydrodynamic model are summarized in Table 5.3. Sensitivity 

analyses of the numerical and physical parameters are given in the next section. Moreover, 

heat flux model parameters and coefficients are discussed and addressed in section (5.6.4.5). 

 

Table 5.3 Optimal parameters sitting used in the RS-Model 

Physical 

Parameters Value Unit 

Gravitational acceleration 9.81  m/s
2
 

Water Density 1028   kg/m
3
 

Air Density 1   kg/m
3
 

Temperature  variable 
°
C

 

Salinity variable pus 

Bottom roughness Che`zy (uniform) 65   m
1/2

/s 

Horizontal eddy viscosity  1  m
2
/s 

Horizontal eddy diffusivity 10 m
2
/s 

Vertical eddy viscosity 0.00001 m
2
/s 

Vertical eddy diffusivity 0.00001 m
2
/s 

Numerical 

Time Step 2 min 

Threshold depth 0.1 m 

Marginal depth -999  m 

Smoothing time 60 min 
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5.5 Initial condition 
 

The solution of the shallow water equations is determined by a set of initial and boundary 

conditions (Delft3D-User Manual 2011). Initial values at every grid cell and for all predictive 

variables involved in the simulation are required. In this study, two main types of initial 

conditions are required i.e. dynamic (water level and velocity) and conservative constituents 

(salinity and temperature). 

 

For the tidal model (2D-model), the initial condition for water level throughout the model 

domain was set equal to zero in all runs. The same applies to the velocity field, it is set to 

zero. In this respect, usually the equilibrium state in terms of water levels is reached after a 

few tidal cycles. Therefore, the first three days of simulation period have been ignored in the 

analyses.  

 

For the three-dimensional model (3D-model), an initial condition file has been introduced to 

define the values of salinity and temperature along the model domain for each of the vertical 

layers. The temperature and salinity distributions used as initial conditions were obtained 

from SODA datasets at horizontal resolution of 0.5×0.5 degrees. Initial tests were carried out 

aiming at getting a rough idea about the time needed for reaching a balance in terms of 

salinity and temperature with a cold start condition. More details about initial conditions are 

presented in section (5.6.4.6). An example of the temperature distributions interpolated onto 

the model domain is shown in figure 5.6. 

 

5.6 Model Sensitivity Analysis 

 

5.6.1 Introduction 

 

Since the physical and numerical parameters defined in the model set-up determine the 

characteristics of the flow simulation, their influences on the model outputs should be 

investigated through sensitivity analysis.  As mentioned earlier in chapter 2 section 2.5.1 the 

major aim of sensitivity tests is to get an estimate on the general performance of the 

numerical model and determine the parameters to be tuned. This implies that the sensitivity 

 n ly i  in ol e ch nging the  odel’ in ut   nd checking the effects on the model results. 

The conclusion drawn from these analyses would be used later in the so-called calibration 

processes.  

 

Initially, the sensitivity analyses for the most important parameters of the flow model are 

carried out. In the first step, sensitivity analysis was carried out to study the influences of grid 

resolution on the model results. Subsequently, effects of different time step on the model 

results are considered. Once these essential parameters are fixed, the analyses of the physical 

parameters were carried out. To select the horizontal grid resolution, optimal time step and 

also to investigate the open sea boundary conditions, a two-dimensional depth-integrated 

model was used. On the other hand, to analyse factors that require results in the vertical such 

as wind forcing and density distribution, a three dimensional model approximation was 

considered. 
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The analyses were carried out at four monitoring points indexed (JIZAN, JEDDAH, 

RABIGH and DUBA) in the model domain as shown in Figure 5.7. These locations were 

selected on the basis of available water level measurements. In addition to that, these 

locations are located far from the open boundary; therefore, the effectiveness of the open 

boundary conditions is taken into consideration. The time frame selected for the sensitivity 

tests was set for five days from 25
th

 of April 2001 00:00hrs to 30
th

 of April 2001 00:00hrs. 

This time covers several tidal cycles during spring tide. Detailed description about the 

sensitivity analysis of the model is presented in the following sections. 

 

 
Figure 5.7 Location map showing the monitoring points considered in the sensitivity 

analysis. 

 

5.6.2 Open Boundary Condition 

 

In the present study, the TPXO7.2 global ocean tide model was used as starting point for 

determining the open sea boundary conditions. This model is described above in section 

(5.3.1.1). The RS-Model has only one open boundary divided into twenty five segments to 

form the open boundary of the model domain (see Figure 5.2). The primary semidiurnal and 

diurnal tidal constituents (M2, S2, N2, K2, K1, O1, P1, and Q1), and other components (Mf, Mm, 

M4, MS4 and MN4) extracted from the TPXO7.2 global ocean tide model were prescribed at 

open boundary cells and linearly interpolated. An early test was carried out to determine the 

suitability of the open boundary conditions. In this regard, the adequacy of the prescribed 

open boundary conditions is tested against the water level measurements at JIZAN, 

JEDDAH, RABIGH and DUBA stations. The total period of simulations considered in the 

analysis is 15 days covering neap-spring tidal cycle from 15
th

 to 30
th

 of April 2001. However, 

taking into consideration initialization influences, the first four days are ignored and therefore 

not taken into account in the analysis. In the analysis, graphical comparisons as well as 

statistical evaluation between measured and simulated water levels were carried out. Table 
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5.4 lists the model settings used throughout the investigation of the open boundary 

conditions. 

 

Table 5.4 parameters selected during Boundary Condition study 

Parameters Selected values 

Grid Size Reference Grid 

Time Step 1 min 

Eddy Viscosity 1 m
2
/s 

Bottom Roughness  65 m
1/2

/s 

Initial Condition 
Uniform water level equal to zero 

Uniform velocity equal to zero 

 

The resulting water level time series are shown in Figure 5.8 through 5.11 (right-panel), 

respectively.  Based on the simulation results, astronomical constituents obtained from the 

global tidal model TPXO7.2 produce discrepancies when compare with the measurements. It 

was found that the model prediction tends to underestimate high water amplitudes at JIZAN 

and DUBA stations and overestimate the low water amplitudes at RABIGH station. In 

addition to that, the simulated water level lagged 2 to 3 hours. At JEDDAH station, low water 

amplitudes are reproduced slightly better but high water levels are underestimated by the 

model. With respect to occurrence time, there is also phase lag between the model results and 

measurements. Based on these findings, adjustments of the open boundary conditions were 

carried out to reach a reasonable level of agreement between the simulation results and 

measurements. 

 

To adjust the open boundary conditions, the water levels results from the model simulation 

have been analysed harmonically and compared with tidal constants from observations. For 

this purpose, the Delft3D-TRIANA program has been used. This tool performs offline tidal 

analysis of time series generated by Delft3D-Flow and computes the errors between the 

computed tidal constants and reference set of tidal constants arise from observed water levels. 

The statistical information provided is the amplitude ratio and phase difference. For details 

reference is made to the Delft3D-TRIANA-Manual, 2011. 

 

Using the mean amplitude ratio and phase differences, the adjustments to each individual 

tidal constituent were carried out. It can be seen from the Figures (5.8-5.11, left-panel); that 

significant improvements in terms of amplitude and phase have been achieved. The model 

estimates the high and low water level accurately at JIZAN and DUBA monitoring points. At 

RABIGH station, it can be seen that the model overestimates the low water and slightly the 

high water. At JEDDAH station, the model reproduces the low water accurately. However, 

the high water is underestimated by the model. On the other hand, the model predictions 

based on the adjusted conditions do not produce any phase lag during high or low water level. 
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                       I. Adjusted                   II. TPXO7.2 

Figure 5.8 Comparisons of water level between the measurements and the predictions at 

JIZAN Station. 

 

 

                   I. Adjusted                 II. TPXO7.2 

Figure 5.9 Comparisons of water level between the measurements and the predictions at 

JEDDAH Station. 

 

 

                        I. Adjusted                            II. TPXO7.2 

Figure 5.10 Comparisons of water level between the measurements and the predictions at 

RABIGH Station. 

 

             I. Adjusted                           II. TPXO7.2 

Figure 5.11 Comparisons of water level between the measurements and the predictions at 

DUBA Station. 
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To assess the discrepancies between the measurements and the model results of each 

simulation, statistical calculation of the discrepancies is carried out. Statistical parameters in 

terms of the mean error (ME), mean absolute error (MAE) and root mean square error 

(RMSE) have been determined. Table 5.5 through 5.8 lists the statistical evaluation for the 

observation points JIZAN, JEDDAH, RABIGH and DUBA. RMS error for the model 

predictions based on adjusted astronomical constituents at all stations considered in the 

analysis was found to vary from 0.03 to 0.06 meter, while the MAE values were 0.03 meter at 

JEDDAH, RABIGH stations and 0.04meter at JIZAN and DUBA. On the other hand, RMS 

error for the model results based on TPXO7.2 varies from 0.08 to 0.3 meter, and MAE ranges 

from 0.07 to 0.3 meter. Therefore, very good improvements have been obtained from the 

adjusted astronomical constituents at the open boundary in comparison to the TPXO7.2 

predictions.   

 

            Table 5.5 Statistical analysis of discrepancies at JIZAN station 

Parameters Adjusted TPXO7.2 

ME          [m] -0.0241 -0.0153 

MAE       [m] 0.0439 0.3080 

RMSE     [m] 0.0570 0.3466 

   

            Table 5.6 Statistical analysis of discrepancies at JEDDAH station 

Parameters Adjusted TPXO7.2 

ME          [m] -0.0105 0.0012 

MAE       [m] 0.0301 0.0700 

RMSE     [m] 0.0371 0.0823 

 

           Table 5.7 Statistical analysis of discrepancies at RABIGH station 

Parameters Adjusted TPXO7.2 

ME          [m] -0.0024 -0.0103 

MAE       [m] 0.0387 0.1192 

RMSE     [m] 0.0342 0.0882 

 

Table 5.8 Statistical analysis of discrepancies at DUBA station 

Parameters Adjusted TPXO7.2 

ME          [m] 0.0075 0.0212 

MAE       [m] 0.0459 0.2121 

RMSE     [m] 0.0434 0.2403 

 

 

5.6.3 Numerical Parameters 

 

Table 5.9 lists summary of the model types used in the sensitivity analysis. The evaluation of 

the influences on the model results was carried out at four monitoring points (JIZAN, 

JEDDAH, RABIGH and DUBA) located along the eastern coast of the Red Sea. The analyses 

of the numerical parameters include the grid resolution and time step.  
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Table 5.9 types of models considered in the sensitivity analysis 

Parameters Type of analysis Approximation 

BC Open sea boundary condition 

 

Two-dimensional 

 

Numerical 
Grid Resolution 

Time Step 

Physical 

Horizontal Eddy Viscosity 

Bottom Roughness 

Wind 

Three-dimensional 

Horizontal Eddy diffusivity 

Vertical Eddy Viscosity 

Vertical Eddy diffusivity 

Density Gradients 

 

 

5.6.3.1     Decision on Grid Size in the horizontal plan 

 

In a numerical model, considerations and attention should be taken in terms of computational 

time on the one hand and sufficient grid resolution on the other hand to represent the desired 

results. To determine the optimal grid resolution, sensitivity tests have been carried out with 

three different grid resolutions. The final grid resolution is selected on the basis of the 

sensitivity analysis. 

 

Initially, a reference grid of 5 km resolution has been constructed and by using 

refinement/de-refinement processes the coarse and finer grids are obtained. Table 5.10 

provide an overview of the proposed grid characteristics including maximum Courant 

number and time step. Column 2 in the table lists the total number of each case considered in 

the analysis. The time step and corresponding maximum Courant number is shown in column 

4 and 5 respectively. The spacing of the coarse mesh is 10 km. The medium grid (Reference) 

has a resolution of 5 km while the finer grid resolution is 2 km. Note that the flow 

simulations using finer configuration consumes almost as much as twice the computing time 

when compared to the reference grid. 

 

In general, the same bathymetric data and the same interpolation methods have been applied 

onto each grid.  In the case of time step, the Courant number was set as similar as possible for 

the three grids. Therefore the time step was selected based on the Courant number of the finer 

grid and kept constant for all computational grids. That means that, the time step was 

assessed according to the finer grid resolution in the computational area specified by the 

Courant number. Bottom roughness (Chezy coefficient) and eddy viscosity parameters were 

set as default values as given by the Delft3D-Flow system. All the sea water properties were 
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prescribed as presented in Table 5.3. Simulations were carried out using the same parameters 

setting for each grid. 

 

Table 5.10 Characteristics of the proposed grids used during sensitivity analysis 

Grid Number of 

Grid Cells 

Grid Resolution 

[km] 

Time Step 

[min] 

Maximum 

Courant 

Number   

 

Coarse 

 
 

 

93.000          10  2 6.5 

 

Reference 

 
  

  
 

 

184.075 

 

           5 

 

 

 

1.5 

 

6 

 

Finer 

 

   

   
 

 

368.114 

 

         2 

 

 

 

1 

 

6 

 

 

In order to select the optimal grid resolution, comparisons between the computed water levels 

at the selected locations for the three different grid spacing are plotted. Figure 5.12 presents 

the comparison of the simulated water levels from the three models. The figure reveals that 

computed water levels of the reference and finer grid reflect tiny discrepancies at the 

monitoring points JIZAN and DUBA while at JEDDAH and RABIGH the models produce 

similar results. In the case of coarse grid, it was found that it under-predicts the tidal 

amplitude in addition to the occurrence time (phase lag of about one hour) as can be seen at 

JIZAN and DUBA stations. The same applies to JEDDAH and RABIGH stations. The coarse 

grid produces large discrepancies as compared to the reference and finer grids.  

 

Regardless of the tiny differences between the reference and fine grids at JIZAN and DUBA 

monitoring points, the consuming time that the finer grid takes is almost twice of the 

reference mesh. In the comparison between the measurements and the model predictions it 

was found that the reference grid produces good matching with measured water level. Hence, 

it can be concluded that the resolution of the reference grid configuration is appropriate to 

carry out the current study. Moreover, the interpolation of the sample points in creating the 

bathymetry depends on the grid size; it was also found that the resolution of the reference 

grid is sufficient for the representation of the coastline and the bathymetrical gradients. 

Therefore, the reference grid was adopted in this study and it will be used later used in all 

simulations.  
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Figure 5.12 Effect of the horizontal grid resolution on water level at monitoring points JIZAN, 

JEDDAH, RABIGH and DUBA for RS-Model. 

 

5.6.3.2     Grid resolution in vertical plan  

 

In order to simulate the circulation and thermohaline processes, the 2-D RS-Model was 

extended into the 3-D mode. The suitability of using three-dimensional models is on the one 

hand related to the number of the grids applied in the vertical direction and on the other hand 

to the vertical coordinate systems. If the vertical distributions are not defined accurately, the 

desirable results cannot be derived in a good manner. Nevertheless, special attention should 

be considered concerning the computational time which depends on the number of grids in 

the vertical discretization. It is known that applying more number of layers definitely 

consumes more time computation. Therefore, an optimum number of layers should be 

achieved taking into account the computational time on the one hand and the accuracy of the 

results on the other hand. 

 

As a first step, it is important to select the optimal vertical coordinate system that meets all 

the requirements of the current study. As stated previously the Delft3D-Flow system solves 

unsteady flows on boundary fitted grid (sigma-coordinate system). This coordinate system 

has significant errors where stratified flow occurs particularly in combination with steep 

bathymetry (see chapter 2). This is very important in the case of the Red Sea which 

experiences stratified flow as well as steepness in bathymetry. The Red Sea is characterized 



Chapter 5. Numerical Parameters 

 
83 

by different sea bed gradients along the coastlines which slope into deep waters in central 

axial where water depths can reach over 2000 m (see section 5.2.3).  Besides, a complex 

exchange flow exists between the Red Sea and Gulf of Aden via Bab el Mandeb strait. This is 

characterized by two layers flow system in winter and three layers flow system in summer. 

Because the “ ” le el i   ound ry fitted (the vertical coordinate follows the bathymetry, 

keeping the same number of vertical grid points everywhere in the domain), it does not have 

enough resolution around the pycnocline which is strictly horizontal in the physical space. As 

a result, errors in the pressure gradient can give rise to unrealistic flows. Therefore, the 

sigma-coordinate system cannot be used in this study. In 2003, a second vertical grid 

coordinate system based on Cartesian coordinates (known as Z-grid) was introduced in 

Delft3D-Flow for 3-D simulations of stratified water systems. The Z-coordinate system has 

horizontal lines which are almost parallel with density interface in regions like the Red Sea. 

The number of grid cells in the vertical varies from grid point to grid point and it depends on 

the local depth (see section 2.6.3.2.1for more details about Z-coordinate). Thus, the second 

vertical grid coordinate system based on Cartesian coordinates was used to meet all the 

requirements of this study. 

 

In the second step, a decision was made concerning the number and thickness of layers taking 

into consideration the computational time as well as the required results. On the basis of 

measurements, it was found that a thermocline in the main axis of the Red Sea region is 

always above 200 meters depth (see section 3.6.4).  In addition to that, the potential 

temperature and salinity distribution varies significantly between the two monsoon seasons. 

Beneath the depth of 200 m, the Red Sea basin is characterized by water of remarkably 

homogenous temperature, salinity and potential density. The analysis of the available 

measurements showed that the mean thermocline depth is located between 50 and 100 meters 

(section 3.7.3). A maximum thermocline depth is found between the depth 100 and 150 

meters. Since the mixed layer is located above the thermocline depth, special attention should 

be considered to distinguish between the layers. Consequently, the model vertical resolution 

in the upper layers should be sufficient to represent variability in the study area. 

 

Taking into account the aforementioned descriptions about the complex dynamics in the 

upper part of the water column, the water column is resolved by 30 vertical layers with 15 of 

these concentrated in the upper 200 m. The vertical distribution is defined per grid point as 

percentage of the total depth of 2700 m. The vertical descretization is defined with layer 

depths increasing from 5 m at the surface to 250 m at the bottom, thus keeping the higher 

resolution at the surface in order to capture the dynamic of the upper ocean. The resulting 

vertical distributions based on the depths are presented in Table 5.16. Based on the model 

results, it was found that the distributions of the vertical resolution are sufficient to 

adequately represent the processes in question (see chapter 7). 
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                              Table 5.11 vertical distribution of the  -model grid 

Layers Depth [m]  -Level 

1 5 0.1924 

2 10 0.3848 

3 10 0.3848 

4 10 0.3848 

5 11 0.4231 

6 12 0.4616 

7 12 0.4616 

8 13 0.5000 

9 14 0.5385 

10 15 0.5770 

11 17 0.6539 

12 19 0.7310 

13 23 0.8847 

14 27 1.0385 

15 31 1.1924 

16 39 1.5000 

17 50 1.9231 

18 63 2.4231 

19 85 3.2693 

20 113 4.3462 

21 150 5.7693 

22 189 7.2693 

23 221 8.5000 

24 239 9.1924 

25 250 9.3996 

26 250 9.3996 

27 250 9.3996 

28 250 9.3996 

29 

30 

250 

250 

9.3996 

9.3996 

 

 

5.6.3.3     Effect of the time step  

 

Time step is an important parameter because it plays significant role in the accuracy and 

stability conditions of the model. It is well known that smaller time steps lead to higher 

accuracy of the computations. However, as the time step decreases, the computational time 

increases. Thus, an optimal time step should be achieved with the highest possible value 

avoiding any numerical instability.  

 

As mentioned previously in chapter [4] the model time step is limited by the Courant number 

formulation which gives rough idea about the possible range of time step. In the sensitivity 

analysis of the model due to grid resolution (section 5.6.3.1), the simulations were performed 

by setting the time step to 1 minute associated with Courant numbers of 6. In the following 

analysis, three scenarios were carried out to determine the influence of different time step on 

the model predictions. The values of time steps have been chosen based on the maximum 
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Courant number given by each of these three cases as listed in Table 5.12. All other 

parameters were left as given by Delft3D-Flow system.  

Table 5.12 Time steps and courant number used in the sensitivity analysis 

Cases        Time 

Step 

                Max. Courant 

Number 

Case I      0.5 min                   3.5 

Case II      1 min                  6 

Case IV      2 min                  13 

 

The influence of different time steps on water levels at the monitoring points JIZAN, 

JEDDAH, RABIGH and DUBA is shown in Figure 5.13. Based on the simulation results, the 

changes of time steps from 0.5 to 2 minute reveal that the water level predictions are not 

influenced. Since the three cases produce similar results, the computed results from the 

original simulation (Case I) can be considered as stable and representative. Note that the flow 

simulation using 2 minute time step reduce the computing time compared with the one 

minute. However, this time step corresponds with Courant number of 13. Therefore, for 

accuracy and numerical stability a time step of 1 minute is adopted in this study. 

 

 

 

 

 

Figure 5.13 Effect of different time steps on water level at monitoring points JIZAN, JEDDAH, 

RABIGH and DUBA for RS-Model. 
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5.6.4 Physical Parameters 

 

In the previous sections sensitivity analysis of the numerical parameters has been carried out. 

As a result, numerical parameters values have been fixed and no longer subject to the 

investigation. In the following sections the sensitivity analyses of the most important physical 

parameters in the flow model are carried out. The physical parameters include bottom 

roughness, eddy viscosity, bathymetry changes and wind. 

 

5.6.4.1     Effect of the bathymetry variations 

 

As stated previously in section 5.2.3, in the present study, the bathymetry map prepared for 

simulating all the cases was based on the digital open source GEBCO_8 database at a 30 arc-

second horizontal resolution. Therefore, it is important to investigate the relative influence of 

different bathymetrical depths on the model results. This was done by considering three cases 

as illustrated in Table 5.13.  

 

Table 5.13 Sensitivity analysis with different bathymetrical depths 

cases description 

Case I Increase 5% of depth from original bathymetry 

Case II Original bathymetry 

Case III Decrease 5% of depth from original bathymetry 

 

Figure 5.14 presents the model predictions of water levels due to changes in bathymetry at 

the stations of JIZAN, JEDDAH, RABIGH and DUBA.  Based on the simulation results, 

increases and decreases in the bathymetry by about 5% from the original values have 

insignificant influence at the monitoring points JEDDAH and RABIGH. On the other hand, 

minor variations on the water levels resulted at the locations of JIZAN and DUBA. The 

results obtained show that increasing in the bathymetry of about 5% cause an average change 

of few cm.  
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Figure 5.14 Effect of different bathymetry (water depth) on water level at monitoring points JIZAN, 

JEDDAH, RABIGH and DUBA for RS-Model 

 

Relevant Model Coefficients 

 

There are a number of coefficients that should be specified because of their relative role 

either in controlling the magnitude of model forcing or the representation of model processes. 

These include bottom roughness, horizontal and vertical diffusivity and viscosity parameters, 

heat model coefficients and wind drag coefficient (Cd). However, optimal determination of 

these coefficients is based on the sensitivity analysis. In the following, all these coefficients 

are discussed and addressed.  

 

5.6.4.2     Effect of the Bottom Roughness  

 

Bed resistance is one of the most effective parameters in the hydrodynamic models.  

Roughness coefficient represents the resistance of the bed to the flow. In the current study, 

the bottom roughness value was considered as uniform over the whole domain. To determine 

the influences of bottom roughness on the simulation results, three cases are analysed. This 

analysis was carried out by running three scenarios including three different values of 

Chezy’  coefficient equal to 45m
1/2

/s, 65m
1/2

/s, and 85m
1/2

/s respectively. The simulations 

were carried out using the same parameters setting listed in Table 5.4.  

 

Figure 5.15 shows the influence of bottom roughness on water levels at the monitoring points 

JIZAN, JEDDAH, RABIGH and DUBA. Based on the simulation results, the usage of lower 

or higher Che`zy coefficients reveals that the water level predictions are not influenced 

significantly. Therefore, in this study a Che`zy roughness coefficient equal to 65 m
1/2

 /s is 

adopted for the RS-Model.  
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Figure 5.15 Effect of different values of Che`zy coefficient on water level at monitoring points 

JIZAN, JEDDAH, RABIGH and DUBA for RS-Model. 

 

5.6.4.3     Effects of Horizontal Eddy Viscosity and Diffusivity  

 

The horizontal viscosity / diffusivity parameters specify the magnitude of turbulent mixing on 

a sub-grid scale based on a turbulent closure model. In this study the k-  turbulent closure 

model is used. The Reynolds stresses within the momentum equation are determined by the 

eddy viscosity concept. The contribution of 3D turbulent eddies to the vertical exchange of 

horizontal momentum and mass is modelled through a vertical eddy viscosity and eddy 

diffusivity coefficient. In the turbulent closure model (k- ), the turbulent kinetic energy k and 

the dissipation rate of turbulent kinetic energy   are determined by transport equations. In 

general, the horizontal eddy viscosity coefficients     and eddy diffusivity coefficient     are 

much larger than the vertical coefficients    and   .  

 

In this section, the influence of the Horizontal Eddy Viscosity (HEV) parameter is 

investigated by comparing three cases with the default value given by Delft3D-Flow system 

(1 m
2
/s). The HEV was considered as a constant value in time and space uniformly 

throughout the whole domain. Table 5.14 lists the eddy viscosity values used in the 

investigation. The comparison is made in terms of water levels at the stations JIZAN, 
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JEDDAH, RABIGH and DUBA. In all simulations, the other parameters were adopted as 

prescribed in Table 5.4. 

 

Table 5.14 Eddy Viscosity values used in the sensitivity analysis. 

Cases                 Eddy Viscosity parameter 

Case I                      0.1 m
2
/s 

Case II                      1 m
2
/s 

Case III                       20 m
2
/s 

Case IV                       60 m
2
/s 

 

The influence of horizontal eddy viscosity on the simulated water levels at monitoring points 

of JIZAN, JEDDAH, RABIGH and DUBA is shown in Figure 5.16. Based on the simulation 

results, the eddy viscosity coefficient has a negligible effect on the outcomes of the 

simulations in terms of water levels. Therefore, eddy viscosity value of 1 m
2
/s is adopted for 

the RS-Model. 

 

 

 

 

 
Figure 5.16 Effect of different values of Eddy Viscosity on water level at monitoring points JIZAN, 

JEDDAH, RABIGH and DUBA for RS-Model 
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The evaluation of the model sensitivity due to horizontal diffusivity was analysed on the basis 

of temperature and salinity. The influence of the eddy diffusivity parameter are analysed by 

comparing three different values with the default value given by system (10 m
2
/s). Table 5.15 

lists the eddy diffusivity values considered in the analysis. In all simulations, the other 

parameters were adopted as prescribed earlier in Table 5.4. 

 

Table 5.15 Eddy Diffusivity values used in the sensitivity analysis 

Cases                    Eddy Diffusivity parameter 

Case I                         1      m
2
/s 

Case II                         10     m
2
/s 

Case III                        100    m
2
/s 

Case IV                         200    m
2
/s 

 

The influence of horizontal eddy diffusivity on temperature and salinity is shown in Figure 

5.17 and 5.18 respectively. Based on the simulations results, increasing the horizontal 

diffusivity reflect some effects on the model results. The effect of diffusivity can be seen 

clearly in case III and IV particularly at latitude 20° to 16° N. This can be explained due to 

the fact that an increase in horizontal diffusivity lead to increased effects of turbulent mixing 

on sub-grid scale. On the other hand, the exchange system between the Red Sea and the Gulf 

of Aden via Bab el Mandeb Strait associated with the monsoon plays an important role (see 

chapter 3). In appendix 3, maps of sea surface temperature and salinity showing the spatially 

patterns are provided. These figures clearly indicate that increasing the value of horizontal 

diffusivity reduces the exchange features. Therefore, decreasing the horizontal diffusivity 

may improve the model quality in representing the exchange processes. Therefore, an eddy 

diffusivity value of 10 m
2
/s is adopted for the RS-Model.  
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Figure 5.17 Effect of different values of Eddy diffusivity on vertical temperature profile, cross 

section along the main axis of the Red Sea. 

 

 

Figure 5.18 Effect of different values of Eddy diffusivity on vertical salinity profile, cross section 

along the main axis of the Red Sea 
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5.6.4.4     Coefficients for ocean heat model 

 

A   entioned e rlier in ch  ter [4]  in thi   tudy the ‘‘Oce n He t Model’’     u ed   hi  

mode requires a number of coefficients which play an important role in controlling the heat 

flux forcing in the numerical model. These coefficients are: the Stanton number (  ), the 

Dalton number (  ) and the Ozmidov length scale (    ). The Stanton coefficient is specified 

to control the magnitude of the convective heat flux while the Dalton coefficient responsible 

for the evaporative heat fluxes. The Ozmidov length scale parameter on the other hand 

determines the magnitude of turbulent mixing by internal wave. 

 

To select the optimal values of the mean coefficient, a literature review was carried out. This 

step was aimed at identifying the most commonly specified magnitudes. Consequently 

several simulations were carried out based on different values of Dalton (  ) and Stanton (  ) 

numbers described in the literature. In this regard, (  ) and (  ) are calibrated by determining 

the optimum fit between sea surface temperature (SST) changes of the model and SST 

observations. Table 5.16 presents an overview of different coefficients found in the literature. 

It should be mentioned that these values are determined based on climatological, annual mean 

atmospheric variables.  

 

In the literature, several numbers of Dalton and Stanton coefficients are applied. This is due 

to the fact that these coefficients are determined based on comparisons of empirical 

measurements with reference data and thus have only limited physical meaning (Gill, 1982). 

According to Saad and Ahmad (1995), the evaporative and sensible heat fluxes depends on 

the choice of heat exchange coefficients (  ) and (  ). Hastenrath and Lamb (1979) used a 

constant coefficient of 1.4 * 10
-3

 for (  ) and (  ) to calculate the heat fluxes in the Red Sea. 

They concluded that using this value lead to underestimation of evaporation flux when 

considering the monthly mean of meteorological variables.  

 

Budyko (1963), used a value of 2.1 *10
-3

 in con tructing the ‘‘Atl   of the he t   l nce of the 

e rth’’ for c lcul ting e   or tion fro  the  orld oce n    hi    lue     u ed  y Bun er et 

al. (1982) in calculating the heat balance in the Mediterranean and Red Seas. Ahmad and 

Sultan (1987) have also used this value for calculating heat fluxes of the Red Sea from 

monthly mean meteorological data. Their conclusion indicated that this value produces a 

reasonable estimate when considering the annual average. Robinson (1966) suggests the 

value of 2.0 ± 0.3 * 10
-3

 for oceanic heat balance. On the other hand, Anderson and Smith 

(1981) recommended a value of 1.3 * 10
-3

 for     at wind speed up to 10 m/s. However, this 

value increases with increasing wind speed.  

 

Ahmad and Sultan (1989) calculated the evaporative and sensible heat fluxes in the central 

part of the Red Sea by applying a lower value equal to 1.7 * 10
-3

 suggested by Robinson 

(1966). Surface heat fluxes and advective heat transport through Bab el Mandeb was studied 

by Ahmad & Sulatn (1995). In their study the exchange coefficient of 2.0 * 10
-3

 was used to 

calculate the evaporative flux while in calculating the sensible heat the values suggested by 

Gill (1982) are   = 0.83 * 10
-3

 (for stable condition) and   =1.1 *10 
-3

 (for unstable 
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condition) were adopted. The conclusion drawn from this analysis indicated that the latent 

heat exchange coefficient (  ) shows high sensitivity in estimating the evaporative flux and a 

value of 2.0 * 10
-3

 represents reasonable results.  

 

The formulation of the heat flux equation used in the ocean heat model in Delft3D package is 

based on those described by Gill (1982). A mean wind speed of 6 m/s is observed over the 

Red Sea. Nevertheless, during the monsoon highs, higher wind speeds exceed 10 m/s. 

According to Anderson and Smith (1981), the Stanton number should in this case be 

increased to account for turbulent conditions associated with higher wind speeds. Therefore, 

Dalton and Stanton coefficients described by Gill (1982) are assumed representative. A 

Dalton number of 1.5 * 10
-3

 and a Stanton number of 0.9 * 10
-3

 will be used as starting point. 

In addition to that, the value considered by Bunker et al. (1982), Ahmad and Sultan (1987) in 

calculating heat fluxes of the Red Sea can be examined since it produces reasonable 

estimates. 

 

Based on this review, the representative magnitude of the convective heat flux and the 

evaporative heat flux were determined. The default values in Delft3D system are 1.3 * 10
-3

 

for both Dalton and Stanton coefficients. With these coefficients a number of simulations 

were carried out using the same model settings described previously. Sensitivity analysis 

suggested that changing the coefficients lead to minor influences mainly in the range of about 

0.5 to 1 °C. Therefore, the values equal to 1.3 x 10
-3

 are applied. 

 

Table 5.16 Overview of Dalton and Stanton numbers found in the literature. 

Reference Dalton (  ) Stanton (  ) 

[Gill, 1982] 1.5 * 10
-3

 
0.83 * 10

-3
 (stable condition) 

1.1 * 10
-3

 (unstable condition)
 

[Millar et al., 1999] 1.5 * 10
-3

 0.79 * 10
-3

 

[Anderson & Smith, 1981] 1.32 * 10
-3

 1.1 * 10
-3 

[Bunker et al., 1982] 2.1 * 10
-3

 2.1 * 10
-3 

[Hastenrath & Lamb, 1979] 1.4 * 10
-3 

1.4 * 10
-3 

[Budyko, 1963] 2.1 * 10
-3 

2.1 * 10
-3

 

[Robinson, 1966] 2.0 ± 0.3 * 10
-3

 2.0 ± 0.3 * 10
-3

 

[Ahmad & Sultan, 1987] 2.1 * 10
-3

 2.1 * 10
-3

 

[Ahmad & Sulatn, 1989] 1.7 * 10
-3 

1.7 * 10
-3

 

[Saad & Ahmad, 1995] 2.0 * 10
-3 

0.83 * 10
-3

 

 

 

5.6.4.5     Effect of wind drag  

 

In the modelling system, two options are available to prescribe wind conditions i.e. global or 

local. The former corresponds to uniform wind in space and varying in time while the latter 

(local winds) vary both in space and time in combination with space and time varying 

atmospheric pressure. In this study, space and time varying winds and atmospheric pressure 

are used. The wind drag coefficient (Cd) determines the magnitude of the surface wind stress. 

The wind shear stress at the free surface is defined as: 
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where:   represents the wind shear stress at the free surface [N/m
2
],    represents the air 

density [kg/m
3
],     represents the wind drag coefficient,      represents the wind speed at 10 

m above the free surface [m/s]. The wind shear stress increases linearly with air density    

and wind drag coefficient    and quadratically with increasing wind speed     at 10 m 

height. Delft3d-Flow allows specifying a three wind drag coefficients values and three wind 

speed values. The three wind drag coefficients determine three breakpoints in the piece-wise 

linear function of wind drag and wind speed as illustrated in Figure 5.19. The default 

breakpoints are    =0.00063 at          and             at              and 

            at             . The first two coefficients determine the wind drag value 

from zero wind speed up to the wind speed specified at the first breakpoint. For the third 

breakpoint, the two coefficients specify the constant wind drag coefficient from the specified 

wind speed and higher.  

 

Figure 5.19 Example of the wind drag coefficient (Delft3D-user-Manual, 2011) 

 

A variety of empirical relations are suggested in the literature to specify the magnitude of   . 

However, in majority of cases, relations dependent on wind speed     at 10 m height and on 

coefficients based on extreme wind conditions (such as storm surges) are used. Therefore, 

these coefficients reflect a strong regional dependency since they are determined from 

empirical relations. In the Open University (1989), a value of     =2*10
-3

 is suggested to be a 

realistic and provides reasonable results. However, the modelling system a value of    

=2.5*10
-3

 is considered to be more realistic. In order to assess and determine the influence of 

the wind drag coefficient on the model results three different cases have been analyzed 

besides a simulation without applying wind. Table 5.17 lists the three settings considered in 

the analysis. The first and second settings (the realistic spectrum) represent the values 

suggested by the Open University (1989) and the default value of the modelling system 

respectively. The third case represents a higher    value which therefore reflects more clearly 

the nature of the effects. The total simulation period considered in the analysis is 30 days 

(01/04/2001 0:00hrs to 30/04/2001 0:00hrs). The influences of wind forcing in terms of water 

levels have been carried out at the monitoring points JIZAN, JEDDAH, RABIGH and DUBA 

respectively.  In the three simulations, space and time varying winds are applied. 

 

Table 5.17 Wind drag coefficient values used in the sensitivity analysis 

Cases Case I     Case II  Case III 

       0 m/s 0.00063     0.00063   0.00063 

       100 m/s 0.002     0.0073    0.0125 
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Figure 5.20 shows the mean wind magnitude and direction for the period considered in the 

analysis. The prevailing wind direction in the northern and central part of the Red Sea is 

NNW while in the southern part it is SSE. The mean wind speed during this month was found 

to be about 5.5 ms
-1

 and the maximum wind speed is equal to10 ms
-1

. 

 

  

Figure 5.20 mean wind speed and direction for the period considered in the analysis 

 

The influence of different wind drag coefficients on water levels including the simulated 

water level without wind at the four stations is shown in Figure 5.21. It can be seen from the 

figure that the water level set up induced by the wind differs depending on wind speed. The 

water levels of the simulation without wind indicate that the main movements of the 

hydrodynamics are forced by the horizontal open sea boundary conditions. However, the 

effect of the wind is obvious. The higher variations of the applied wind shear stresses during 

higher wind velocities are obvious. It was observed that the water level set up induced by the 

wind applying case III corresponding to higher velocities is in order of about 45 cm in April 

6-7 2001at JIZAN location. Similarly, the water level set up in DUBA reaches about 40 cm. 

In the middle part of the model domain near the stations JEDDAH and RABIGH location 

maximum water level set up is observed during the same period which is in order of 65 cm. 

The winds in the central part of the Red Sea are reported to be strong in the whole year. The 

water level differences for lower Cd values (case I and II) are small in JIZAN than JEDDAH 

or RABIGH as a result of higher wind speed. As a result, the differences between JIZAN and 

JEDDAH increase for increasing wind drag. The variability of the water level is higher for 

high Cd values in JEDDAH and lower for high Cd at JIZAN. On the other hand, the effect of 

the wind drag coefficient is tiny associated with lower wind velocities as observed at the 

monitoring points from 9-15 of April-2001. 



     Chapter 5. Physical Parameters 

 
96 

 

 

 

 

Figure 5.21 Effect of different values of wind drag coefficient on water level at monitoring points 

JIZAN, JEDDAH, RABIGH and DUBA for RS-Model 

 

 

The influences of different wind drag coefficients have also been analyzed in terms of salinity 

distributions. Figure 5.22 and 5.23 shows vertical salinity distributions along the main axis of 

the model domain and three cross-sections representing the northern, middle and southern 

parts of the model domain respectively at 06 of April 15:00hr. The influence of case III is 

pronounced when compared with case I. The higher wind shear stresses (case III) enhance 

turbulences and thus the vertical exchange and mixing of the constituents. However, the 

water level differences due to density currents are expected to be small compared to the 

above discussed influences. The wind influences density driven currents temporarly 

depending on the wind drag coefficient.  
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Figure 5.22 Effect of different values of wind drag coefficient on salinity distribution along the main 

axis of the model domain, RS-Model 

 

 

 

 

Figure 5.23 Effect of wind drag coefficient on salinity distribution over three cross-sections of the 

model domain, Northern, Middle and Southern part.  
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5.6.4.6     Effects of initial conditions 

 

In the hydrodynamic modelling, one of the major challenges of the model set up is to achieve 

proper initial conditions particularly for temperature and salinity. The optimal way to start the 

simulation is to use initial conditions which are in dynamic equilibrium with all boundary 

conditions. Such conditions can be obtained from previous simulations which will support in 

reducing the warm up period of the model. Because when the model is started with other 

values, this leads to increasing the time to reach a dynamic equilibrium. During the warm up 

period, the model results consist of uncertainty. Therefore, it should be determined how much 

time is required to reach stable conditions with a cold start conditions and accordingly 

ignoring the erroneous data from that period. The time-scale to reach equilibrium state 

usually depends on the vertical diffusion of salinity and temperature (Bernsen et al., 2008). 

 

In this study, two main types of initial conditions are required. The first is dynamic (water 

level and velocity) and the second is conservative constituents (salinity and temperature).  For 

the conservative constituents, the initial conditions of salinity and temperature have been 

reproduced from SODA data (Simple Ocean Data Assimilation) at horizontal resolution of 

0.5°×0.5°, and 40 vertical levels. The temperature and salinity have been interpolated on the 

model grid with internal diffusion to assign a value of these parameters on every grid cell. 

Transport boundary conditions at the open boundary have been prescribed at fixed depth 

levels, the spacing of which increases with depth. This data is linearly interpolated to the 

model grid in both horizontal and vertical directions. Therefore, it is prescribed as vertical 

profiles. This implies that at the open boundary, temperature and salinity are prescribed with 

time and vertically varying data.  

 

On the basis of simple scaling arguments, a 8-years period of simulation was considered for 

the model to spin-up. Assuming that the spin up period Ts is the time that momentum takes to 

travel from the surface to the thermocline through turbulent diffusion, then Ts   h
2
/kz, where 

h
2 

the distance and kz the vertical eddy diffusion coefficient (Bernsen et al., 2008). 

Accordingly, in the case of the Red Sea typical values of h and kz are ~ 150 m and 10
-4

 m
2
/s, 

Ts is about 8 years. As starting point, the model was run for a period of one year and the last 

time step was saved in a restart file. Therefore, the last time step of the previous simulation 

was used for the rest of the simulations. Although this cannot be considered sufficient 

warming up period, starting with already existing results of previous model run leads 

qualitatively to less initialization effects with less warming up period. Using the restart file, 

the model was run for a period of eight years from 1
st
 January 2000 until December 2008. 

Therefore, the results presented in this study include only the last year (2008) of the entire 

simulation since the results derived from the last year of a selected 8-year simulation showed 

reasonable agreement with observational evidence.  
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5.7 Validation of the RS-Model 
 

5.7.1 Introduction 

 

In this study, a hydrodynamic model has been setup covering the entire Red Sea, the Gulf of 

Aqaba, and Gulf of Suez. The model includes also part of Gulf of Aden with open boundary 

set at 48° E. As part of quality control, validation of the model is usually the final process of 

the development before the application. This process involves the verification of model 

results with measured data and also explains the model performance.  As stated in chapter [2] 

the objective is to confirm the reliability and the quality of the model settings by considering 

other periods different than that used in the sensitivity analysis or in the calibration processes. 

However, the possibility to validate the model depends upon the quality of the available data. 

The availability and accessibility of field measurements is always a major issue in this regard 

especially in the case of the RS where there is lack of hydrographic observations. However, 

the model performance was evaluated using few available surface elevations at different 

locations along the eastern boundary and only one station positioned at the western side (port 

of SUDAN) of the Red Sea and salinity and temperature measurements which are available 

only for the summer season. Remotely sensed Sea Surface Temperature (SST) in addition to 

the available published documents was also considered. As mentioned previously in Chapter 

2, during the validation processes the model parameters adopted in the calibration stage 

should not be modified. Therefore, the same parameters settings listed in Table 5.3 are 

considered.  

 

In terms of water levels, the model performance was assessed by using hourly data of 

observed water levels recorded from tide gauge stations. The stations are located far enough 

from the open boundaries of the model domain and therefore, this will assist in testing the 

efficiency of the open boundary conditions. The evaluation of the model performance 

includes both graphical and statistical analyses. Two approaches were considered to evaluate 

the differences between model simulations and observations. In the first approach, the 

discrepancies are evaluated by computing the absolute difference mean (ADM) and root 

mean square differences (RMSD) between observed and simulated time series of water 

levels. In the second approach, the discrepancies in amplitude and phase of each astronomical 

component have been evaluated on the basis of the standard deviation of tidal analysis, the 

upper and lower extreme of the residuals and the so-called summed vector difference. The 

location of the observation points considered in the validation process are presented in Figure 

5.7 while the period selected for this purpose is listed in Table 5.18. Note that the measured 

data used to validate the model covers different periods.  

 

On the other hand, the model performance was assessed using in situ salinity and temperature 

measurements distributed along the main axis of the Red Sea. Remotely sensed sea surface 

temperature data from the AVHRR / Pathfinder was used due to its synoptic coverage which 

provides more complete picture about the temperature behaviour on seasonal scales. The 

AVHRR / Pathfinder data represents monthly mean temperature and has high spatial 

resolution of 4.9 km.  
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Table 5.18 Periods used for the RS-Model validation process 

Station ID Period I Period II 

ADEN 01/10/2008 to 31/10/2008 ---- 

DJIBOUTI 01/10/2008 to 31/10/2008 ---- 

JIZAN      01/02/2001 to 28/02/2001 01/04/2001 to 30/04/2001 

SAROOM 01/07/2011to 31/07/2011 ---- 

JEDDAH   01/02/2001 to 28/02/2001 01/04/2001 to 30/04/2001 

OBHOR  01/07/2011 to 31/07/2011 ---- 

RABIGH      01/02/2001 to 28/02/2001 01/04/2001 to 30/04/2001 

DUBA         01/02/2001 to 28/02/2001 01/04/2001 to 30/04/2001 

 

 

5.7.2 Validation in terms of Surface Elevations  

 

This section presents the validation processes of the RS-Model by comparing the model 

results with the available measured water levels. Eight observation points are selected in the 

domain for the validation of tidal elevations on the basis of the available measurements. 

These points are named ADEN, DJIBOUTI, JIZAN, SAROOM, JEDDAH, OBHOR, 

RABIGH and DUBA. As specified in the second and third column in Table 5.18, two periods 

of measurements at some stations were selected to validate the model for surface elevations. 

At ADEN and DJIBOUTI stations, water levels of the period of 1
st
/10/2008 0:00hrs to 

31
st
/10/2008 0:00hrs are available. At JIZAN, JEDDAH, RABIGH and DUBA water levels 

covering two periods of the year 2001 were selected, from 1
st
/02/2001 0:00hrs to the 

28
st
/02/2001 0:00hrs and 1

st
/04/2001 0:00hrs to the 30

st
/04/2001 0:00hrs. From the new 

installed devices of tide gauges in the vicinity of JEDDAH coastal waters, water levels at 

SAROOM and OBHOR stations for the period from 1
st
/07/20110:00hrs to 

31
st
/07/20110:00hrs were chosen. The length of all the time series water levels represents an 

entire neap-spring tidal cycle. 

 

Period I: 1
st
 to 31

st
 of October-2008 

 

Figure 5.24-A and 5.25-A show the measured water level time series plotted with the 

modelled results for the ADEN and DJIBOUTI stations. The absolute difference (residual) 

between the measured and modelled water levels is presented in the bottom of the same 

figures (5.24 and 5.25-B-Green colure). Note that the residual water level includes both the 

discrepancies in amplitude and in phase between the tidal signals. Consequently, it is 

considered to be primarily a basic measure for the performance of the model. In general, the 

Figures reflect a good agreement between the modelled and measured water levels at both 

stations. However, the model underestimates the high and low water amplitudes during spring 

and neap tide. On the other hand, phase conditions (occurrence time) of high and low water 

are in good agreement with observed data. Statistical analysis of the discrepancies in terms of 

absolute difference mean (ADM) and root mean square differences (RMSD) is given in 

section 5.7.2.1. 
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Figure 5.24 (A) Comparison of measured and simulated water levels at ADEN Station, 01

st
 

to31
st
 of October-2008; (B) is the residual. 

 

 
Figure 5.25 (A) Comparison of measured and simulated water levels at DJIBOUTI Station,  

01
st
 to31

st
 of October-2001; (B) is the residual. 

 

 

Period I: 1
st
 to 28

st
 of February-2001 

 

In this period, surface elevation records from the tidal gauges at JIZAN, RABIGH and 

DUBA have been compared with the model simulations.  Figures 5.26-A through 5.28-A 

show the measured water level time series plotted against the modelled results for the three 

mentioned observation points. The absolute difference (residual) between the measured and 

modelled water levels is presented in the bottom of the same figures (5.26, 5.27 and 5.28-Bs-

Green colour). In general, a good agreement between the modelled and measured results is 

observed. From the figures, it is obvious that the model slightly underestimates the low water 

amplitudes during spring tide while the high water amplitudes in a good agreement with the 

measurements at JIZAN and DUBA monitoring points. On the other hand, the model 

predictions at RABIGH stations are showing larger discrepancies. This is most probably due 

to wind effects as this simulation was carried out without wind conditions. 
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Figure 5.26 (A) Comparison of measured and simulated water levels at JIZAN Station, 01
st
 

to28
st
 of February-2001; (B) is the residual. 

 

 
Figure 5.27 (A) Comparison of measured and simulated water levels at RABIG Station, 01

st
 

to28
st
 of February-2001(B), is the residual. 

 

 
Figure 5.28 (A) Comparison of measured and simulated water levels at DUBA Station, 01

st
 

to28
st
 of February-2001; (B) is the residual. 

 

 

Period I: 01
st
 to 30

st
 of April 2001 

 

In this period, the simulated water level is compared with the measurements obtained from 

JIZAN, JEDDAH, RABIGH and DUBA tidal stations. Figure 5.29-A through 5.32-A present 

comparisons between predicted and measured surface elevations. It can be seen that the 

simulated results basically in good agreement with the observations. An acceptable 

estimation of spatial distribution of water levels was observed. The discrepancies (residual) in 

amplitude and in phase between the tidal signals are shown in the lower Figures (5.29 
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through 5.32-Bs- Green colure).  Model predictions at JIZAN and DUBA monitoring points, 

during spring-neap tide conditions are in a good agreement with the measurements. Both high 

and low water levels are reproduced with good accuracy by the model, however, with slight 

underestimation of high water amplitudes at DUBA during neap tide. Predicted tidal phases 

were also in good agreement with measured data. On the other hand, at JEDDAH and 

RABIG stations larger discrepancies are observed between the periods of 3 to 8-2001.   

 

 
Figure 5.29 (A) Comparison of measured and simulated water levels at JIZAN Station, 01

st
 

to30
st
 of April-2001(B) is the residual. 

 

 
Figure 5.30 (A) Comparison of measured and simulated water levels at JEDDAH Station, 

01
st
 to 30

st
 of April-2001 (B) is the residual. 

 
Figure 5.31 (A) Comparison of measured and simulated water levels at RABIG Station, 01

st
 

to 30
st
 of April-2001, (B) is the residual. 
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Figure 5.32 (A) Comparison of measured and simulated water levels at DUBA Station, 01

st
 

to 30
st
 of April-2001, (B) is the residual. 

 

Period II: 1
st
 to 31

st
 of July 2011 

 

In this period, surface elevation records from the tidal gauges at Obhor Creek and Saroom 

stations are compared with the model simulations.  Figures 5.33-A and 5.34-A show the 

measured water level time series plotted with the modelled results. The absolute difference 

(residual) between measured and modelled water levels is presented in the same figures (5.36 

and 5.37-Bs Green colure). Graphically, a good agreement between the modelled and 

measured results is observed. From the figures, it is obvious that the model slightly 

underestimates the low water amplitudes while the high water amplitudes is in  good 

agreement with the measurements at OBHOR and SAROOM monitoring points. Although 

the visual comparisons showed that the hydrodynamic model of the Red Sea (RS-Model) is 

able to reproduce the water levels in the Red Sea reasonably well, the need for more specific 

measures and assessments of the model is indispensable. Therefore, to quantify the 

differences between the tidal signals obtained from simulations and the measurements for all 

the periods considered in the validation, a statistical analysis was preformed. Statistical 

analysis of the discrepancies in terms of absolute difference mean (ADM) and root mean 

square differences (RMSD) is given in next section. 

 

 
Figure 5.33 (A) Comparison of measured and simulated water levels at Obhor Creek station, 

1
st
 to 31

st
 of July 2011, (B) is the residual. 
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Figure 5.34 (A) Comparison of measured and simulated water levels at Saroom Station, 1
st
 to 

31
st
 of July 2011 (B) is the residual. 

 

 

5.7.2.1 Statistical analysis of the residual water level 

 

In the previous section, the result of qualitative comparisons between model results and 

observed surface elevations are presented. Graphically, it was found that the model results are 

in a good agreement with the measurements. However, to complete the picture and provide 

more details about the overall accuracy of the model performance, a statistical analysis of the 

discrepancy between measured and modelled water levels (residual water level) is carried 

out. 

 

In several studies, a number of researchers suggest that the goodness of hydrodynamic 

models can be determined  by calculating the absolute difference mean (ADM) and root 

mean square differences (RMSD) between observed and simulated (see for example Hsu et 

al., 1999).  

 

The absolute differences mean (ADM) is defined as the mean of the absolute values of all 

differences between simulated and observed values. ADM is expressed as the following: 

 

    
 

 
                          

 

 

 

 

The Root Mean Square Difference (RMSD) between observed and modelled values is 

computed by summing the square of the difference between the two, then taking the square 

root of the total and dividing it by the number of records (n). RMSD is written as: 
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Where: n is the number of records. 

Both ADM and RMSD parameters were computed to provide a measure of discrepancy 

between measured and simulated values. Table 5.19 presents a summary of the statistical 

evaluation of the residual water levels. Statistical parameters have been determined for the 

visual interpretation of Figure 5.24-5.25 and 5.29 to 5.34 respectively.  

 

As can be seen from the table, RMS error for all stations located in the Red Sea region vary 

from 0.08 to 0.1 meter, while the ADM value resulted equal to 0.07 meter at JIZAN, 

RABIGH and DUBA stations and 0.08 meter at OBHOR and SAROOM stations. The mean 

discrepancies in water levels resulted in the range of 0.1 meter. On the other hand, RMSE for 

ADEN and DJIBOUTI stations shows larger discrepancies in the range of 0.2 meter. In 

general, the tidal model of the Red Sea is performing well.  

 

Table 5.19 Statistical analysis of the model validation based on Root mean square difference 

and absolute difference mean. 

Station ID 
Root Mean Square Difference 

(RMSD) in meter 

Absolute Difference Mean 

(ADM) in meter 

ADEN 0.20 0.17 

DJIBOUTI 0.26 0.19 

JIZAN     0.08 0.07 

JEDDAH  0.10 0.07 

RABIG    0.09 0.07 

DUBA        0.08 0.07 

OBHOR Creek 0.10 0.08 

SAROOM 0.10 0.08 

Mean 0.11 0.1 

 

 

5.7.2.2 Analysis in Terms of Harmonics 

 

In this section, tidal analysis of the simulated water levels is presented. The model results 

have been compared with the astronomical constituents obtained from the tidal analysis of the 

measurements. In this regard, the model was run for one year and the results were used to 

perform the tidal analysis. Tidal analyses have been performed to provide only the main 

diurnals (Q1, O1, P1, and K1) and semidiurnal constituents (N2, M2, S2, and K2). The water 

level predictions have been analysed by Delft3D-TRIANA program to derive tidal constants 

and compare with the tidal constants obtained from the tidal analysis carried out at the same 

locations JIZAN, JEDDAH, RABIGH and DUBA. An overview of the results obtained at the 

stations JIZAN, JEDDAH, RABIGH and DUBA is presented in Table 5.20, 5.21, 5.22 and 

5.23 respectively. Notation in the table: HC: Computed amplitude, Ho: observed amplitude, 

GC: computed phase, Go: observed phase, Hc - Ho: amplitude difference, Gc - Go: Phase 

difference, Hc / Ho: Amplitude ratio. 
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From the Tables, it can be seen that the computed and observed amplitudes and phases in 

general are in good agreement. For instance, for M2 the amplitude error (HC- Ho) is in order 

of 3 and 5 cm at JIZAN and DUBA station, respectively. However, the major discrepancies 

were observed in relation to phase lag. The larger difference computed for the phase of the 

tidal constituents was observed for M2 and K2 tide, while N2 and S2 tide on average compared 

to M2 and K2 tide showing minor discrepancies. The discrepancies could be attributed to the 

model bathymetry. The performance of a numerical model depends highly upon accurate 

representation of the sea bottom levels. The bathymetry of the model was basically based on 

a deep water data which does not include detailed bathymetry for shallow shelf water. 

Therefore, such discrepancies are expected. 

 

The standard deviation of tidal analysis, the upper and lower extreme of the residuals and the 

so-called summed vector difference are also considered. The summed vector difference is given 

as: 

 

                                               

   

 

 

In which                                                                               

 

It was found that the maximum standard deviation of the tidal analysis is in the range of 0.09. 

An overview of the results obtained at the stations JIZAN, JEDDAH, RABIGH and DUBA is 

presented in Table 5.24. The so-called summed vector difference, which is a measure for the 

total error for all components, is about 0.1, 0.075, 0.17 and 0.076 m respectively at DUBA, 

RABIGH, JIZAN and JEDDAH. In conclusion, it can be stated that there is a satisfactory 

agreement for both diurnal and semidiurnal and the results have shown that the model 

reproduces the tidal wave propagation in the Red Sea with a good accuracy.  

 

Table 5.20 Tidal amplitudes and phases of observed and computed tidal constituents at 

JIZAN 

  

Constituents Ho Hc Go Gc Hc - Ho  Gc - Go Hc / Ho 

M2 0.324 0.360 196.0 224.1 0.036 28.112 1.110 

S2 0.104 0.127 70.0 79.12 0.023 9.126 1.225 

N2 0.103 0.121 101.6 101.3 0.018 -0.300 1.175 

K2 0.037 0.041 219.0 255.4 0.004 36.441 1.120 

K1 0.014 0.006 160.7 100.7 -0.008 -60.25 0.460 

O1 0.016 0.004 183.0 258.3 -0.012 -14.511 0.725 

P1 0.006 0.001 235.4 180.1 -0.005 -55.25 0.085 

Q1 0.004 0.001 304.6 294.1 -0.003 -10.48 0.310 

Ho: amplitude of observed tide, Go: phase of observed tide, Hc: amplitude of modelled tide, Gc: phase of modelled tide, Hc - Ho: 

amplitude difference, Gc - Go: Phase difference, Hc / Ho: Amplitude ratio. 
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Table 5.21 Tidal amplitudes and phases of observed and computed tidal constituents at 

JEDDAH 

  

Constituents Ho Hc Go Gc Hc - Ho  Gc - Go Hc / Ho 

M2 0.068 0.051 358.8 23.85 -0.017 25.05 0.756 

S2 0.016 0.013 242.5 221.1 -0.003 -21.35 0.825 

N2 0.025 0.020 256.7 249.7 -0.005 -6.940 0.794 

K2 0.009 0.004 126.9 118.6 0.005 8.278 0.454 

K1 0.036 0.035 192.3 196.6 -0.001 4.310 0.959 

O1 0.020 0.016 20.5 27.23 -0.004 6.730 0.823 

P1 0.013 0.005 213.7 247.3 -0.008 33.57 0.351 

Q1 0.004 0.004 304.0 317.0 0.000 13.00 0.919 

Ho: amplitude of observed tide, Go: phase of observed tide, Hc: amplitude of modelled tide, Gc: phase of modelled tide, Hc - Ho: 

amplitude difference, Gc - Go: Phase difference, Hc / Ho: Amplitude ratio. 
 

 

 

 

Table 5.22 Tidal amplitudes and phases of observed and computed tidal constituents at 

RABIGH 

  

Constituents Ho Hc Go Gc Hc - Ho  Gc - Go Hc / Ho 

M2 0.107 0.086 5.1 20.49 -0.021 15.398 0.802 

S2 0.028 0.025 246.9 231.5 -0.003 -15.34 0.898 

N2 0.036 0.032 265.7 255.4 -0.004 -10.332 0.876 

K2 0.012 0.008 29.60 47.42 -0.004 17.822 0.657 

K1 0.032 0.037 194.4 196.7 0.005 2.318 1.170 

O1 0.019 0.018 28.8 27.25 -0.001 -1.548 0.926 

P1 0.011 0.005 224.5 247.4 -0.006 22.869 0.449 

Q1 0.004 0.004 301.9 317.0 0.000 15.147 0.978 

Ho: amplitude of observed tide, Go: phase of observed tide, Hc: amplitude of modelled tide, Gc: phase of modelled tide, Hc - Ho: 

amplitude difference, Gc - Go: Phase difference, Hc / Ho: Amplitude ratio. 
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Table 5.23 Tidal amplitudes and phases of observed and computed tidal constituents at 

DUBA 

  

Constituents Ho Hc Go Gc Hc - Ho  Gc - Go Hc / Ho 

M2 0.245 0.217 4.3 31.18 -0.028 26.88 0.883 

S2 0.075 0.072 229.0 244.1 -0.03 15.13 0.960 

N2 0.074 0.075 267.7 266.0 0.001 -1.672 1.010 

K2 0.023 0.023 20.6 60.40 0.000 39.801 0.995 

K1 0.038 0.048 155.3 199.7 0.010 44.43 1.269 

O1 0.012 0.022 32.3 29.81 0.010 -2.489 1.811 

P1 0.002 0.006 78.8 250.3 0.004 171.53 2.935 

Q1 0.003 0.005 338.8 319.6 0.002 -19.215 1.589 

Ho: amplitude of observed tide, Go: phase of observed tide, Hc: amplitude of modelled tide, Gc: phase of modelled tide, Hc - Ho: 

amplitude difference, Gc - Go: Phase difference, Hc / Ho: Amplitude ratio. 

 

 

Table 5.24 statistical analysis derived from Delft3D-TRIANA 

Parameters 
Station ID 

JIZAN JEDDAH RABIGH DUBA 

Standard deviation of tidal Analysis 0.027 0.022 0.024 0.024 

Lower extreme for residuals -0.082 -0.054 -0.062 -0.061 

Upper extreme for residuals 0.080 0.054 0.068 0.069 

Summed vector differences 0.170 0.076 0.075 0.102 

 

 

5.7.3 Validation in terms of Salinity and Temperature  

 

In this section, the RS-Model is validated in terms of temperature and salinity predictions. On 

the one hand, the performance of the model was assessed using CTD measurements. The type 

of data is instantaneous salinity and temperature vertical profiles recorded using CTD 

device.On the other hand, monthly mean sea surface temperature (SST) produced by the RS-

Model was compared to time series of remotely sensed SST fields. The latter comparison is 

useful since it reflects the performance of the model in temporal scale where there are no 

available in situ measurements for different seasons.   

 

For the remotely sensed data, these data obtained from the Advanced Very High Resolution 

Radiometer (AVHRR / Pathfinder datasets) satellite data. The datasets combines data from a 

number of NOAA AVHRR satellites. Their selection in this study was based on its high 

temporal (24 hrs) and spatial resolution (4.9 km), in addition to substantial coverage period 

(1985-present) (Barton, 1998).  
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It should be mentioned that this data represents the temperature of the upper 1 meter of water 

and the surface layer thickness specified in the RS-Model is 5 metre. Therefore, discrepancies 

between the RS-Model and AVHRR / Pathfinder SST expected to occur. 

 

5.7.3.1 Validation for Temperature and Salinity profiles 

 
In this section, validation of RS-Model predictions and field measurements in terms of temperature 

and salinity is carried out. In order to validate temperature and salinity predicted by the hydrodynamic 

model, comparisons between measurements and model predictions were made at various sites along 

the main axis of the Red Sea. Using the forcing terms mentioned previously in Chapter5 (heat 

flux and atmospheric wind and pressure forcing, water level and lateral transport forcing at 

the open boundary), the RS-Model is able to reproduce the vertical structure of temperature 

and salinity profiles satisfactorily.   

 

Figure (5.35) shows the comparisons of vertical profiles between observed and simulated 

temperature and salinity at 6 oceanographic stations positioned along the main axis of the 

Red Sea. In General, the temperature and salinity profiles produced by the RS-Model exhibit 

similar profiles constructed from the CTD data with acceptable accuracy. The thermal 

stratification is reproduced almost correctly by the model. In contrast, the salinity 

concentrations are slightly low compared to the temperature gradient. It was observed that the 

RS-Model tends to underestimate salinity values at sites A and B at the surface while there is 

a good agreement at site C, D, E and F respectively. Although qualitatively the model reflects 

underestimation of salinity, the discrepancies of salinity values at the surface and also below 

100 m depth are in the range of or even below 0.5 ppt.  

 

On the other hand, some discrepancies in the position of the haline layer can be observed, 

even though the general trend of the profiles is similar. Temperature and salinity at any 

location in the ocean are complicated functions of depth and time, involving periodic and 

unsystematic components. The competition between the processes involved in mixing and 

stratification is complex and difficult to reproduce in numerical model accurately (Bermudez 

at al. 2013). For instance, each profile in Figure (5.35) represents a different instant of time 

within the selected period and therefore, corresponds to a different tidal level. However, there 

is satisfactory agreement between the model results and observations. Therefore, it can be 

concluded that the RS-Model resolves the vertical structure of salinity and temperature 

adequately.  
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Figure 5.35 Vertical profiles of observed and simulated temperature & salinity at locations 

A, B, C, D, E and F (see Figure 5.23 for positions) 

 

 

5.7.3.2 Comparison of RS-Model Sea Surface Temperature (SST) with AVHRR Pathfinder 

 

In this section, remotely sensed SST fields obtained from the Advanced Very High 

Resolution Radiometer (AVHRR / Pathfinder datasets) satellite data are used to assess the 

model surface temperature variability on temporal and spatial scale. Monthly mean sea 

surface temperature (SST) data are compared with the results of the RS-Model simulations.  

Figure 5.36 and 5.37 show comparisons between the data of AVHRR/Pathfinder and 

simulated SST for the months January and July respectively. In Chapter 3, these months are 

identified to correspond with the NE and SW monsoon events. In general, the simulation 

results are consistent with the satellite data (AVHRR/Pathfinder SST). The satellite data 

confirm the remarkable differences in predicted SST between seasons. The RS-Model 

simulates the remotely sensed SST field over the winter fairly well (Figure 5.36), reflecting 

the main spatial features.  

 

It is obvious that there is a zone in the middle part of the Red Sea (16° N-21° N) 

characterized by high sea surface temperature during winter time. This is due to the weak 

wind velocity in this region where the wind condition is convergent for most of the year. A 

remarkable feature during winter season is the downwelling events occurring along the 

eastern boundary between Latitude 16° N and 20° N which is evident in the 

AVHRR/Pathfinder SST. It can be seen that the coldest SST takes place in the northern part 

of the Red Sea; however, in the AVHRR/Pathfinder the cold surface region extends further 

South than the RS-Model (Figure 5.36). There are two interpretations for these results. On the 
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one hand, it could be that the RS-Model overestimates the magnitude or extend of the 

southward flowing. On the other hand, it could be that the RS-Model overestimates the eddy 

diffusivity and/or eddy viscosity which play a role in making the boundary currents narrower 

and concentrate temperature near the boundaries as observed in the sensitivity analysis (see 

Appendix 3). During summer period, the entire Red Sea basin becomes very warm as shown 

in the Figure (5.37). The major pattern produced by the RS-Model in this period is that the 

SST is higher on the western boundary than the eastern one. The simulated SST is also 

consistent with the satellite SST to some degree however; the features present on the western 

boundary north of 24°N are not seen in the AVHRR/Pathfinder SST. This pattern of warmer 

water is associated with boundary currents that transports warm water as also was observed 

by previous modelling study of Sofianos and Johns (2003). The pattern in the southern part 

and the strait for both seasons is associated with the exchange processes with the Gulf of 

Aden. Based on these comparisons, it can be concluded that the RS-Model resolves the large-

scale surface temperature cycle to a reasonable degree.  

 

 

 

 

Figure (5.36) Comparison of simulated (left) and satellite AVHRR Pathfinder (right) of SST, 

January.  



Chapter 5. Validation in terms of Salinity and Temperature 

 
113 

 
Figure (5.37) Comparison of simulated (left) and satellite AVHRR Pathfinder (right) of SST, 

July. 

 

 

To assess the model surface temperature variability on temporal and spatial scale, remotely 

sensed SST (AVHRR / Pathfinder datasets) are used. A comparison of monthly mean SST 

produced by the RS-Model simulations and SST of AVHRR / Pathfinder is shown in Fig. 

5.38 (a-d). It should be noted that remotely sensed SST represents the upper 1 meter of water 

whereas the surface layer thickness in the RS-Model is 5 m. Thus some discrepancies are 

expected. Nevertheless, a good agreement was observed between the SST predictions and 

remotely sensed SST. The RS-Model simulations showed an increase in temperature from 

minimum values in winter to maximum values in summer. A similar trend of variations is 

evident in the remotely sensed SST datasets. Therefore, the RS-Model results are in harmony 

with the remotely sensed SST field over the winter season, reflecting the main spatial 

features.  
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Figure (5.38) Comparison of average monthly modelled and remotely sensed (AVHRR / 

Pathfinder) SST at different locations, (a), extreme northern part, (b) middle part and (c,d) 

southern part of the Red Sea. 

 

 

5.8 Conclusion 

 

In this chapter, the setup, sensitivity analysis and validation processes of the 3-dimensional 

RS-Model are presented. The computational domain of the RS-Model covers the entire Red 

Sea (Lon 32° to 48°E & Lat 10° to 30°N), the Gulf of Suez and the Gulf of Aqaba and 

includes part of the Gulf of Aden. The model domain was schematized on a rectilinear mesh 

oriented NNW and SSE following the main axis of the Red Sea, with a horizontal uniform 

grid spacing of approximately        5 km. The vertical grid discretization was 

implemented using z-coordinate system. The advantage of using z-coordinate system over 

                    is that the   grid has horizontal lines that are almost parallel with 

density interfaces (isopycnals) especially in regions with steep bottom slopes which is 

important in the case of the Red Sea to avoid horizontal pressure gradients errors associated 

with             .  

 

The water column is resolved by 30 vertical layers with 15 of these layers concentrated in the 

upper 200 m. Thus adequately higher resolution was kept at the surface in order to capture 

the dynamic of the upper ocean. The bathymetric data of the RS-Model were sourced from 

the glo  l   thy etry d t  et for the  orld oce n ‘‘GEBCO_08 Grid’’  t   30  rc-second 

horizontal resolution (~ 1 km). Due to insignificant artificial contact between the Red Sea and 

the Mediterranean via Suez Canal, the model has only one open boundary was set at the Gulf 

of Aden at longitude (48° E) and divided into 25 segments (Figure 5.2).   
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The eastern ocean open boundary (at 48° E) of the RS-Model is forced by the main eight 

semidiurnal and diurnal (M2, S2, N2, K2, K1, O1, P1, and Q1) tidal constituents.  

 

In terms of transport forcing, the eastern open boundary is controlled by temperature (T) and 

salinity (S) and velocities components (u, v) obtained from Simple Ocean Data Assimilation 

(SODA) at every five days intervals. The 3-D RS-Model was initialized with SODA data and 

the grid cells with missing data were filled by internal diffusion interpolation. The surface 

boundary of the RS-Model is forced by realistic high-frequency atmospheric forcing (i.e. 

winds and surface heat fluxes) derived from DWD at spatial resolution of 1.5° x 1.5° with 6 

hourly intervals. The optimal settings of the numerical model were determined based on 

sensitivity analyses.  

 

The 3-D RS-Model was validated against available surface elevations data throughout the 

model domain. In this regard, discrepancies between the model results and available 

observations have been determined qualitatively and statistically. Statistical parameters 

include the absolute mean error (AME) and the root mean square error (RMSE). It was 

observed that the model predictions and observations of water levels are in very good 

agreement. The model is reproducing large scale tidal surface elevations within the Red Sea 

region and clearly provides a reasonable prediction of both the phases and amplitudes of the 

spring and neap tide.  

 

On the other hand, the performance of the RS-Model in terms of temperature and salinity 

vertical profiles was assessed by using CTD observations and also by using remotely sensed 

data. It was observed that there is fair agreement with the observations. Comparison of SST 

produced by the RS-Model with remotely sensed SST fields (AVHRR Pathfinder SST) also 

showed acceptable agreement.  

 

Further evaluation was conducted to test the ability of the hydrodynamic RS-Model in 

reproducing the seasonal variability. It was found that the model is able to reproduce the 

documented main hydrodynamic features at Bab el Mandeb strait quite well. These features 

are the reversal processes of the surface flow (SW), subsurface intrusion of Gulf of Aden 

Intermediate Water (GAIW) and the seasonal variability of the RSOW outflow. Moreover, 

the cyclonic and anticyclonic gyres observed by several investigators (Morcos, 1970; Morcos 

and Soliman, 1974; Maillard, 1974) at the extreme north and the anticyclonic eddy feature 

observed very recently in the central part of the Red Sea by (Bower et al., 2013) were also 

resolved by the RS-Model. The RS-Model is also able to predict the large eddy (anticyclones) 

exist in the Gulf of Aden reported by William et al. (1999) (for more details about these 

features, see chapter 7). These major features predicted by the model reflect the predictive 

capability of the model. Therefore, the RS-Model can be used to study the tide, circulation 

and thermohaline processes in the Red sea region. 
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Chapter 6  

 

Simulation of Tides in the Red Sea 
 

6.1 Introduction 
 

As already stated in Chapter 3 there is very little published information regarding tidal 

characteristics in the Red Sea region. The earlier works on tides were basically limited to 

observations which are confined to the coastal region. Moreover, during the last century, the 

tides in the Red Sea have been described based on a few analytical analyses carried out in 

order to determine the tides in the strait of Bab el Mandeb. The results of these analyses were 

used to provide a dynamical explanation of the tides in the entire Red Sea basin.  On the other 

hand, studies on tides based on numerical modelling approach do not exist. Considering the 

advantages of using a numerical modelling approach, the development of a numerical model 

and its application maybe a good method to carry out such study and provide a 

comprehensive picture about the tidal characteristics in the Red Sea. Consequently, it is of 

interest to carry out a study of tides in the Red Sea using a modelling approach. Two 

dimensional models, namely the depth-averaged or shallow water models, can be 

successfully applied for simulating tidal flow and flows of water bodies.  

 

As a first step towards simulating the tides in the Red Sea, development of a model driven by 

tides is considered. This is followed by efficient validation of the model with available 

surface elevation records in the region. In the previous chapter, the tidal model was setup, 

calibrated and validated. In the validation of the hydrodynamic model it was shown that the 

model results are in good agreement with available observations. Accordingly, the model was 

utilized to study the tidal characteristics in the study area.  

 

This chapter focuses on tidal characteristics in the Red Sea region by using the 2-D RS-

Model and analysing its results. Section (6.2) gives a brief view about RS-Model including 

the domain coverage, boundary conditions and physical settings. This is followed by 

describing the tidal characteristics in the Red Sea based on the model results including the 

procedures considered to generate the co-range and co-tidal charts in section (6.3). In section 

(6.4), the relative importance of the semidiurnal and diurnal tidal constituents is determined 

based on the form factor. After that, the hydrodynamic features are presented in section (6.5). 

Section (6.6) throws light on the conclusion of this chapter. 
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6.2 RS-Model 

 

The RS-Model domain covers the entire Red Sea, the Gulf of Zues, the Gulf of Aqaba and 

extends to the eastern part of the Gulf of Aden at longitude 48° E (Figure 5.1). The 

bathymetric data of the RS-Model were sourced from the global bathymetry dataset for the 

 orld oce n ‘‘GEBCO_08 Grid’’  t   30  rc-second horizontal resolution (~ 1 km). The 

bathymetric contours for the RS-Model are shown in Figure 5.3.  

 

Due to insignificant artificial contact between the Red Sea and the Mediterranean via Suez 

Canal, the model has only one open boundary which was set at the Gulf of Aden at longitude 

48° E. Tidal amplitudes and phases of the eight primary semidiurnal and diurnal tidal 

constituents (Q1, O1, P1, K1, N2, M2, S2 and K2) have been prescribed at boundary cells and 

linearly interpolated. A time step of 60 seconds was set in all simulations to insure the 

stability and accuracy of the model. Initial conditions of water levels were set equal to zero in 

all simulations. As a result, the equilibrium state in terms of water levels is reached after 

certain time; therefore, the first four days of the simulation were discarded. The physical 

parameters adopted for the RS-Model are listed in Table 5.3. 

 

6.3 Tidal characteristics based on model Results 

 

This section presents the tidal characteristics in the Red Sea based on the tidal constituents 

generated from the harmonic analysis of the model results. Two numerical simulations were 

carried out to describe the tidal characteristics in the Red Sea. In section 3.7.2, available 

surface elevation data were used to perform tidal analysis. The analyses have shown that the 

major semidiurnal and diurnal constituents that have relatively higher amplitudes are M2, N2, 

S2 and K1 respectively (Figure 3.13).  In the first scenario, simulations of major tidal 

constituents (M2, S2, N2, and K1) were made for the purpose of generating Co-tidal charts and 

also the form factor. Thus, separate simulations were carried out of each individual 

constituent to generate Co-tidal and Co-range charts for the Red Sea region. To carry out the 

simulations, the amplitude and phase of M2 tide was prescribed and linearly interpolated to 

each grid point along the open boundary of the model. The simulated M2 tidal elevation was 

stored at hourly intervals at all grid points in the model domain. The computed amplitudes 

and phase from simulated M2 tide at each grid point were used to generate the Co-range and 

Co-tidal charts respectively. The same procedures were applied for simulations of other 

constituents (N2, S2 and K1). 

 

In the second scenario, the model was forced on the ocean open boundary with the 

amplitudes and phases of the primary semidiurnal and diurnal constituents (Q1, O1, P1, K1, 

N2, M2, S2 and K2). The purpose of this simulation was to reproduce the behaviour of the 

hydrodynamic features in the Red Sea at moments of extreme conditions, ebb and flood 

phases during spring and neap tidal cycles. 
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6.3.1 Co-range and Co-tidal charts 

 

In this section, the tidal characteristics in the Red Sea based on the tidal constituents 

generated from the harmonic analysis of the model results are given.  To represent the 

propagation of tides in the Red Sea, the so-called co-range and co-tidal charts are used. Co-

tidal and co-amplitude charts of the semidiurnal constituents M2, N2, and S2 are shown in 

Figures 6.1, 6.2 and 6.3, respectively. In general, the dominant feature of the M2, N2, and S2 

tide is the existence of anticlockwise amphidromic systems in the central part of the Red Sea 

close to 20
°
 N, at the northern end of the strait of Bab el Mandeb at 13.5° N and at the Gulf of 

Suez. The co-tidal and co-range chart of the diurnal constituent K1 are displayed in Figure 

6.4. The chart shows only a single anticlockwise amphidromic system in the southern part of 

the Red Sea centred around 15.5
°
 N. These results are consistent with the analytical results 

described by Defant (1961).   

 

6.3.1.1 Semidiurnal Tidal waves 

 

Figure 6.1 shows the co-amplitude and co-phase distributions for the M2 tide. The former is 

given in centimetres and the latter is expressed in degrees. In general, the amplitude of M2, 

N2, and S2 waves show similar behaviour in the Red Sea basin. It is obvious from the figure 

that M2 amplitude is relatively high in the Gulf of Aden (50 to 60 cm) however, as the tidal 

wave flow into the strait of Bab el Mandeb; the wave speed rapidly decreases along the strait 

direction due to the narrow connection. Further north, the decrease continues towards a 

minimum value as shown in the co-amplitude chart of figure (6.1-right panel). Then M2 tidal 

amplitude reaches about 5 cm or less in the strait of Bab el Mandeb and tends to increase 

north-westward. Defant (1961) assumed that this minimum is associated with the 

amphidromic system generated due to M2 tidal wave. At the northern end of the strait, M2 

tidal amplitude increases to 20 cm and then expands at both sides eastern and western coasts 

(15
°
 N) in the southern part of the Red Sea reaching about 35 cm. The M2 amplitude then 

tends to decrease from the southern part of the Red Sea towards the north-northwest region 

while reaching the central part where amphidromic system exists. Further, it begins to 

propagate and increase again towards the northern part of the Red Sea.  

 

For S2 tide, again the amplitude of S2 tide is relatively high in the Gulf of Aden. The 

amplitude of S2 tide is low (less than half) compared to the M2 tide and its variation in the 

Red Sea is similar to that of M2 tide as shown in Figure (6.2-right panel). This is due to the 

influence of bathymetry (the strait morphology) in combination with the amphidromic system 

and results in a decline in the tidal amplitude. The S2 tide then propagates northward from the 

northern end of Bab el Mandeb strait to  the inner area of the south of the Red Sea and tends 

to decrease (16
°
 N) up to the amphidromic system. Similar to M2 tide, the S2 amplitude then 

propagates and increases gradually towards north-northwest. N2 tide is similar to S2 tide as 

illustrated in Figure 6.3. The amplitude of N2 tidal wave decreases from the southern part of 

the Red sea toward the central part (amphidromic system) and tends to increase toward north-

north west. 
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Figure 6.1 Distribution of amplitudes and phases of M2 tide in the Red Sea using the RS-

Model, (left panel) co-tidal lines and (right panel) co-range lines. Amplitudes are given in 

centimetres and phases in degrees. 

 
 

 
Figure 6.2 Distribution of amplitudes and phases of S2 tide in the Red Sea using the RS-

Model, (left panel) co-tidal lines and (right panel) co-range lines. Amplitudes are given in 

centimetre and phases in degrees. 
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Figure 6.3 Distribution of amplitudes and phases of N2 tide in the Red Sea using the RS-

Model, (left panel) co-tidal lines and (right panel) co-range lines. Amplitudes are given in 

centimetres and phases in degrees. 

 
 

6.3.1.2 Diurnal tidal wave 

 

The co-range and co-tidal charts of K1 are depicted in Figure 6.4. The dominant feature of the 

phase distribution is the existence of a single anticlockwise amphidromic system located in 

the southern part of the Red Sea centred around 15.5
°
 N. The distribution of the co-amplitude 

reflects higher amplitudes at the Gulf of Aden. However, in the strait of Bab el Mandeb, the 

amplitude of K1 as shown in the Figure (right panel) is reduced to10 cm and tends to decrease 

gradually towards the north along the strait. Contrary to those of semidiurnal constituents M2, 

S2 and N2, K1 tidal amplitude decrease gradually toward the inner area of the southern part of 

the Red Sea where amphidromic system is formed. The co-range chart of K1 tide shows a 

slight increase in amplitude above 17° N towards the middle part of the Red Sea but the 

amplitude is very small. Tidal wave of O1 (not shown) also includes similar features of K1 

tide. 
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Figure 6.4 Distribution of amplitudes and phases of K1 tide in the Red Sea using the RS-

Model, (left panel) co-tidal lines and (right panel) co-range lines. Amplitudes are given in 

centimetres and phases in degrees. 

 

6.4 Form Factor 

 

According to Pugh (2004), the relative importance of the semidiurnal and diurnal tidal 

constituents can be determined based on a form factor. Therefore, it was considered the form 

factor for the entire Red Sea based on the computed amplitudes using the following 

expression (Pugh, 1987, 2004): 

  
     
     

 

 

where O1, K1, M2 and S2 are the amplitudes of the correspondent constituents.  Figure 6.5 

shows the form factor distribution in the Red Sea basin. As the form factor in all grid points 

of the computational domain is less than 0.25 (except the central part of the Red Sea and 

northern part of the strait), it can be confirmed that the type of the tide in the Red Sea is 

essentially semidiurnal. Assessment of this figure has reflected that the relation between 

diurnal and semidiurnal constituents is to be seen in the central part of the Red Sea and is not 

constant in the entire Red Sea. Therefore, the diurnal tidal pattern is stronger in the central 

part of the Red Sea indicating mixed type mainly dominant with semidiurnal on the eastern 

coast compared with diurnal tide in the western coast. The results conducted by Sultan et al., 

(1995) for the area of Port Sudan and Jeddah are in agreement with this work where diurnal 

character was observed to be larger close to the SUDAN coast. The figure also shows that 

diurnal character appears at the northern end of Bab el Mandeb strait around 13°N. 
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Figure 6.5 Form Factor distribution in the Red Sea based on calculated modelled diurnal (O1, 

K1) and semidiurnal (M2, S2) amplitudes. 

 

6.5 Hydrodynamic Features 

 

This section presents the patterns of the tidal currents in the Red Sea based on the numerical 

model. Analysis of tidal currents that is generated by a combination of the primary 

constituents (Q1, O1, P1, K1, N2, M2, S2 and K2) under flood condition and ebb condition 

during the spring and neap tide were made. The simulated tide-induced current flooding and 

ebbing patterns in spring and neap tide are displayed in Figure 6.6 and 6.7 respectively. The 

highest velocities, in the range of 0.5 m/s were observed in Bab el Mandeb strait during flood 

tide spring condition. However, the tidal currents are varying depending on the geometry in 

combination with ocean currents of flood and ebb tides. 

 

The snapshot of the current velocity field at the flood condition during spring tide is shown in 

Figure (6.6-left panel). At this particular time, the maximum current magnitudes reaches up 

to about 0.5 and 0.3 m/s are observed at Bab el Mandeb strait and Gulf of Suez respectively. 

Analysis of ADCP data carried out in the strait of Bab el Mandeb by Murray and Johns 

(1997) showed that the speed in the upper layer ranges between 0.4-0.6 m/s while for the 

lower layer it is about 0.8 m/s. Inside the Red Sea basin, the model results showed that 

current magnitude is in the range of 0.1 m/s prevalent. In the inner part of the southern 

portion of the Red Sea (16° N), current speeds become stronger at the vicinity of shallow 

shelves on both sides.  On the other hand, during neap tide (Figure 6.7) maximum currents 

magnitude in order of 0.25 m/s are observed in the strait of Bab el Mandeb during flood 

condition. During ebb condition, it was observed that velocities between 0.05 and 0.1 prevail 

inside the Red Sea domain.  
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Figure 6.6 Snapshot of the model showing the current velocity field (m/s) for the Flood 

condition (left panel) and for the Ebb condition (right panel) (depicted by colour size) in the 

Red Sea during spring tide. 

 

 
Figure 6.7 Snapshot of the model showing the current velocity field (m/s) for the Flood 

condition (left panel) and for the Ebb condition (right panel) (depicted by colour size) in the 

Red Sea during neap tide. 
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Figure 6.8 and 6.9 display distributions of the simulated surface elevations and currents 

during spring tides in the Red Sea, produced by a combination of the primary constituents 

(Q1, O1, P1, K1, N2, M2, S2 and K2). It can be seen that the spring tides in the Red Sea are 

characterized by high water in the southern part of the basin whiles the northern part by low 

water and vice versa during ebb condition. Maximum elevations are observed in the southern 

part particularly over the shallow shelves. They are about 0.5 m and 0.6 m close to eastern 

coast and western coast, respectively. The figure also reflects an increase in surface gradients 

along the Gulf of Suez. The model results showed that the tidal currents in the Red Sea are 

very weak with an average speed less than 0.1 m/s (Figure 6.9). The highest currents occur at 

the area where the strait is narrowing its land-water boundary and along the Gulf of Suez. 

The model results indicate that the direction of the currents in the Red Sea includes some 

variability. The currents during flood condition are directed northward. However, the 

direction of the currents in the strait and Gulf of Suez is opposite. During ebb condition, the 

currents from the north propagate towards the southern part. However, in the strait and Gulf 

of Suez the direction is opposite. 

 

 

 
Figure 6.8 Distribution of the spring surface elevation (m) in the Red Sea using the RS-

Model, (left panel) Flood condition and (right panel) Ebb condition.  
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Figure 6.9 Snapshot of the model showing the current velocity field (m/s) for the Flood 

condition (left panel) and for the Ebb condition (right panel) (depicted by colour size and 

vector direction) in the Red Sea during spring tide. 

 

 

 

6.6 Conclusion 

 

Previous studies of tides in the Red Sea were limited to very few observations. In addition to 

a few analytical analyses carried out to determine the tides in the strait of Bab el Mandeb and 

the results were used to explain the tidal dynamics for the whole Red Sea. In the present 

study, considering the advantages of numerical modelling, the tidal characteristics in the Red 

Sea region were studied using numerical model. The model was run in two-dimensional 

mode. The model domain covers the entire Red Sea, the Gulf of Aqaba, and the Gulf of Suez 

and includes part of the Gulf of Aden with a boundary located at 48° E. The optimal settings 

were determined based on sensitivity analyses. The model was validated against measured 

surface elevation at several locations in the model domain. The model is able to reproduce the 

tidal wave in the Red Sea, reflecting a consistent level of agreement with previous work and 

field data. At all stations considered in the validation, the tidal amplitudes of M2, S2, N2 and 

K1 derived from the model agree reasonably well with the values determined from the 

observations. However, the major discrepancies were observed in relation to phase conditions 

at stations located near the region of amphidromic point in the central part of the Red Sea. 

 

Based on the model results, the dominant feature of the M2, N2, and S2 tide is the existence of 

the amphidromic systems (anti-clockwise) in the central part of the Red Sea at about 20
°
 N, 

north the strait of Bab el Mandeb at 13.5° N and in the Gulf of Suez. The distribution of the 

co-phase of K1 tide showed the existence of only a single anticlockwise amphidromic system 

in the southern part of the Red Sea centred around 15.5° N. The amphidromic systems of the 
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semidiurnal and diurnal constituents in the strait of Bab el Mandeb suggest that the tides 

include some characteristics of standing waves. Model results of amplitudes and form factor 

proved that tides in the Red Sea are dominated by the major semidiurnal constituents M2, S2, 

and N2. However, diurnal character appeared in the central part of the Red Sea and northern 

part of the strait. In terms of tidal currents, the model results showed that tidal currents in the 

Red Sea are weak except near the Red Sea entrance where maximum velocity can reach 

about 0.5 m/s. In summary, additional observations of water levels along the western 

coastline of the Red Sea are needed for more validation of the model since only one station 

was used in this study.  In addition to that, measurements of currents are needed for 

validation purposes. Nevertheless, the tidal model is useful and can be used to generate 

boundary conditions for local models in the Red Sea. 
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Chapter 7 

 

Simulation of circulation and Thermohaline 

Structure in the Red Sea 
 

7.1 Introduction 

 

The circulation and thermohaline patterns of semi-enclosed seas such as the Red Sea depend 

significantly on the magnitude of meteorological and buoyancy forces in addition to the tidal 

forcing. To study the circulation in the Red Sea, it is very important to take into account the 

interaction between tides, metrological and buoyancy forces. In this regard, the 2-D RS-

Model (tidal model) was extended into 3-D approach and modified to incorporate 

metrological forcing, temperature and salinity to simulate the circulation and thermohaline 

structure. This is followed by efficient validation of the model with available measurements. 

Due to insufficient observational data, another data sources such as satellite technique have 

also been considered (see Chapter 5).  

 

As already mentioned in Chapter (3) very few attempts were made to study the circulation in 

the Red Sea.  The previous studies on the circulation and hydrographic characteristics in the 

Red Sea in terms of observational studies were largely limited to the main axis of the basin in 

addition to few sparse locations inside the domain. On the other hand, numerical modelling 

studies on the Red Sea circulation are also very limited. It should be mentioned that in the 

previous studies, the models were driven by monthly mean values of wind fields and 

thermohaline forcing, and focus was given only on the seasonal patterns (January and July). 

This means that the high-frequency variability was not taken into consideration. As a result, 

the current understanding of the circulation in the Red Sea region is still limited. In addition 

to that, the necessity of numerical modelling approach to advance the basic understanding of 

the region     cle rly  t ted in the re ort of the  or  ho  entitled ‘‘Ar  i n M rgin l  e   

and Gulf ’’  Willi    et al., 1999). In the present study, high-frequency variability of the 

model forcing is accounted for to deepen our understanding about the processes in question.  
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This chapter of the thesis focuses on the circulation and thermohaline processes in the Red 

Sea region using the 3-D RS-Model. Section (7.2) provides a description of the summer 

circulation and thermohaline characteristics based on the model results. In section (7.3) the 

hydrographic characteristics at the strait of Bab el Mandeb is described. The full cycle of the 

Gulf of Aden intermediate water (GAIW) intrusion is studied in section (7.4). Afterwards, the 

intermediate circulation pattern during the summer season is described in section (7.5). 

Section (7.6) describes the circulation patterns and thermohaline structure during the winter 

season. This is followed by investigating the contribution of wind and thermohaline forcing 

on the key circulation patterns through additional numerical experiments in section (7.7). The 

mechanisms involved in the water mass formation, possible locations and exact period are 

investigated in section (7.8). 

 

Model Results and Discussion 

 

In the following, the seasonal circulation patterns and thermohaline structure in the Red Sea 

are described. In this study we consider the seasonal variability of the circulation and 

thermohaline processes over the winter and summer seasons. The former is represented by 

January to March while the latter is represented by June to September. These months were 

selected taking into account the seasonal patterns of the forcing conditions as well as the 

exchange flow regime existing at the Bab el Mandeb Strait. Since both wind and 

thermohaline forcing are highly variable at the seasonal scales, it is expected that the 

circulation patterns are characterised with strong variations. The features of the simulated-

processes are presented in the form of horizontal current fields, zonal and meridional cross-

sections of thermohaline processes.  

 

Throughout the course of this study, three different scenarios consisting of numerical 

simulation experiments are carried out. In the first scenario-I, the RS-Model was run using all 

forcing conditions mentioned previously in Chapter 5. The purpose of this numerical 

experiment is on the one hand to reproduce the hydrodynamic conditions and describe the 

seasonal patterns of the circulation and thermohaline processes, and on the other hand to be 

used as a reference mode. The aim of the second and third scenarios is to investigate the 

relative importance of the main forcing mechanisms (wind and heat fluxes) on the key 

circulation features. This procedure allows investigating the spatial and temporal 

contributions of the isolated forcing to the general circulation and some of its specific 

characteristics. For this purpose, two additional numerical simulations consisting of the same 

model configuration of scenario-I but using different combinations of driving forces are 

carried out. To determine the effect of wind-stress forcing on the circulation, Scenario-II was 

performed considering only the thermohaline fluxes. In the third numerical experiment 

(Scenario-III), the thermohaline fluxes were removed but wind-stress field is included.  
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7.2 Circulation patterns and thermohaline structure (summer season) 

 

This section presents the predicted circulation features during the summer season. For this 

purpose, the simulation results over the period from June to September are analyzed.  

 

 

7.2.1 Horizontal patterns of the circulation 

 

The horizontal distribution of the surface circulation in the Red Sea during the summer is 

shown in Figure 7.1. In general, the surface circulation field shows variable patterns 

including series of cyclonic and anticyclonic eddies. To describe the major features of the 

circulation, we divided the Red Sea basin into two main regions: the northern region (North 

of 20°N), and the southern region (south of 20°N).  

 

North of 20°N, the surface current field contains a series of organized energetic eddies along 

the northern part of the Red Sea. They are centered around 27.5°N, 27°N, 26°N, 23°N and 

22.2°N respectively. Note that, there are small eddies around 24°N and 20.5 °N located close 

to the western boundary of the Red Sea. The model results showed that the circulation in the 

extreme north of the basin is dominated by cyclones while eddies located south of 27 latitude 

are dominated by anticyclones. The current speeds of these eddies systems are ranging 

between 0.5-0.9 m/s with exception of the eddy centered at 22.2°N which exceeds 1 m/s. 

Previous observational studies carried out in the extreme northern part of the Red Sea during 

the winter season suggest that there is a permanent cyclonic gyre (e.g. Clifford et al. 1997). 

The model results showed also the existence of such a cyclonic system during summer which 

is consistent with the modeling studies of Sofianos and Johns (2003) and Yao et al. (2014a); 

however, the shape of the circulation pattern is different when comparing with the former but 

almost similar to the latter. The existence of such feature suggests that the northern Red Sea 

is dominated by the permanent cyclonic system. This cyclonic eddy is one of the essential 

mechanisms in the RSOW formation processes through an open-ocean convection process 

that takes place in the northern part of the Red Sea during the winter season (see section 7.8).  

 

The model results also reflect the existence of northward flow (north of 22) along the western 

coast as a boundary current. It is interesting to note that the strong anticyclonic eddy located 

in the central basin extends across the entire width of the Red Sea basin with velocities 

exceeding 1 m/s.  This feature produced by the RS-Model is very consistent in size and 

magnitude with recent observations of Sofianos and Johns (2007). Most importantly, the 

previous modeling study which is forced by climatological conditions (Sofianos and Johns 

2003) showed weaker patterns in both size and magnitude, indicating the important role of 

account for the high-frequency atmospheric forcing in studying the circulation in the Red Sea 

region.  

 

South of 20°N, the major features of circulation are the presence of anticyclonic eddies 

centred around 18°N and 16°N. Quadfasel and Baudner (1993) analysed hydrographic data 

collected along the central axis of the basin and found an energetic three-dimensional 
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circulation within the Red Sea basin. Their results showed the presence of a permanent 

anticyclone located at  23°N, a prevalent anticyclonic feature in the central Red Sea in 

addition to several quasi-permanent anticyclonic features located near 20-21°N and 17 -18°N. 

Recently, Sofianos and Johns (2007) conducted salinity-temperature measurements, 

meteorological and direct current observations along the main axis of the Red Sea during the 

midsummer of 2001 (from 4 August to 19 August). The major resulting circulation patterns 

from this survey are three strong anticyclones covering the width of the basin located at 

23°N, 21.2°N and 18.5°N respectively,  in addition to a cyclone in the extreme northern Red 

Sea which was not identified in the observations of Quadfasel and Baudner (1993). On the 

other hand, the satellite data of the sea level anomalies (SLA) also clearly reflects the 

occurrence of such features (see Chapter 3). The distribution of circulation features predicted 

by the RS-Model is largely in agreement with these recent studies and SLA data. A maximum 

velocities magnitude predicted by the model of 1 m/s is observed in the central Red Sea. 

South of 16°N, the simulation results suggest that the currents in the vicinity of the southern 

part are in general irregular and mostly directed towards the south following the prevailing 

wind direction where it reverses during the summer and becomes NNW. The current speeds 

in the vicinity of the southern part are weaker during this period ranging between 0.1-0.2 m/s 

as a result of weaker wind and thermohaline forcing. However, according to the model results 

highest magnitudes of the southward flow occur at the area where the strait is narrowing its 

land-water boundary.  The disappearance of the northwards inflow that takes place during 

winter season as a result of reversing prevailing wind field is obvious (see section 7.6).  

 

 

 

Figure 7.1. Mean surface current velocity field in the Red Sea based on RS-Model over 

summer months (June-Septmber) [Full forcing].  

 



Chapter 7. Circulation Patterns and Thermo-haline Structure (Summer Season) 

 
131 

 

7.2.2 Horizontal patterns of the thermohaline fields 

 

To represent the horizontal distribution of sea surface temperature (SST) and sea surface 

salinity (SSS), the simulation results over June to September were averaged. The horizontal 

distribution of simulated SST and SSS fields during summer season is shown in Figure 7.2. 

The emerging patterns of SST and SSS over the Red Sea region are highly influenced by the 

prevailing winds in the region. It is obvious that the entire Red Sea basin during the summer 

season becomes very warm with meridian gradient over the basin (Figure 7.2-a). Maximum 

sea surface temperature observed during summer is reaching about 33-34 ºC. The major 

pattern which appeared in this period is that the SST is higher on the western boundary than 

on the eastern one. Along the eastern boundary of the basin particularly in the middle part of 

the basin (20° N) and north of 23° N the water temperature is cooler than on the western 

coast (~ 4 °C), indicating upwelling events associated with the prevailing NNW winds. A 

similar process is observed in the salinity distribution.   

 

Associated with the prevailing NNW winds during the summer season, we can observe that 

the surface outflow (RSSW) carries relatively warm and salty waters (~30°C, 37.5 psu) 

towards the Gulf of Aden. Interestingly higher temperature and salinity associated with the 

RSSW outflow is concentrated along the western side especially inside the strait, suggesting 

that the RSSW leaves the strait following its pathway along the western boundary.  The 

horizontal distributions of SSS field in the Red Sea experiences seasonal variations through 

both wind stress and air-sea buoyancy fluxes. The spatial structure of the SSS in the region 

increases gradually from the southern part of the Red Sea towards the north reaching about 

38.5-39 psu and 40 psu in the middle part and the northern part of the Red Sea respectively 

(Figure 7.2-b). Similar spatial structure is observed during the winter time (see section 7.6). 

However, the SSS in the Red Sea is higher in summer than in winter especially in the 

southern part of the basin where it reaches 37.5 psu. An upwelling process is observed along 

the northernwest Gulf of Aden at ~12° N. This feature of upwelling processes in the Gulf is 

consistent with several studies carried out in the Gulf of Aden (e.g Piechura and Sobaih 

1986).  

 

7.2.3 Vertical thermohaline structure 

 

To describe the vertical distribution of temperature and salinity, model results along the 

meridional section were extracted and plotted (see location of the latitudinal section in Figure 

3.10). The analysis is focused only on the upper 400 m depth since the thermohaline 

characteristics below the depth of 300 m in the Red Sea basin are found remarkably 

homogenous (see Appendix D). The model results clearly showed the significant role played 

by the atmospheric forcing variations between the two seasons. The stratification 

characteristics and water masses during both seasons are clearly observed from the latitudinal 

section of the Red Sea.  
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Figure 7.2. Horizontal distribution of simulated (a) sea surface temperature SST (°C), (b) sea 

surface salinity SSS (psu) during summer season (June-September).  

 

The vertical structure of the temperature and salinity respectively during the summer period 

is shown in Figure 7.3. Higher temperature values (27-28 °C) are observed during the winter 

in the intermediate region (16-20 °N) with a gradual decrease towards the southern and 

northern extremes (see section 7.6) while during the summer (Figure 7.3-a), it is observed 

that the region of high temperature becomes warmer (33-34 ºC). Besides due to the influences 

of the predominant NNW winds extends southwards. The simulation results indicate that the 

vertical structure is more stratified (unlike the winter situation) and the mixed layer is 

shallower, comparable with the structure of the summer-2001 observations of Sofianos and 

Johns (2007). The mixed layer depth extends to 30 m in the northern part and to 50 m 

between 17-18 °N. The depth of thermocline layer deepens to 230 m where the temperature 

decreases from 34 °C to ~ 22 °C. A gradual decrease of the temperature to a minimum of 

21.5 °C is observed between the depths of 250-300 m.  

In terms of salinity (Figure 7.3-b), it is obvious that salinity increases with depth and the 

depth gradient is larger in the southern Red Sea due to the influence of low salinity water 

associated with the GAIW. In the southern part mainly south of 16 °N, the major pattern is 

the existence of a 3-layers exchange flow system with the Gulf of Aden which develops 

during the summer season. This is a well-documented feature during the summer where the 

minimum temperature and salinity (between the depth 50 to 100 m) associated with the water 

mass coming from the Gulf of Aden reaches about 16-17 °C and 35 psu respectively (e.g. 

Sofianos and Johns 2007). On top of GAIW layer is the RSSW layer characterized by warmer 

(31-32 °C) and saltier (37.5-38 psu) water. The model results have shown that the thickness 

of the RSSW is about 20 m which is in agreement with the estimated depth by Murray and 
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Johns (1997). Underneath the GAIW layer, there are the RSOW and RSDW (More details are 

given on these water masses in section 7.8). 

 

Figure 7.3. Vertical distribution of simulated (a) temperature (°C) and (b) salinity (psu) along 

the main axis during summer season (June-September) based on RS-Model, [Scenario-1: Full 

forcing].  

 

 

7.3 Characteristics of the water masses at the Strait of Bab el Mandeb  

 

This section describes the vertical structure of the thermohaline in the southern part of the 

Red Sea basin. In addition, monthly mean values of the layers transport are described and 

compared with earlier observations. 

 

As already mentioned in Chapter 3, the southern part of the Red Sea including the strait of 

Bab el Mandeb and the Gulf of Aden are subject to two annually changing monsoonal events. 

As a result, there is strong seasonal exchange flow pattern between the Red Sea and Gulf of 

Aden through the Strait of Bab el Mandeb resulting in a transition from a 2-layer flow regime 

in winter into a 3-layer exchange system in the summer season. These are represented by the 

reversal processes of the surface flow (Red Sea Surface Water (RSSW) and Gulf of Aden 

Surface Water (GASW)), subsurface intrusion of Gulf of Aden Intermediate Water (GAIW) 

and the seasonal variability of the Red Sea Outflow Water (RSOW).  
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The vertical distribution of the temperature and salinity at a cross-section located at latitude ~ 

14°N is shown in Figure (7.4). During winter season, it can be seen that the distribution of the 

temperature in the surface layer is uniform with the western side slightly cooler than the 

eastern side and the mixed layer extends to about 90 m (Figure 7.4 a). The thermocline layer 

extends to around 150 m where the temperature values decrease from 26 to approximately 23 

°C. Figure (7.4 b) shows the vertical structure of temperature during the summer. As can be 

seen that the mixed layer reduces to about 20 m and there is small differences between the 

east and west of the cross-section where the western side is warmer than the eastern side. On 

the other hand, the salinity distributions (Figure 7.4 c,d) show an increase of salinity values 

with increasing depth. Beneath the thermocline layer, the GAIW is observed atn the depths of 

about 75 to 100 m. Underlying the GAIW is the warm (22-23 °C) and saline (40 psu) RSOW.  

 

 
Figure 7.4. Vertical distribution of simulated temperature (°C) (a) winter, (b) summer, and 

salinity (c) winter and (d) summer [Zonal cross-section in the southern part of the Red Sea 

along 14 °N]. 

 

 

Figure (7.5) shows computed monthly mean values of the layers transport. The analysis over 

the water column is considered based on the specified water masses. For the winter season, 

the water column consists of two parts: surface and deep layers. For the summer season, three 

parts of the water column are considered: surface, intermediate and deep layer. The upper 

surface layer represents the GASW inflow and RSSW outflow, the intermediate layer 
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includes the GAIW intrusion and the deep water includes the RSOW towards the Gulf of 

Aden.  

 

As can be seen in the figure, the RS-Model is able to reproduce the reversal of the surface 

flow, the intrusion of the GAIW and the RSOW outflow. The calculated mean transports over 

the summer and winter seasons of the surface outflow/inflow are found to be 0.14 and 0.46 

Sv. The intermediate inflow which takes place during the summer is estimated with an 

average transport of 0.3 Sv. This value is slightly larger than the estimated value of 0.24 Sv 

by Sofianos et al. (2002). On the other hand, the annual mean transport of RSOW outflow 

into the Gulf of Aden is estimated at 0.38 Sv with minimums and maximums over 

summertime and wintertime. Based on velocity data analyses, Murray and Johns (1997) and 

Sofianos et al. (2002) showed that the annual mean of the RSOW outflow is 0.36 Sv with a 

large annual cycle ranging from 0.6 Sv in the winter and less than 0.1 Sv in the summer. 

Although there are discrepancies between the model and previous observations, the model is 

able to produce the main features of the seasonal cycle of the flow exchange system 

successfully. 

 

 

Figure 7.5. Seasonal means of volume transport for Surface, Intermediate and deep layers at 

a cross-section located at ~ 12.5 °N]. 

 

 

7.4 Intrusion of the Gulf of Aden Intermediate Water (GAIW) 

 

This section concerns the subsurface intrusion of the GAIW. Previous studies showed some 

doubts about the fate and northernmost limit of the GAIW inside the Red sea basin. In this 

context, the succession of the GAIW intrusion into the Red Sea is investigated. This aims at 

describing the full cycle of the GAIW structure and determining the northern limit of the 

intrusion inside the Red Sea basin based on the simulation results. A sequence of the 

incoming GAIW from June to November represented by the current and salinity fields at 80 

m depth is depicted in Figure 7.6. As can be observed, the intrusion of low-salinity associated 

with the GAIW takes place in June and gradually becomes stronger in July through October.  
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It is interesting to note the GAIW layer after entering the narrowing strait veers toward the 

eastern coast inside the southern part of the Red Sea. This is clearly observed in the modelled 

cross-section at ~ 16°N in Figure 7.7, where the core GAIW is concentrated at the eastern 

side between the depths of 50-100 m. This is consistent with Sofianos and Johns (2007) who 

observed concentrated values of the core during August-2001 along the eastern side at the 

southern part of the basin, represented by temperature (17°C), salinity (36 psu) and dissolved 

oxygen (8.8 µmol/kg), respectively. Therefore, it is obvious that the GAIW flows into the 

Red Sea through a pathway mainly along the eastern boundary unlike the RSOW which was 

observed to flow out the Red Sea basin along the western boundary of the Red Sea. The 

simulation results also showed that due to an interaction with anticyclones systems present in 

the southern region, the intrusion propagates to the interior of the southern region.  

 

The model shows that a maximum northernmost limit of the intrusion occurs in August 

reaching a latitude of ~17 °N with current velocity of about 0.5 m/s. Robinson (1973) 

observed the northernmost limit of the cold subsurface inflow at 18°N in October. On the 

basis of mean summer inflow rate of Murray and John (1997) (0.22 Sv and 50 m mean layer 

thickness) it has been suggested that the GAIW intrusion would reach only up to 16°N at the 

end of August, assuming that little or no mixing process occur (Sofianos and Johns, 2007). 

Based on historical data, Smeed (1997) estimated the northernmost limit of the intrusion to be 

occurring in the end of September. Sofianos and Johns (2007) hypothesized the latitude 16°N 

to be the northernmost limit since temperature and salinity values of the GAIW were not 

detected north of 22°N latitude. The northernmost limit of the subsurface inflow as observed 

in Figure 7.6 shrinks to the latitude of 16°N in September lasting up to October. Although the 

inflow becomes weak in October, it remains flowing northward. In November, the flow 

direction in the southern portion including the strait becomes reversed; therefore the existing 

core of the GAIW in the southern part of the Red Sea (at 18°N) is trapped inside the eddy 

regime and due to mixing processes diminishes gradually. Although the influence of the eddy 

features present in the surrounding area of intrusion can extend the GAIW further north, the 

model does not show a signal north of 18°N (Figure 7.6). 
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Figure 7.6. Horizontal distributions of salinity field (psu) and currents (m/s) at 80 m depth 

from June to November representing the full cycle of Gulf of Aden intrusion (GAIW) and its 

structure of propagation into the Red sea.  

 

Figure 7.7. Vertical cross-section of (a) temperature and (b) salinity at 16°N based on RS-

Model during August-2008.  
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7.5 Intermediate circulation 
 

In this section, the circulation features associated with the most hypersaline RSOW which 

flows out the Red Sea basin through the bottom of Bab el Mandeb Strait are described based 

on the simulation results. Although the circulation at this depth level is much weaker 

compared with the surface layer, the influence of the surface feature is reaching the depth of 

RSOW layer. In the north, we can observe that the strong surface anticyclonic eddies located 

at 27°N, 25°N and 23°N respectively affect the flow at this depth level (Figure 7.8). The 

influence of the main dynamical feature in the northern part (a permanent cyclonic 

circulation) is also pronounced. Its signature is acting as a boundary current along the eastern 

boundary. These coastal currents continue parallel to the eastern shelf following the 

bathymetry structure and at the extreme north due to the limit of the basin they wrap into the 

western shelf. Maximum magnitude is achieved with the permanent anticyclonic eddy located 

at 23°N (> 0.2 m/s). This permanent feature was observed by Quadfasel and Baunder (1993) 

to penetrate to a depth of 300 m and its maximum velocity was recorded at a depth between 

100-150 m. 

 

South of 20°N, the effect of the surface circulation features is obviously much weaker than in 

the northern part. The general flow is directed southward however, the magnitude of the 

southward flow between the adjacent layers of the shallow shelves on both sides in the 

southern Red Sea (16°N and south) is less compared to the winter season, indicating a 

smaller amount of transport associated with the summer RSOW as discussed in section 7.3. 

The highest velocities (0.2 m/s) were observed at the area where the strait is narrowing its 

land-water boundary as a result of topographic restrictions.  

 

 

Figure 7.8. Mean current velocity field in the Red Sea at depth 140 m representing the 

RSOW based on RS-Model over summer season (June-September). 
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7.6 Circulation patterns and thermohaline structure (winter season) 

 

This section describes the simulated circulation features during the winter season. To 

represent the patterns of circulation in the Red Sea, the simulation results over January to 

March are averaged.  

 

7.6.1 Horizontal patterns of the circulation 

 

The simulated surface circulation field in the Red Sea during the winter season is shown in 

Figure 7.9. The surface current field involves variable patterns including both cyclonic and 

anticyclonic eddies feature. We note that the resulting mean circulation is rather complex 

during the winter season unlike the summer season where eddies fields are organized almost 

along the axis (see section 7.2.1). To explain the major features of the surface circulation, the 

basin was divided into two regions mainly: the northern region (North of 20° N), and the 

southern region (south of 20° N). 

 

North of 20 °N, the major patterns observed are series of cyclonic eddies located at ~ 27.5°N, 

26°N, 23.3°N and anticyclonic eddies mainly closed to the western boundary centred at 

27°N, 25°N, 22.5°N and 21°N respectively. The cyclonic eddy in the extreme north has been 

identified through previous observational studies to be a permanent feature of the circulation 

system during winter season. In addition to being observed in our model, such cyclonic 

system was also observed recently during the midsummer-2001 observations of Sofianos and 

Johns (2007), in the modelling studies of Sofianos and Jonhs (2003) and Yao et al. (2014b). 

Accordingly, the northern part of the Red Sea is cyclonically dominated throughout the year. 

It should be mentioned that the cyclonic eddy produced by the RS-Model is different in shape 

from the one produced by the former modelling study while somewhat similar with the latter. 

However, the exact location and strength include some variability.  

 

The simulation results show that the current speeds associated with eddies system is in the 

range of 0.5-1 m/s (Figure 7.9) with exception of the cyclonic eddy around 23.5°N which 

involves higher speeds (> 1 m/s) and extends almost across the entire width of the basin. The 

simulation also shows the presence of a northward-flowing eastern boundary current north of 

24° N which eventually interacts with the cyclonic eddy in the extreme north and switches to 

the western boundary due to the northern limit of the basin. 

 

In the southern portion of the Red Sea, strong northward surface current (NNW) flowing 

inside the Red Sea from the Gulf of Aden through the strait of Bab el Mandeb with velocities 

varying with the strength of the inflow are pronounced (Figure 7.9). The obvious dynamical 

process which derives the inflow through the strait is the wind field where the dominant wind 

direction is SSE during this period. Inside the strait, as can be seen the inflow magnitude is 

intense with velocities exceeding 1 (m/s). The inflow enters the southern part of the Red Sea 

intensified along the western coast (12-15° N) which is in agreement with observational study 

of Vercelli (1931). At about 16°N, major part of the inflow propagates almost along the main 

axis of the Red Sea basin and interacts with a cyclonic eddy centred at 18°N. Maximum 
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velocities attached with the inflow inside the southern part of the basin ranged between 0.5-1 

m/s. 

 

In comparison with previous modelling studies carried out in the Red Sea, Sofianos and 

Johns (2003) found in a 9-year mean winter circulation that the inflow is concentrated along 

the western boundary and at latitude 16°N it switches to the eastern boundary and continues 

towards the northern part of the Red Sea as a narrow boundary current. In a numerical 

experiment driven only by thermohaline forcing they found that the shifting occurs further 

north at 19°N. They argue that the switching latitude is the latitude beyond which Rossby 

waves are no longer possible. In the study of Eshel and Naik (1997) a similar feature of 

shifting boundary currents from the western to the eastern side were observed however at 

different latitude (25°N). The switching in their study was attributed to the collision of the 

northward western boundary current with southward flow coming from the eastern boundary. 

On the other hand, the climatological mean for February in the simulation of the MIT general 

circulation model (Yao et al. 2014b) showed that the eastward cross-basin current takes place 

at 24°N. The switching of the western boundary current at this latitude was attributed to the 

change of the vertical mixing and the resulting change of dynamical balance rather than 

critical latitude related to Rossby waves. 

 

The picture in our model is not very clear since the results represent only mean winter 

circulation of a single year which involves several eddies where such feature can be observed 

cle rly through ti e   er ging o er  e er l ye r   e g  Qu df  el  nd B udner  993; Zh i et 

al. 2015). In general, the model (scenario-I) shows that at ~ 16°N, the inflow deviates into the 

main axis of the Red Sea and interacts with a cyclonic eddy located around 18.2°N. As a 

result part of the inflow veers towards the western boundary and part propagates along the 

main axis which eventually interacts with the eddies in its path. However, as will be shown 

latter in the additional numerical experiments (section 7.7), the surface circulation is mainly 

wind-driven, and the cyclonic eddy present in the full forcing experiment especially in the 

southern portion of the basin does not show up in the thermohaline-driven circulation 

experiment. In the absence of the cyclonic eddy in scenario-II, we note that the western 

northward inflow reaches almost mid-basin and at ~ 21°N it crosses to the eastern side.  
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Figure 7.9. Mean surface current velocity field in the Red Sea based on RS-Model over 

winter months (Jan-March) [Full forcing].  

 

 

7.6.2 Horizontal patterns of the thermohaline fields 
 

To represent the horizontal distribution of sea surface temperature (SST) and sea surface 

salinity (SSS), the simulation results over January to March are averaged. Figure 7.10 (a, b) 

shows the horizontal distribution of simulated SST and SSS fields. As already stated in the 

summer season, the horizontal patterns of the thermohaline fields are highly influenced by the 

prevailing wind regime in the Red Sea region. The prevailing wind direction during this 

period is north-westerly north of 19° N and south-easterly monsoon events dominate south of 

19° N. The horizontal distribution clearly reflects that there is a zone in the middle part of the 

Red Sea (16° N-21° N) characterized by high SST due to the weak wind velocity in this 

region where the wind condition is convergent for most of the year (Figure 7.10-a). The 

major features during this period is a surface inflow of warm water (24-25 °C) coming from 

the Gulf of Aden through the Strait of Bab el Mandeb which tends to flow northward. This 

fe ture i  in  gree ent  ith  re iou  o  er  tion l  tudie   e g M ill rd  nd  oli  n  986; 

Murray and Johns 1997 and Smeed 2004) carried out in the Bab el Mandeb strait. Associated 

with inflow, SST increases from the southern part of the basin (just north of Bab el Mandeb) 

towards the north reaching about 27 °C at 20°N and above that latitude (20° N) the SST tends 

to decrease gradually towards the northern part of the Red Sea reaching about 23-24 °C. 

Another observed pattern is the downwelling events occurring along the eastern boundary 

between the Latitudes 16° N and 20° N. Concerning the SSS distribution, the simulation 

results show that the SSS in the Red Sea exhibits gradual increase from the southern part (36 

psu) (near Bab elMandeb Strait) towards the northern part reaching about 38.5-39 (psu) in the 
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middle part of the basin and maximum values 40 psu are found at the extreme north as a 

result of high evaporative freshwater loss (Figure 7.10-b). 

 

 
Figure 7.10. Horizontal distribution of simulated (a) sea surface temperature SST (°C), (b) 

sea surface salinity SSS (psu) during winter season (Jan-March).  

 

 

7.6.3 Vertical thermohaline structure 
 

Figure 7.11 (a, b) shows the vertical structure of the temperature and salinity along the main 

axis of the Red Sea basin (see location of the meridional section in Figure 3.10). Similar to 

the summer season, the analysis is focused only on the upper 400 m depth since the 

thermohaline characteristics below the depth of 300 m in the Red Sea basin is characterized 

by water of remarkably homogenous temperature (~ 21.5 °C), salinity (40.5 psu) and density 

(28 kgm
-3

) as observed in the model and also reported by previous studies (e.g. Sofianos and 

Johns 2007).  

 

 

In the upper layers, the monsoonal winds blowing over the region, the strong evaporation 

component and the flow regime existing in the southern part with the Gulf of Aden evidently 

lead to strong latitudinal gradients in the surface layers. The mixed layer during the winter in 

the Red Sea basin is found to be deeper unlike the summer season (see section 7.2.2). In the 

northern part, (north of 24 °N), the mixed layer extends to 150 m depth with temperature of 

24°C while south of 24 °N and towards the southern part of the basin the mixed layer 

decreases gradually to the depth of approximately 100 m (Figure 7.13-a). Maximum 

temperature (~ 27-28 °C) is observed in the intermediate region (16 – 20 ° N) that develops 

only during winter due to the weak NNW winds and the strong SSE winds. The thermocline 
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layer extends to around 230 m where temperature decreases from 24 °C to 22 °C in the 

northern part and from 27 °C to 22 °C in the middle and southern part of the Red Sea.  

 

In terms of salinity (Figure 7.11-b), the simulation results indicate that the salinity in the Red 

Sea increases gradually with depth reaching its maximum at 40.5 (psu). The variation in the 

deeper layers is neglected due to isolation from the Gulf of Aden by a sill at a depth of 160 m 

located in the southern part of the Red Sea region. Figure (7.13-b) shows that the upper layer 

in the northern part of the Red Sea is characterised by high salinities ~ 40 psu while south of 

24 °N to 16 °N by less salinity ranging between 37.5-38.5 psu. The simulation results showed 

that the Red Sea involves highest evaporation heat fluxes in the northern part during winter 

season, indicating that the salinity is enhanced by the evaporation component significantly 

unlike the temperature which faces seasonal variability. This is described in more detail in 

section 7.8 in association with the intermediate water mass formation. The halocline structure 

during the winter occurs between100-150 m depth with salinity ranging between 38.5 and 

39.5 psu particularly in the middle and southern part. South of 16°N, the existence of a 2 

layers flow regime represented by the inflow of fresher surface water 36 psu and hypersaline 

outflow water (RSOW) present at ~ 160 m depth is obvious.  

 

 
Figure 7.11. Vertical distribution of simulated (a) temperature (°C) and (b) salinity (psu) 

along the main axis during winter season (June-September) based on RS-Model, [Scenario-1: 

Full forcing].  
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7.7 Experiments of Wind and Thermohaline Forcing 
 

As stated previously in Chapter 3, there is a general agreement that the thermohaline and 

wind forces drive the large-scale two-dimensional circulation in the Red Sea. The RS-Model 

simulation in addition to the recent observations (Sofianos and Johns 2007) and previous 

modeling studies showed that the circulation in the Red Sea is rather a complex three-

dimensional structure. However, there has been much debate on the relative importance of 

wind and thermohaline forcing in driving the circulation and stratification in the Red Sea. 

Several researchers believe that circulation is attributed to thermohaline forcing on the basis 

of incoming fresh and warm water from the Gulf of Aden into the Red Sea which moves 

northwards and due to excess of evaporation over precipitation, formation of very saline (> 

40 psu) water mass takes place. As a result, the formed dense water sinks and flows out of the 

Red Sea over the shallow sill at Bab el Mandeb strait (Maury 1855; Phillips 1966; Eshel et al. 

1994; Tragou and Garrett 1997). On the other hand, Thompson (1939a); Siedler (1969); 

Patzert (1974a) argued that wind-stresses are the primary component while the thermohaline 

forcing plays a secondary role in determining the circulation patterns. 

 

The simulation of 9-year mean circulation (driven by monthly mean climatological 

conditions of the Red Sea) showed the dominance of the thermohaline forcing over wind-

stress forcing in driving the circulation in the Red Sea (Sofianos and Johns 2003). However, 

the relative contributions of driving forces to the circulation in the Red Sea on seasonal scale 

are still not clear. Therefore, in this section we investigate the influence of wind and 

thermohaline forcing and their role on the circulation during the summer (June-Sep) and the 

winter seasons (Jan-March) respectively. 

 

Buoyancy forcing and the mixed layer depend mainly upon the effect of wind speed and their 

dynamical interactions play a major role in the final circulation and stratification patterns 

(Gill 1982). Therefore, it is difficult to separate the thermohaline driven-circulation from the 

wind-driven circulation since the ocean is not a linear system. Nevertheless, the numerical 

modelling approach is an appropriate method to investigate different driving forces and their 

role on the circulation. As such, in this study we carry out additional numerical experiments 

aiming at defining the relative contributions of wind and thermohaline forcing in driving the 

seasonal circulation patterns. To achieve the aim, two numerical experiments consisting of 

the same model configuration of scenario-I but using different combinations of forcing were 

performed. To determine the effect of wind-stress forcing and its role on the circulation, a 

numerical experiment (Scenario-II) was performed considering only the thermohaline fluxes. 

Therefore, no wind is imposed in this scenario. In the third numerical experiment (Scenario-

III), the surface heat and salt fluxes were removed but wind-stress field is included.  

 

7.7.1 Horizontal patterns of the circulation (summer season) 
 

To investigate the influences of wind field and thermohaline fluxes and their role on the key 

features, the results of the two scenarios are analyzed and shall be compared with scenario-1 

(section 7.2.1). Figure 7.12 shows the resulting surface layer circulation field from the two 

numerical experiments over (June-September). The major characteristics features emerging in 
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the thermohaline experiment are a series of cyclonic eddies located at 27°N, 25.5°N, 23.5°N, 

21°N and 18°N respectively (Figure 7.12 left panel). Note that, the cyclonic eddies located at 

25.7°N and 23°N involve higher magnitudes compared with the remaining cyclones. The 

main circulation features appearing in the wind-driven circulation experiment is a chain of 

anticyclones eddies located around 27°N, 25.5°N, 23.5°N, 22°N, 21°N and 18°N respectively 

(Figure 7.12 right panel). In addition to that, a western boundary current is observed north of 

24°N. The main permanent feature of the circulation is the anticyclone system located around 

23.5°N while the features located at 21°N and 18°N are considered as quasi-permanent 

anticyclonic features as shown previously in section 7.2.1.  

 

It is obvious that the wind-driven circulation achieves higher velocities than the 

thermohaline-driven circulation. Comparing the resulting features with the surface layer 

circulation that emerged in Figure 7.1, we observe that the surface patterns in the absence of 

wind forcing are of cyclonic rotation unlike the combined forcing features. The numerical 

experiment of scenario-III (wind included) produces similar surface features (anticyclonic 

eddies) to the circulation patterns obtained from full forcing scenario. This indicates that they 

are driven by the same physical phenomenon which is the wind-stress forcing. Accordingly, 

when the two mechanisms compete with each other, the wind-stress forcing dominates the 

surface circulation. Furthermore, the western boundary current observed in the combined 

driven circulation is only seen in the wind-driven circulation. Therefore, the general 

circulation pattern produced by the combined forcing during the summer is largely attributed 

to the wind-driven experiment. Our model is driven by high-frequency atmospheric forcing. 

The results are in contrast with the simulation of 9-year mean circulation (driven by monthly 

mean climatological conditions of the Red Sea) of Sofianos and Johns (2003). They showed 

that the purely wind-driven circulation produces much weaker circulation than the 

thermohaline circulation. However, the western boundary current (at 22°N) in their model is 

observed only in the wind-driven circulation. 

 

The simulated surface gyres of the RS-Model are observed to extend across the entire width 

of the Red Sea basin (Figure 7.1); in particular north of 20°N, hence an indicative of 

topographical restriction. As stated in Chapter 3, the wind direction in the Red Sea is parallel 

to the main axis of the basin and during the summer season the prevailing direction is NNW. 

The resulting surface circulation feature from a wind-driven circulation scenario evidently 

show the important role played by the wind-stress field in generating the gyres systems. In a 

relevant study, Quadfasel and Baudner (1993) investigated the dynamics of the northerly 

wind case and the resulting circulation during the two monsoon seasons. They used a rather 

simple rectangular basin and rectangular basin with bathymetry narrows that not taking into 

account the complicated bathymetry of the Red Sea. The rotation of the wind was observed to 

cause upwelling along the eastern boundary and downwelling in the western side. The 

presence of such processes in the northern half of the basin was also observed in our model 

(Figure 7.2). Furthermore, their results showed the existences of only anticyclonic gyres 

along the basin during the SW monsoon. The RS-Model in the present study is configured 

with realistic bathymetry; and its results reflect the distributions of this simple basin 

considered in their investigation.  



Chapter 7. Experiments of Wind and Thermohaline Forcing 

 
146 

 

Figure 7.12. Mean current velocity field in the Red Sea based on scenario-II (No-wind) and 

scenario-III (No-Fluxes) over summer season (June-September). 

 

 

7.7.2 Horizontal patterns of the circulation (winter season) 

 

To estimate the relative importance of wind field and thermohaline fluxes and their role on 

the key circulation features, the results of the two scenarios are analyzed and shall be 

compared with scenario-I (section 7.6.1). Figure 7.13 shows the resulting surface circulation 

field from the two numerical experiments over the representative period of the winter season 

(Jan-March).  

 

In general, it is evident that the wind field (Figure 7.13 right-panel) contributes considerably 

to the surface circulation than the thermohaline forcing. This can be observed when 

comparing the results of the two scenarios with the surface features resulting from scenario-I 

which includes all the forcings (Figure 7.9). We observe that the surface patterns in the 

absence of wind forcing (Figure 7.13 left-panel) are largely differed, unlike the numerical 

experiment of scenario-III (wind included) which produces similar surface features to the 

circulation patterns resulting from full forcing scenario-I.  

 

In the removed surface fluxes experiment, we observe for instance that the wind field plays 

major role in generating the cyclonic feature located at 23°N and involves higher velocities 

than the thermohaline-driven experiment. The distinguish feature emerging in the numerical 

experiment of NO-Wind (scenario-II) is that the intensified inflow in the southern part mainly 

deviates to the western boundary unlike in the wind-driven circulation where it deviates to the 

main axis of the basin as in scenario-I. This indicates that when the two forcing compete with 

each other, the wind-stress forcing controls the inflow. It is interesting to note that the 
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cyclonic eddy located in the extreme north is driven by the thermohaline forcing while in the 

wind-driven circulation the anticyclonic feature is dominant. Similar fact was also observed 

in the study of the summer season.  

 

In the modelling study of Sofianos and Johns (2003) (model forced by climatological 

conditions) the 9-year mean surface circulation produced from the thermohaline forcing 

experiment was stronger than the wind-driven circulation and in general similar to the 

circulation obtained from the full forcing experiment, indicating the wind forcing plays a 

secondary role. Our model is forced with high-frequency atmospheric forcing and suggests 

that the wind forcing is the primary mechanism deriving the surface circulation. The wind 

regime in the Red Sea basin is commonly known to be controlled by the high mountain 

existing on both sides of the basin. Thus the general direction of the monthly mean is mostly 

aligned along the axis of the basin. However, there are breaks in the topography at few 

locations which play major role in altering the wind patterns through the gaps. In a relevant 

study, Clifford et al. (1997) emphasized that the formation of eddies in the Red Sea depends 

upon the wind direction and there are more eddies when the wind has a cross-basin 

component while less eddies when the wind is directed along the axis. The importance of 

mountain gaps along the eastern and western sides of the Red Sea basin has been recently 

highlighted by Jiang at al. (2009).  

 

Based on a high-resolution regional atmospheric model, two types of cross-basin wind-jets 

were identified: i) eastward wind-jet originating from the Tokar Gap on the African side 

(Sudanese coast) at ~ 19°N with velocities of 20-25 m/s during the summer and ii) westward 

wind-jet bands along the north-western Saudi Arabian coast during winter characterized by 

wind speeds over 15 m/s. Although the surface circulation produced by the RS-Model is 

considerably attributed to the wind forcing, the thermohaline forcing experiment shows 

eddies that are mainly thermohaline driven. For example, the eddy located at 24°N is only 

emerged in the thermohaline experiment and does not appear either in the wind forcing 

experiment or in the full forcing experiment. 
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Figure 7.13. Mean current velocity field in the Red Sea based on scenario-II (No-wind) and 

scenario-III (No-Fluxes) over winter season (Jan-March). 

 

 

7.7.3 Vertical thermohaline structure (summer season) 
 

Figure 7.14 shows the vertical structure along the main axis of the Red Sea resulting from the 

two numerical experiments. A comparison between Figure 7.3 and Figure 7.14 leads to 

recognition of the effect of wind and thermohaline forcing. The change of the interior water 

mass structure due to separation of both forcing is very obvious. In general, the most 

important feature is that the wind forcing experiment (Figure 7.14 c,d lower panel) to large 

extent produces similar strength of the intrusion of GAIW  in magnitude to that observed in 

scenario-I (Figure 7.3), suggesting the important role played by the physical phenomenon in 

driving the GAIW during the summer.  

 

7.7.4 Vertical thermohaline structure (winter season) 
 

The vertical distribution of temperature and salinity resulting from Scenario-II (upper panel) 

and scenario-III (lower panel) is shown in Figure 7.15.  A general comparison between 

Figure 7.11 and Figure 7.15 leads to the identification of the effect of wind and thermohaline 

forcing. The change of the interior water mass structure due to separation of both forcing is 

very evident. The important role of the wind stress on the upper layers is represented by a 

dynamic instability which enhances the vertical mixing and increases the surface inflow in 

the southern part due to the southeasterly wind regime (Figure 7.15 c,d lower panel). 

However, the thermohaline forcing seems to be stronger than the wind forcing during the 

winter season. This evident in Figure 7.15 (upper panel (b)) where the inflow magnitude is 
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increased towards the north reaching latitude of ~18°N unlike the inflow magnitude resulting 

from the full forcing scenario was observed to reach at 16°N.  

 

However, such a simple comparison does not provide a complete picture on the main 

mechanism that causes the seasonal cycle. There is incomplete understanding about the role 

of the seasonal wind and thermohaline forcing and their relative importance. The relative 

importance of the direct surface wind stress and the indirect effect has been investigated in a 

modeling study of Sofianos and Johns (2002). Their results suggest that both direct and 

indirect effects of the surface wind are of similar importance in driving the summer flow. 

Siddall et al. (2002) suggest that the surface wind has minor direct influence on the summer 

flow. They suggest that the surface temperature plays major role in controlling the exchange 

system in the strait of Bab el Mandeb. On the other hand, Patzert (1974a) argued that the 

upwelling process occurring at the northwestern Gulf of Aden (which causes a drop in sea 

level and produces reversal pressure gradient at intermediate depths) is the main mechanism 

for the reversal of the summer flow. 

 

A comparison of the mean transport layer values between the three numerical experiments 

(Scenario-1, Scenario-II and Scenario-III) have been carried out to assess the role played by 

each forcing mechanisms. Figure 7.16 shows the monthly mean values of the layers transport 

of the two experiments and shall be compared with scenario-I (section 7.3). It can be seen 

that in the absence of wind forcing the surface and intermediate layers still include a seasonal 

cycle (Figure 7.16 upper panel). However, the reversal regime of the surface layer is not 

observed; indicate the important role of the wind forcing. Moreover, the GAIW inflow 

exceeds even the summer season and continues into early winter. It is obvious that the RSOW 

outflow behaves differently where it includes less seasonal cycle unlike the full forcing 

experiment which showed strong seasonal cycle. The annual mean RSOW outflow is found at 

0.395 Sv.  

 

On the other hand, the major difference emerging in the absence of thermohaline forcing 

(Figure 7.16 middle panel) is the shrink of the RSOW outflow. The annual mean RSOW 

outflow is estimated at 0.26 Sv. Compared with the first scenario (Full forcing), this value 

represents about 44%. It is obvious that the flow exchange resulting from this experiment is 

weaker compared to the full forcing experiment. Unlike the experiment of NO-Wind forcing 

the seasonal cycle of the exchange system especially the reversal regime of the surface flow 

is evident. Comparing the first scenario with the sum of the two numerical experiments 

indicates that the final characteristics of the flow regime in the strait are not a result of a 

simple linear system of the two forcings (Figure 7.16 bottom panel). The figure shows that 

the intermediate layer (GAIW) inflow exists while the reversal surface regime disappears. 

Although the thermohaline-driven experiment (scenario-II) reflects major role in driving the 

flow exchange, the influence of the wind forcing cannot be neglected since the final 

characteristics of the exchange system is produced by the interactions of both forcings as 

revealed in the model. 
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Figure 7.14. Vertical distribution of (a) temperature and (b) salinity during summer season 

based on scenario-II (No-wind) and scenario-III (No-Fluxes). 
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Figure 7.15. Vertical distribution of (a) temperature and (b) salinity during winter season 

based on scenario-II (No-wind) and scenario-III (No-Fluxes). 
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Figure 7.16. Monthly means of transport for Surface, Intermediate and deep layers at a cross-

section located at ~ 12 °N. top (Scenario-II), Middle (Scenario-III) and bottom (Scenario-I 

and sum of Scenario-II and Scenario-III). 

 

 

7.8 Formation of water masses in the Red Sea  

 

As a result of excess evaporation over precipitation and ocean heat loss in the Red Sea, 

relatively saline intermediate and deep water is formed (Eshel and Naik   997;  ofi no   nd 

Johns, 2003). The produced dense intermediate or/and deep water masses usually holds 

distinct water properties. The major source of the information about subsurface and deep 

circulation in the Red Sea is based on tracer and oxygen observations. Based on geochemical 

tracer distributions ( 
14

C and 
3
He), Cember (1988) observed two water masses involving the 

core of the saline outflow water that leaves the basin through Bab el Mandeb strait and is 

named Red Sea Outflow Water (RSOW). There has been some ambiguity around the Red Sea 

Deep Water (RSDW) and the so-called RSOW. The former occupies the Red Sea basin 

below ~ 200 m to the bottom while the latter just overlies the RSDW layer. Both the RSDW 

and RSOW share similar temperature and salinity characteristics.  
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However, recent analysis of oxygen observations (Woelk and Quadfasel,  996;  ofi no   nd 

Johns, 2007) identified the dissimilarity between the deep and intermediate waters where the 

latter is characterised by high oxygen concentration. 

 

There is a general agreement that the saline deep water mass formation is located in the 

northern part of the Red Sea predominantly during the winter when air temperatures are 

comparatively low. However, previous investigations have shown some controversy 

concerning the sources of the formation in the Red Sea and the exact mechanism of its 

production. Three different sources have been proposed for the RSDW formation. The 

relatively shallow Gulf of Suez (~ 50-70 m) was suggested as the main source for the RSDW 

formation on the basis of the presence of the higher salinities (~41 psu) which eventually sink 

into the bottom of the Red Sea (Maillard,  974; Wyrt i,  974; Woel   nd Qu df  el, 1996). 

The deeper Gulf of Aqaba (~1800 m) was proposed as a secondary source on the basis of the 

outflo  of den e   ter o er the  h llo   ill  300  ) of the  tr it of  ir n  Wyrt i  974; 

Murr y et  l   984;  l hn et  l  2002; M n  r h et  l  2004)   he o en-ocean deep 

convection mode at the northern part of the Red Sea was also hypothesized (Eshel et al. 

1994). Woelk and Quadfasel (1996) claim that the formation is intermittent and does not take 

place every winter. 

 

Regarding the intermediate water formation, the mechanisms involved in the RSOW 

formation, potential locations and exact period are still a matter of debate. Neumann and 

McGill (1962) claimed that the Red Sea outflow originates from intermediate depths. Based 

on T/S diagrams, Maillard (1974) suggested that the intermediate waters can form at all 

latitudes and the continental shelves in the southern Red Sea are expected as important 

formation location. Cember (1988) proposed that the RSOW is injected below the pycnocline 

layer. Recently, the simulation of Sofianos and Johns (2003) suggested that a large proportion 

of the hypersaline outflow water through the strait of Bab el Mandeb is formed through open-

ocean convection associated with a permanent cyclonic gyre in the northern part of the Red 

Sea during the peak of the winter season. It should be noted that the model (10 km resolution) 

in their study was forced by monthly mean climatological conditions while the influences of 

high-frequency atmospheric conditions must be considered in order to capture such processes 

properly. According to Schott and Leaman (1991), in most of the known cases of open-ocean 

deep or intermediate water formation, the associated processes occur on shorter timescales, 

during events of strong atmospheric forcing.  

 

7.8.1 Red Sea Outflow Water Mass (RSOW) 

 

In this study, the mechanism involved in the RSOW formation including the period and 

possible locations are investigated. There are several mechanisms involved in the water mass 

formation. Open-ocean deep or intermediate convection is one of the most important 

mechanisms involved in the water mass formation in the ocean. It occurs usually in few 

regions of the world ocean mainly during winter season. As mentioned earlier in Chapter 2 

several cases of deep water formation through convection process has been observed in the 

western Mediterranean e.g. the Gulf of Lion, the eastern Mediterranean Sea, the Labrador 
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 e   the Greenl nd  e  ; Weddell  e   nd it is believed to be main mechanism driving the 

thermohaline circulation.  

 

Three widespread phases of convection have been identified earlier by MEDOC-Group 

(1970) and are used in all studies involving deep water formation through deep convection 

processes: the preconditioning phase, the violent mixing phase and the sinking plus spreading 

phase. There are three conditions required for open-ocean convection to take place: i) the 

water column is largely homogenized or weakly stratified, ii) the cyclonic gyre with a 

doming of isopycnals towards the surface at the centre of the gyre and iii) strong sea surface 

buoyancy loss to the atmosphere due to cooling and evaporation (MEDOC-Grou   970; 

Swallow and Caston, 1973). An example of such case is the eastern Mediterranean Sea where 

the formation of the Levantine Intermediate Water is localized winter process in the region of 

the Rhodes Gyre in the Levantine basin. Once, these conditions are fulfilled, strong vertical 

mixing occurs in the preconditioned area. In the violent mixing phase, convection is observed 

in the centre of the convective area, leading to strong mixing and deepening of the mixed 

layer. In the l  t  h  e ‘‘the  in ing  nd   re ding’’ the  ixed   ter  in    nd   re d     y 

from the formation site horizontally. 

 

In addition, there are studies that throw light on the baroclinic instability mechanism and its 

important role during the deep convection process especially in the Mediterranean Sea. It has 

been suggested that the spreading of dense water occurs through the action of eddies, i.e. 

believed to be produced at the edge of the convective patch by baroclinic instability 

mechanism of the rim current (Gascard,  978; Herr  nn et  l , 2008; L  c r to , 1998). 

Gascard (1978) proposed that the role of baroclinic instability mechanism can be at any 

instant including the preconditioning phase. The important role of baroclinic instability is 

represented by the strong atmospheric forcing scenarios that triggers deep convection in the 

centre of the preconditioned area. As   re ult    t tion ry ‘‘chi ney’’ of  ixed  nd den e 

waters is formed. When the atmospheric forcing weakens significantly or ceases, the chimney 

becomes highly unstable baroclinically and eddy shedding occurs quickly. This is followed 

by a breakup process of the chimney on a time scale of few weeks (Testor and Gascard 

2006). Gascard (1978) observed eddies of about 5 km radius associated with a baroclinic 

wave-like pattern at the periphery of the convection area in the north-western Mediterranean 

and the Labrador Seas. In addition, a coherent eddy associated with deep convection in the 

Weddell Sea which remained for several months was observed by Gordon (1978). The 

researchers also highlighted that the preexisting eddies generated earlier by a large scale 

baroclinic instability of the main flow during the preconditioning phase may contribute to the 

for  tion of chi ney   he e ‘‘ e o c le’’ eddie  ch r cterized  y u lift of i o ycn l  

toward the surface would precondition for local deep convection at a smaller scale than large 

scale preconditioning which arises within a gyre circul tion  G  c rd  978;  illworth 1979). 

 

It can be concluded from the above mentioned that preconditioning is a primary requirement 

for open-ocean convection to take place. Considering the fact that the Red Sea basin is 

characterized by net buoyancy loss to the atmosphere due to heat and fresh water fluxes, the 

model results suggest that the formation process of RSOW occurs in the northern part of the 
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Red Sea. This can be explained on the basis of the strongest evaporation heat flux (averaged 

during winter) that exists in the northern Red Sea as shown in Fig. 7.17-a. The prevailing 

wind during winter period is north north-west (NNW) in the northern Red Sea which carries 

dry air to the sea. Simultaneously high wind velocity eliminates more heat and freshwater 

from the sea surface.  

 

The simulated spatial distribution along the axis of the Red Sea shows that the largest 

evaporation heat flux takes place north of 24°N, and both the evaporation heat flux (   ) and 

the total heat flux (    ) decrease gradually from 20 °N southward. The heat loss due to 

evaporation is lower over the southern part with mean magnitudes around 75 W/m
2
, whereas 

significantly higher evaporation heat fluxes with mean magnitudes around 200 W/m
2
 is 

observed in the northern Red Sea. The free convection of latent and sensible heat also shows 

higher magnitudes north of 24 °N and lower values over the southern Red Sea (Figure 7.16-

b). The intensive net of atmospheric forcing in this regard enhances the vertical mixing in the 

weakly stratified layer and therefore convection process takes place. 

 

 

 

Figure 7.17. Axial distribution of (a) Evaporation heat flux and Total heat flux, (b) Free 

convection of Latent and Sensible Heat (average during Jan-March) based on the RS-Model. 
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Open-ocean convection process requires also cyclonic gyre with weak stratification features. 

Previous observational studies carried out in the northern Red Sea emphasized that there is a 

permanent cyclonic gyre located in the northern part of the basin (e.g. Morcos and Soliman 

1974). Simulations of the RS-Model showed that the surface circulation in the northern Red 

Sea involve intense eddies activities (Figure 7.9). There is a cyclonic eddy in the extreme 

north of the Red Sea close to the eastern wall at ~ 27.5°N in addition to other cyclonic eddies 

further south. According to the model results, the diameter of the eddies range between 80 to 

100 km. These features are indicative that the Red Sea experiences similar process of open-

ocean convection. Therefore, it should be emphasized that the RSOW formation mainly 

occurs in the northern part of the Red Sea.  

 

In order to investigate the phases of convection and the formation periods, the model results 

for a sequence months were plotted. Figure 7.18 depicts the average surface current velocity 

field superimposed on the density north of 20°N representing the period from October to 

March. The influence of strong atmospheric forcing on the surface waters is evident as 

indicated by high density values north of 24°N. This suggests that the densest intermediate 

water formed in the Red Sea is largely connected with the cyclonic eddies which carry the 

denser water from deeper depth to the surface through weak stratification. Figure 7.18 shows 

that water of higher density occupies the northern portion of the Red Sea basin (north of 

25°N) in early winter. Maximum density value close to the RSOW is observed in the 

northern Red Sea during February and March respectively, giving indication about the period 

of production. The cyclonic eddy forms surface water with a temperature of about 23°C and 

salinity of 39.8-40 psu, giving a typical density 27.5 kgm
-3

 which is almost consistent with 

the density value of 27.7 kgm
-3

 observed at the strait of Bab el Mandeb by Sofianos et la., 

(2002). 

 

To study the vertical structure and reflect the features associated with convection process, a 

Meridional transect of density structure along the main axis of the northern part (21.5°N to 

27°N) representing the period from October to May is considered (Figure 7.19). The transect 

location is marked in Figure 7.18 (Feb). Figure 7.19 presents a sequence of the convection 

phases showing the erosion upper layer stratification cycle associated with influences of 

surface fluxes and the formation period of the intermediate water. In general, the erosion of 

the upper surface layer stratification seems to fulfil the convection process requirements. 

During the preconditioning phase, the role played by the cyclonic eddies is represented 

markedly by a doming of isopycnals towards the surface layers in the northern basin which 

makes the weakly stratified waters exposed to local cooling and evaporation processes. 

Therefore, the saline waters are brought close to the surface to be exposed to entrainment 

with mixed layer. This creates favorable conditions for deep convection since the surface 

water remains in the same depth level exposed to strong atmospheric forcing (Swallow and 

Caston, 1973). The strong atmospheric forcing in November dissipates the stratification in the 

extreme north (north of 26.5°N) and mixed the water to about 100 m depth. In December, 

strong atmospheric forcing events take place almost at all the northern part of the basin in 

which the mixing reaches down to ~ 150 m as reflected by homogenization of the water at 

this depth level. 
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Figure 7.18. Simulated horizontal current field and density from the period October to 

March.  

 

 

It can be seen that the strong surface cooling and evaporation processes with favorable 

preconditions trigger deep convection in January (Figure 7.19). Relevant studies of 

intermediate/deep water formation showed that convection depth might reach hundreds or 

thousands of meters (e.g Levantine Se  300  ; Gulf of Lion >  000  ). In view of the fact 

that the RSOW moves towards the Gulf of Aden over a shallow sill (Hanish Sill) with depth 

of ~150 m depth, it is expected that the depth of convection in the Red Sea case may reach in 

the range of this depth level.  

 

The simulation results show that in January, a narrow chimney of mixed, dense water 

(located at ~ 25.8°N) spans from the surface down to about 150 m depth is formed, where 

intense vertical mixing takes place under atmospheric forcing acting on the surface. As a 

result of atmospheric forcing fluctuations, the convective chimney becomes unstable 

baroclinically in February and March with vary widths, reflecting the important role of the 

baroclinic instability mechanism found in the Mediterranean Sea. The simulation also shows 

that there two major convective chimneys are formed in February and March with larger 

width centred around 26.5°N and 27.3°N. The density values inside these chimneys are 

related to the RSOW values, suggesting substantial production of dense intermediate waters 



Chapter 7. Formation of Water masses in the Red Sea 

 
158 

occurs during February and March. The deepening of the mixed-layer of both convective 

columns has similar depth reaching to the depth level where the RSOW is found and which is 

occupied within the depth between ~ 150 m and 200 m in the whole Red Sea basin. During 

spring (April), the chimneys feature starts to disappear and are followed by a collapse of the 

chimneys. As can be observed, the homogenous water layer remains as intermediate water 

below the surface after strong atmospheric forcing events ceases. The re-stratification phase 

of the mixed layer occurs very quickly and stratification conditions return during May. 

 

The spreading pathway of the formed RSOW is investigated through the simulated flow field 

at 160 m depth (Figure 7.20), the typical depth of RSOW. Evidently the influence of the 

surface circulation features reaches this level depth. However, the magnitude is weaker 

compared with the surface circulation. The simulation shows a pronounced intensified 

southward boundary current along the western boundary (African boundary). The source of 

the southward western boundary current originates mainly from the edge of the baroclinic 

eddies, and also the crossing zonal currents from the eastern side to the western boundary 

around 21°N respectively. At 21°N and southward, the crossing-basin western boundary 

drives the hypersaline water along the western boundary and on its way it interacts with two 

cyclonic eddies centred around 20°N and 18°N respectively. This suggests that the 

hypersaline water moves towards the strait of Bab el Mandeb mainly along the western 

boundary. In fact, there are no observational studies to support the model results in this 

regard. However, similar general results for the spreading pathway have been presented in 

recent modelling studies. The 9-year simulation of Sofianos and Johns (2003) suggests that 

the RSOW is carried out towards the Gulf of Aden by a southward undercurrent intensified 

along the western coast. The results of the modelling study of Yao et al. (2014b) suggest also 

a southward subsurface western boundary current generated by a cyclonic rim current 

through the northern limit of the basin and westward cross-basin currents from the eastern 

boundary south of 26°N which is mainly consistent with our simulation. Our simulation 

indicates that the magnitude of the southward flow increases to the south particularly between 

the adjacent layers of the shallow shelves on both sides (eastern and western along 16°N-14° 

N). The highest velocities occur at the area where the strait is narrowing its land-water 

boundary as a result of bathymetric restrictions and the effect from the adjacent layers. 

 

In summary, the high-resolution (5 km) RS-Model with high-frequency atmospheric forcing 

reflects the involvement of the important role of the baroclinic instability mechanism in the 

RSOW formation process. In the Mediterranean Sea, the use of both high-resolution 

numerical models and high-frequency atmospheric forcing in studying the intermediate/deep 

water formation was found to be essential approach compared with low-resolution models 

forced by monthly conditions. For instance, Lascaratos (1998) simulated the intermediate 

water formation in the Levantine basin (the easternmost part of the Mediterranean Sea) using 

low (11 km) and higher resolution (5.5 km) models. The use of high-resolution approach 

allowed the study of the role of baroclinic eddies which were not resolved in the low-

resolution model. He found that the convection area as well as the duration of the formation 

is controlled mainly by a large number of small baroclinic eddies formed at the periphery of 

the cyclone. Two major differences were emerged between the two models. In the high-
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resolution model the convection area is smaller and the restoration of stability is faster. The 

opposite applies for the low-resolution model. The role played by these baroclinic eddies is to 

transfer buoyancy horizontally toward the centre of the chimney which partially compensates 

for the surface buoyancy loss and therefore shrinks both the horizontal and vertical extent of 

the convection area. Accordingly he emphasized that baroclinic eddies formed at the 

periphery of the convection area in the Levantine control the formation process. The 

spreading of the newly formed intermediate water was also due to the baroclinic eddies that 

dominate the flow at intermediate depths. On the other hand, the use of realistic atmospheric 

conditions was found to be important mainly in correctly reproducing the observed 

convection depths and formation rates. 

 

 
Figure 7.19. Vertical distribution of simulated density from the period October to May, 

representing the sequence of formation and re-stratification of the mixed layer phases. 

[Meridional section along the main axis of the northern Red Sea]. 
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Figure 7.20. Mean current velocity field in the Red Sea at depth 160 m, typical depth of the 

RSOW based on RS-Model. 

 

 

 

7.8.2 Red Sea Deep Water (RSDW) 

 

The RSDW layer is found beneath the RSOW and occupies the RS basin below ~ 250 m to 

the bottom. As stated previously, most researchers agreed that deep water formation (RSDW) 

originates mainly from Gulf of Suez and the Gulf of Aqaba. The former is characterized by 

its shallowness, with depths ranging between 50-70 m, which is shallower than the depth of 

the thermohaline in the Red Sea. The latter is a miniature of the Red Sea with maximum 

depths > 1800 m. In addition, the open-ocean deep convection mode was also hypothesized 

as a third source of formation. 

 

In general, it is proposed that the formation occurs during the peak of winter as a result of 

strong evaporation and surface cooling process. To investigate the water mass characteristics 

of the two Gulfs, the simulation results during the winter period were analysed. Figure (7.21 

left panel) shows the vertical distribution of salinity (psu) along the main axis and cross-

section of salinity (psu) and temperature (°C) across the mouth of the Gulf of Suez.  
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The simulation results indicate that the salinity in the head of the Gulf of Suez reaches 41.0 

psu. However, these higher salinities do not extend to the entrance of the Gulf. At the mouth 

of the Gulf (Figure 7.18 B Left panel), the characteristics of the bottom water in the Gulf for 

salinity is > 40.0 psu while temperature value is 23.7 °C. On the other hand, the salinity 

values in the Gulf of Aqaba (Figure 7.21 right panel) exceed 40.1 psu only in the head of the 

Gulf while down the axis it is found to be in the range of 39.9 psu. At the mouth of the Aqaba 

Gulf salinity and temperature values are 39.95 psu and 21.0 (°C) respectively.  

 

Previous observational studies of Maillard (1974) and Wyrtki, (1974) indicated that the 

salinity values down the axis of the Gulf of Suez exceed 41 psu while at the Gulf of Aqaba 

salinities range between 40.5-40.8; these values are slightly larger than the model predictions. 

Such discrepancies are expected since the salinity values of the deep water in the Red Sea are 

underestimated by the RS-Model, where it was found to be ranging between 40.0-40.3 psu 

whereas observed values of the deep water are in the order of 40.5-40.6 psu (Sofianos et al., 

2002). On the other hand, higher temperature values observed at the bottom at the mouth of 

the Suez Gulf is mainly attributed to the fact that in the Delft3D-Flow system the heat 

exchange at the bed is assumed to be zero. This leads to over-predicted temperatures in 

shallow areas.  

 

Although some discrepancies do exist, the Gulf of Suez can be a first source of dense water 

formation contributing to the RSDW formation. This is probably justified on the basis of its 

shallowness where the bathymetry is characterized by bottomed flat with maximum depth of 

about 70 m.  This in turn is shallower than the depth of the thermocline layer in the Red Sea 

basin. Such bottom depth is considered the limiting depth of influence of the air-sea heat and 

salinity fluxes (Clifford et al., 1997). On the other hand, considering underestimation of the 

model predictions, the water mass properties in the Gulf of Aqaba are close to those of the 

deep water in the Red Sea. Concerning the open-ocean convection mode source, as shown 

previously the results suggest the formation process of the open-ocean convection does not 

involve deep penetrative convection and maximum depth of convection is observed at about 

150 m. This depth level is related to the intermediate layer where the RSOW is found. 

Therefore, on the basis of the model results it can be concluded both the Gulf of Aqaba and 

Gulf of Suez contribute significantly to the RSDW formation. 

 

Previous estimation of the RSDW formation rate at the Gulf of Suez during late winter 

(1971-1972) found to be 0.082 Sv (1 Sv = 10
6
 m

3
/s) (Maillard, 1974). Based on a one-

dimensional plum model, the estimated outflow from the Gulf of Suez (over 7 months) was 

found to be 0.058 Sv. On the other hand, the estimated winter outflow from the Gulf of 

Aqaba to the Red Sea was 0.069 Sv (Klinker et al., 1976) while the transport outflow was 

estimated at 0.029 Sv over a period of two weeks in February (Murray et al., 1984).  Recent 

numerical model studies have shown that the annual mean outflow from the Gulf of Aqaba 

was estimated in the order of 0.0185 Sv. The calculated mean outflow over winter (Jan-

March) from the RS-Model is found to be 0.079 Sv and 0.017 Sv at the Gulf of Suez and the 

Gulf of Aqaba respectively.  
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Figure 7.21. Vertical distribution of simulated averaged salinity [psu] and temperature over 

winter season at the Gulf of Suez (Left) and the Gulf of Aqaba (Right), As: Longitudinal 

section along the main axis, Bs and Cs: cross-sections across the mouth of the two Gulfs. 
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Chapter 8  
 

Conclusion and Recommendations 
 

8.1 Conclusion 

  

In the present thesis, the tidal characteristics, the seasonal thermohaline structure and the 

circulation patterns in the Red Sea region are studied. Detailed literature survey has shown 

that very few attempts were made regarding physical processes in the Red Sea region. 

Consequently, the aim of this study is to improve our understanding about the hydrodynamic 

processes in the region.  

 

The concerns processes are studied mainly by a combination of a very few available 

observations (water levels and oceanographic data), remotely sensed data as well as with 

major focus by means of using a numerical modelling and a realistic high-frequency 

atmospheric forcing approach. The field data and remotely sensed information were mainly 

used on the one hand to acquire more information on the hydrodynamic features in the region 

and on the other hand to be used as a benchmark to evaluate the performance of the 

numerical simulations. The use of numerical modelling approach provides more insight on 

the tidal characteristics as well as the physical processes that control the circulation and water 

mass characteristics in the Red sea. Using both high-resolution model and high-frequency 

atmospheric conditions indeed served to increase and improve our understanding of the 

underlying processes in the region. 

 

Eight tidal gauge stations at different sites along the eastern boundary and only one station 

positioned at the western boundary of the Red Sea, CTD observations distributed along the 

main axis of the basin, satellite data AVHRR / Pathfinder datasets (Advanced Very High 

Resolution Radiometer) and climatological information (Sea Level Anomalies, SLA) were 

made available during the course of this study. The specific model used in the current 

investigation is based on Delft3D modelling system, developed by Delft Hydraulics in the 

Netherlands. Initially the model was set up, calibrated and validated in 2-Dimensional mode 

to investigate the tidal characteristics in the Red Sea region. Afterward, the validated 2-D 

model was extended into 3-D mode in order to study the three-dimensional circulation 

processes in the region.  
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The computational domain of the Red Sea Model (RS-Model) was configured to cover the 

entire Red Sea (Lon 32° to 48°E & Lat 10° to 30°N) including the Gulf of Aqaba and Gulf of 

Suez in the northern part. The model was extended to include also part of the Gulf of Aden in 

the southern part of the basin. The model domain was schematized on a rectilinear mesh 

oriented (NNW and SSE) following the main axis of the Red Sea, with a horizontal uniform 

grid spacing of approximately        5 km. The vertical grid discretization was 

implemented using z-coordinate system. The water column was resolved by unequally 30 

vertical layers with 15 of these layers concentrated in the upper 200 m, thus keeping the 

higher resolution at the surface in order to capture the dynamic of the upper ocean. The 

bathymetric data of the RS-Model were sourced from the global bathymetry dataset for the 

 orld oce n ‘‘GEBCO_08 Grid’’  t   30  rc-second horizontal resolution (~ 1 km). Due to 

insignificant artificial contact between the Red Sea basin and the Mediterranean via Suez 

Canal, the model has only one open boundary which was set at the Gulf of Aden at longitude 

(48° E). The ocean open boundary was forced by the main eight semidiurnal and diurnal (M2, 

S2, N2, K2, K1, O1, P1, and Q1) tidal constituents. In terms of transport forcing, the eastern 

open boundary is controlled by temperature (T) and salinity (S) and velocities components (u, 

v) obtained from Simple Ocean Data Assimilation (SODA) at every five days intervals. The 

3-D RS-Model was initialized with SODA data. The surface boundary of the RS-Model was 

forced by realistic high-frequency atmospheric forcing (i.e. winds and surface heat fluxes) 

derived from DWD at temporal resolution with 6 hourly intervals.  

 

The optimal settings of the numerical model were determined based on sensitivity analyses. 

The model was validated against the available measured surface elevation in addition to 

summer CTD observations. Discrepancies between the model results and available 

observations have been determined qualitatively and statistically. It was observed that the 

model predictions and observations of water levels are in good agreement. The performance 

of the model in terms of temperature and salinity vertical profiles was assessed using 

measurements of temperature and salinity at a number of sites along the main axis of the Red 

Sea. The simulation results are consistent with the measurements reasonably well. On the 

other hand, in order to assess the model on temporal and spatial scale, the satellite data 

(AVHRR / Pathfinder datasets) was considered. It was observed that there is a good 

agreement between the simulation results and the satellite data, reflecting a consistent level of 

agreement (see Chapter 5). Although the measurements used in the validation processes are 

quite scarce, other data sources such as satellite data were helpful, increasing our confidence 

in the model results.  

 

Further evaluation was conducted to test the ability of the hydrodynamic RS-Model in 

reproducing the seasonal variability especially in the southern part of the Red Sea at the strait 

of Bab el Mandeb, the area where the most consistent observations were carried out. It was 

found that the model is able to reproduce the documented hydrodynamic features at the strait 

quite well. These features are the reversal processes of the surface flow (Red Sea surface 

water (RSSW) and Gulf of Aden surface water (GASW), subsurface intrusion of Gulf of 

Aden intermediate water (GAIW) and the seasonal variability of the Red Sea outflow water 
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(RSOW). The incoming surface water from Gulf of Aden has an average of 36.0 psu, 24.0 C° 

and an average transport of 0.46 Sv while the outflow of the Red Sea water has an average 

salinity and temperature of 39.6 psu and 22.0 °C. In the summer season, conditions of 

exchange flow experience a warm, saline thin surface outflow (30.0 °C, 37.5 psu); a cooler 

and fresher inflow from the Gulf (17.0 °C, 36.0 psu, with an average transport of 0.3 Sv) and 

a saline weaker outflow (RSOW). The annual mean transport of the RSOW outflow is 

estimated at 0.38 Sv with minimums and maximums over summertime and wintertime. 

Besides, the permanent cyclonic gyre observed during winter period in the extreme north of 

the Red Sea by several investigators (e.g. Clifford et al. 1997 ) and the anticyclonic eddy 

feature observed recently in the central part of the Red Sea (~ 23°N) by Bower et al. (2013) 

are also predicted by the RS-Model. The RS-Model is also able to predict the large 

anticyclones which exist in the Gulf of Aden as was reported by previous studies (e.g. 

William et al. 1999).These major features in addition to the previous comparisons reflected 

the predictive capability of the RS-Model.  

 

Accordingly, the validated RS-Model is used to describe the seasonal variability of the 

circulation features and thermohaline structure in the Red Sea. Moreover, the relative 

importance of the main mechanisms in driving the circulation and stratification processes in 

the Red Sea is investigated. For this purpose, the RS-Model was used to conduct a number of 

numerical experiments aimed at determining the role of each mechanism in driving the key 

features of the circulation produced by the RS-Model. The model was also used to investigate 

the involved processes in the hypersaline RSOW outflow formation, the RSDW in the Red 

Sea basin.  

 

Tidal Characteristics in the Red Sea region 

 

The tidal analyses of the available coastal water level measurements showed that the major 

semidiurnal and diurnal constituents that have relatively higher amplitudes are M2, N2, S2 and 

K1 respectively. To describe the tidal characteristics in the region, the RS-Model was set up, 

calibrated and validated in a 2-Dimensional mode. Subsequently, two scenarios of numerical 

simulations were carried out to describe the tidal characteristics in the Red Sea.  In the first 

scenario, separate simulations of each individual constituent to generate Co-tidal and Co-

range charts for the Red Sea region were carried out. The results showed that the dominant 

feature of the M2, N2, and S2 tide is the existence of the amphidromic systems (anti-

clockwise) in the central part of the Red Sea at about 20
°
 N, north the strait of Bab el Mandeb 

at 13.5° N and in the entrance of the Gulf of Suez. The distribution of the co-phase of K1 tide 

showed that only a single anticlockwise amphidromic system exists in the southern part of the 

Red Sea centred around 15.5° N. The amphidromic systems of the semidiurnal and diurnal 

constituents in the strait of Bab el Mandeb suggest that the tides include some characteristics 

of standing waves. Model results of amplitudes and form factor proved that tides in the Red 

Sea are dominated by the major semidiurnal constituents M2, S2, and N2. However, diurnal 

character appeared in the central part of the Red Sea and northern part of the strait. In the 

second scenario, the model was forced on the ocean open boundary with the amplitudes and 

phases of the primary semidiurnal and diurnal constituents (Q1, O1, P1, K1, N2, M2, S2 and K2). 
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The purpose of this simulation was to reproduce the tidal currents that are generated by a 

combination of the primary constituents at moments of extreme conditions, ebb and flood 

phases during spring and neap tidal cycles. The RS-Model results suggest that tidal currents 

in the Red Sea are in general quite weak in the order of 0.1 m/s except near the Red Sea 

entrance where maximum velocity was observed to be up to about 0.5 m/s.  

 

Circulation patterns in the Red Sea 

 

To investigate the three-dimensional circulation features in the Red Sea, three different 

scenarios of numerical simulations consisting of the same model configuration but using 

different combinations of forcing were carried out. The first numerical experiment (scenario-

I) including all the forcing conditions mentioned above is carried out to reproduce the 

circulation processes in the Red Sea region. Scenario-II and Scenario-III consist of the same 

model configuration of scenario-I but using different forcing mechanisms aiming at 

determining the role of each mechanism in driving the key features. To determine the effect 

of wind-stress forcing and its role, a numerical experiment (Scenario-II) was performed 

considering only the thermohaline fluxes. Therefore, no wind is imposed in this scenario. In 

the third numerical experiment (Scenario-III), the surface heat and salt fluxes were removed 

but wind-stress field was included. 

 

The simulation results revealed several interesting features of the circulation in the region. 

The results of the first numerical simulation (scenario-I) indicate that the Red Sea basin 

shares several aspects with other semi-enclosed marginal seas such as the Mediterranean Sea, 

in which the general circulation is a result of combined effect of the wind-driven and 

thermohaline-driven flow, complex measoscale eddy fields and water exchange with the open 

ocean. The seasonal circulation patterns produced by the RS-Model not only confirms some 

of the earlier description in the region but also provides new insights. The major features 

predicted by the RS-Model include the existence of several cyclonic and anticyclonic gyres; 

small eddies as well as intensified boundary currents at both boundaries. The most important 

features are the eddy activities located in the northern part of the Red Sea that contributes 

significantly to the RSOW formation; permanent energetic anticyclonic gyre system in the 

middle Red Sea around (23°N) which extends almost over the entire width of the basin, and 

the stronger seasonality of the flow in the southern part of the Red Sea.  

 

In fact, using both high-resolution model (5km) and high frequency atmospheric conditions, 

yielded some different results compared with the low-resolution (10 km) climatological 

modeling study of Sofianos and Johns (2003). It is worth mentioning that large part of our 

results share three-dimensional analytical models carried for idealized marginal seas (e.g. 

McCreary et al., 1986).  

 

The model results (combined with previous observations and numerical modelling studies) 

suggest that the circulation regime in the southern part of the basin is a robust feature during 

both summer and winter seasons. This is characterized by the existence of a 2-layer 

circulation system (inverse-estuarine) in the winter, which is replaced by a 3-layer exchange 
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flow system at the strait of Bab el Mandeb during the summer months. The effect of the wind 

forcing was observed to be an essential factor in controlling the seasonal variability. This was 

evident in the southern Red Sea where for instance it influences strongly the reversal of the 

surface exchange flow at the strait of Bab el Mandeb.  Furthermore, the model results (shared 

with the previous observations carried out particularly in the northern part of the basin) 

suggest that the existing circulation feature in the northern part is a permanent regime. This is 

represented by the cyclonic eddies in the extreme north of the basin which are driven mainly 

by the thermohaline forcing as shown in the numerical experiment driven only by 

thermohaline fluxes. The simulations suggest also that the surface circulation under combined 

forcing over the winter season consists of alternating cyclones and anticyclones eddies. In 

contrast, the simulation results showed that the surface current field during the summer 

season contains a series of organized energetic eddies with speeds ranging between 0.5 to 1 

m/s. The influence of such eddies was observed to extend to depths exceeding 200 m in some 

parts of the Red Sea basin especially in the extreme north of the basin.  

 

The exchange flow regime at the strait of Bab el Mandeb seems to be not a result of a simple 

linear system of the wind and thermohaline forcing. Although the thermohaline-driven 

experiment (scenario-II) shows major role in driving the flow exchange, the influence of the 

wind forcing cannot be neglected since the final characteristics of the exchange system is 

produced by the interactions of both forcings as revealed in the model. The full cycle of the 

Gulf of Aden intermediate water (GAIW) was studied in order to determine the northern limit 

intrusion inside the Red Sea basin. Consistent with recent observations, the model results 

suggest that the subsurface GAIW layer enters the narrowing land-boundary of the strait and 

banks toward the eastern coast inside the southern part of the Red Sea following a pathway 

mainly along the eastern boundary. The full cycle of the GAIW structure showed that the 

intrusion takes place in June and become stronger gradually in July. A maximum northern 

limit of the intrusion was found to establish in August reaching latitude of 17 °N with current 

velocity of about 0.5 m/s. The northern limit of the subsurface inflow shrinks to the latitude 

of 16°N in September and lasts up to October with the inflow ceasing in November.  

 

Based on additional numerical experiments (separating wind and thermohaline forcing), the 

wind-stress field was observed to be the main mechanism generating the key surface features 

produced by the RS-Model. Major features observed from the numerical experiments 

(scenario-II and scenario-III) are that the thermohaline forcing drive the circulation in the 

extreme northern part cyclonically while the wind-drives the circulation anticycloncally. The 

recent modeling study of Sofianos and Johns (2003) under climatological forcing suggest that 

the wind forcing has less effect on the surface circulation of the Red Sea region and that the 

eddies generation more related to thermohaline forcing. In their thermohaline-driven 

circulation experiment, they found that the mean circulation is in general similar to the 

features of the full forcing experiment. Although in our model the few eddies are mainly 

thermohaline-driven, the effects of the wind field was observed to play a primary role. Our 

model results are in agreement with a conclusion drawn by Clifford et al. (1997). They 

confirmed the importance of the cross-basin component of the wind which produces wind 

stress curl and consequently more eddies. The importance of the wind-stress field is also 



Chapter 8.Conclusion and Recommendations 

 
168 

evident at the southern part of the Red Sea where the winds have their greatest variability and 

become very strong during winter. 

 

Thermohaline structure in the Red Sea 

 

Distributions of horizontal and vertical thermohaline have shown very interesting patterns. 

Horizontal distribution of surface temperature and salinity was observed to be highly 

associated with the wind patterns in the Red Sea. The patterns of the thermohaline structure 

was observed to exhibit strong latitudinal gradients in the surface layers due to the monsoonal 

winds blowing over the region, the strong evaporation component and the flow regime 

existing in the southern part with the Gulf of Aden.  

 

During the winter season, sea surface temperature (SST) horizontally increases from the 

southern part of the basin (just north of Bab el Mandeb) towards the north reaching about 27 

°C at 20°N and above that latitude (20 °N) it tends to decrease gradually towards the northern 

part reaching about 23-24 °C. On the other hand, sea surface salinity (SSS) exhibits gradual 

increase from the southern part 36 psu (near Bab elMandeb Strait) towards the northern part 

where maximum values reach about 40 psu are found at the extreme north. Vertically, the 

mixed layer during the winter extends to150-200 m depth in the northern part while it reduces 

gradually to about100 m in the middle and southern parts of the basin. The thermocline layer 

extends to around 250 m with temperature ~ 22 °C. Salinity on the other hand increases 

gradually with depth reaching its maximum at 40.5 psu. The halocline structure occurs 

between 100-150 m depth with salinity ranging between 38.5 and 39.5 psu particularly in the 

middle and southern part of the Red Sea. 

 

In contrast, the simulation results showed that the entire Red Sea basin becomes very warm 

during the summer season with a meridian gradient over the basin and maximum SST of 

about 33-34 ºC. The major pattern of observed SST is higher on the western boundary than 

the eastern one. Upwelling events were observed to occur along the eastern coastline 

particularly in the middle part of the basin of about 20 °N and north of 23 °N while 

downwelling occurs on the western boundary. Salinity distribution showed an increase of 

salinity gradients from the south towards the northern end of the Red Sea. In the vertical 

direction, the significant role played by the atmospheric forcing variations between the two 

monsoon seasons was clearly observed. The vertical structure during the summer is more 

stratified unlike the winter situation. The mixed layer depth during summer decreases to 

about 30 m in the northern part and to 50 m between 18-16 °N. The depth of thermocline 

layer deepens to 200 m where temperature decreases from 34 °C to become 23-24 °C. In 

terms of salinity, there is an increase in values with depth and the depth gradient is larger in 

the southern Red Sea due to the influence of low salinity water associated with the intrusion 

of Gulf of Aden Intermediate Water (GAIW). Underneath 300 m depth, the Red Sea is filled 

by water of remarkably homogenous temperature; salinity and density of about 21.5-21.6 °C, 

40.5 psu and 28.6 kg m
-3

 respectively.  
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Red Sea Outflow Formation 

 

The involved mechanisms in the RSOW formation, periods and possible locations have been 

investigated. The use of both high-resolution model and high frequency atmospheric forcing 

showed interesting results that are different from the previous model study of Sofianos and 

Johns (2003) particularly regarding the formation period and mechanism involved in the 

formation. Our model suggests that the Red Sea experiences similar processes of formation 

that were observed in the Mediterranean Sea. The simulation suggests that the northern part 

of the Red Sea is the only dominant area for intermediate water formation justified by several 

factors. The simulation showed that the heat loss due to evaporation is significantly higher in 

the northern Red Sea compared with other parts of the Red Sea basin. The presence of 

cyclonic eddies is indicative of precondition for the formation of RSOW where their role is 

represented markedly by a doming of isopycnals towards the surface layers in the northern 

basin which makes the weakly stratified waters exposed to local cooling and evaporation 

processes. It was observed that the strong atmospheric forcing events triggering deep 

convection in the preconditioned area produced three chimneys of mixed dense waters. The 

depth of the convection columns reaches to the level depth where the intermediate water mass 

is found. Maximum convection depth is observed at the level of about 150-200 m. The model 

results suggest that baroclinic instability mechanism plays major role in the formation 

process. The convection events include period of 3-months (January-March) where three 

convective chimneys are formed. The formed RSOW with homogeneous characteristics 

remained below the surface water after convection process ceases. The simulation showed 

also that the formed RSOW is carried away from the formation site by southward currents, 

mainly intensified along the western boundary, generated from the edge of the eddies, and 

also the crossing eastward currents to the western boundary.  

 

8.2 Recommendations 

 

The circulation in the Red Sea presents an interesting challenging subject for oceanographers. 

The model results showed that the circulation in the Red Sea is not simple, and complicated 

on the one hand by the presence of eddies embedded in them, and on the other hand by the 

buoyancy loss which plays a significant role in Red Sea circulation.  

 

The RS-Model simulations have successfully reproduced the basic documented features of 

the seasonal exchange at the strait of Bab el Mandeb as well as the few identified circulation 

features through the previous and recent observational studies inside the Red Sea domain. 

They also provided more insight on the circulation in the Red Sea. However, there are still a 

number of issues that need to be considered for future modelling studies. The validation of 

the model can be improved with measured data. These would include current measurements; 

more water level observations since few available data were used covering the eastern 

boundary of the Red Sea and only one tidal station located on the western coastline of the 

basin. Measurements of temperature and salinity covering the winter time are necessary since 

only summer CTD measurements were found available during this study for validation 

purposes. Furthermore, salinity and temperature time series measurements are also of the 
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most important needs for further validation to check the more reliability of the model on 

temporal scale. Observational evidences without doubt could help further validate the 

performance of the model. Therefore the model can be used for more investigations such as 

the influence of the permanent eddies on the water properties. 

 

The RS-Model results showed many interesting findings that can be used as a guide for future 

observations such as the intermediate water formation and sinking processes places where 

there is still much debate concerning these processes. Such measurements would on the one 

hand verify the model results and on the other hand increase our understanding about the 

hydrodynamic conditions especially the RSOW formation. In addition to that, measurements 

of currents near the boundaries are also necessary since our model as well as previous 

modelling studies highlighted the existence of boundary currents. However, such 

measurements are not an easy task and thus, it needs collaboration with the countries 

surrounding the Red Sea basin. Observations in particular on the export path of the outflow 

along the western boundary to the strait of Bab el Mandeb are needed. 

 

The use of high-frequency atmospheric forcing approach was observed to be quite relevant. 

This was evident in the surface circulation features where the RS-Model showed features 

consistent both in size and magnitude with recent summer observations unlike the previous 

modelling study of Sofianos and Johns (2003) (forced by climatological conditions) showed 

weaker patterns in both size and magnitude. Therefore, more modeling studies using high-

frequency atmospheric forcing should be carried out.  Our simulations also showed that 

combination of wind and thermohaline forcing leads to the generation of maximum current 

speed. Therefore, it is very important inserting both forcing fields for any future numerical 

studies of circulation in the region. 
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Appendix A: Individual terms of the total heat flux equation 

 

Short wave radiation 

The ocean heat flux model calculates the short wave flux based on the geographical position 

and the local time. The incoming shortwave flux at the water surface depends on the 

declin tion  et een the  un  nd the E rth’   urf ce  B  ed on the e   r  eter  the solar 

elevation angle   is calculated. Assuming the incoming short wave solar radiation through a 

clear sky at ground level is 76% of the flux incident at the top of the atmosphere and an 

average solar flux S (the solar constant), the total short wave flux at the surface is calculated 

by: 

 

                        
            

 
         

         
                                                   (4-12)     

 

Long wave radiation 

The sea radiates heat back into the atmosphere at longer wavelength the incident shortwave 

radiation. Part of this long-wave radiation is absorbed and re-emitted by the atmosphere. 

Therefore, the effective long-wave radiation flux     from the sea surface is expressed as 

back radiation from the sea     minus the long-wave atmosphere radiation   . In the ocean 

heat flux model the effective back radiation is calculated as a product of the radiation by a 

black body at sea surface temperature, the emissivity of water, a correction factor for cloud 

cover and the amount of water vapour in the air: 

                         
                      

       [W/m
2
]            (4-13) 

 

In equation (4-13),    is actual vapour pressure formulated as a function of relative humidity 

(    ) and air temperature (  ). 

 

Evaporation heat flux 

Evaporation is a process that takes place at the surface between water and the air. It depends 

on the conditions in the immediate vicinity of the free surface and occurs until the air above 

the sea surface is saturated. The transport of the water vapour into the air proceeds by 

turbulent exchange which depends on the wind velocity.  
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In the ocean heat model, the evaporation flux is calculated using a so-called bulk formula 

which is based on empirical relations. It is assumed that the heat loss of sea water due to 

evaporation depends on the difference between the specific humidity          and the 

specific humidity of saturated air          at a prescribed atmospheric state, the air 

density    , the latent heat of evaporation     , and the entrainment rate f (W): 

                                                          [W/m
2
]                          (4-14) 

       is a wind speed function defined as : 

 

                                                                                                                  (4-15) 

Where: 

    is the wind speed 10 meters above the water surface and    is a dimensionless constant 

called the Dalton number. The Dalton number is an input parameter of the ocean heat flux 

model and is used to tune the magnitude of the evaporative flux.  

 

Convective heat flux 

The ocean heat flux model calculates the convective heat exchange through the water 

atmosphere interface using a bulk formula. It assumes that the heat loss of sea water due to 

convection depends on the entrainment rate     , the temperature difference between the air 

     and the sea      and the heat capacity of the air    : 

                                                   [W/m
2
]                                        (4-16) 

 

       a wind speed function defined as: 

                                                                                                                 (4-17) 

Where: 

    is the wind speed 10 meters above the water surface and    is a dimensionless constant 

called the Stanton number. The Stanton number is an input of the ocean heat flux model and 

is used to calibrate the magnitude of the convective flux. 

 

Vertical Temperature transport 

In Delft3D-Flow, temperature is transported by advective and diffusive processes. Heating 

entering or leaving at the open model boundaries (due to the heat flux at the free surface or 

prescribed transport at the lateral boundaries) is transported to other regions of the model 
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domain by these processes. In Cartesian coordinates the transport equation for temperature 

can be expressed as: 

 

                     
  

  
              

   

   
 

   

   
     

   

   
                           (4-18) 

Where: 

   and    are the horizontal and the vertical eddy diffusivity coefficient, and    is the net 

heat flux calculated by the heat flux model. In Delft3D-Flow system    is defined as 

           . 

    is referred to as the three-dimensional turbulence and is related to the turbulent eddy 

viscosity, which is determined by a turbulent closure model.      represents molecular 

diffusion.  

 

It has been reported by (De Goede et al., 2000), that in strongly stratified flows problems 

appear when using the definition of   . That is, the turbulent eddy diffusivity at the bottom of 

the mixed layer reduces to zero and the vertical mixing reduces only to molecular diffusion. 

This causes too much heat remains trapped in the models top layers. This is physically not 

realistic due to internal wave which cause additional mixing through the interface. There are 

two possible approaches are suggested to account for this process. The first one is a 

background mixing coefficient       can be specified to prescribe a minimum vertical 

diffusivity which account for all unresolved forms of mixing: 

                                                                                                  (4-19) 

 

De Goede et al., (2000) had used a background eddy diffusivity of 7x10
-5

 m
2
/s in modelling 

stratified flow in the North Sea.  

 

The second approach is that the minimum diffusivity can be specified by the Ozmidov length 

scale   , which prescribes mixing caused by internal waves calculated by the Brunt Väisälä 

frequency (it is also known as the buoyancy frequency, since it produces a vertical oscillation 

caused by buoyancy force which induces vertical mixing): 

                                             
  

  

 

  

  
                                          (4-20) 
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Appendix B: Grid Requirements 

 

B-I Grid Resolution of the RS-Model 

 

The final grid resolution chosen based on the sensitivity tests carried out during the 

development procedures. 

 

 

 
Distribution of Grid resolution [m] - RS-Model 

 

B-II Grid Orthogonality of the RS-Model 

 

The order of the orthogonality of a grid is determined by the point centred cosine value. The 

below Figure depicts the orthogonally of the RS-Model grid, it is clear by looking to the scale 

that the values in agreement with the requirements where the values close to zero.  

 

 
                        Distribution of Grid Orthogonality- RS-Model 
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B-III M & N Smoothness of the RS-Model 

 

The factor of smoothness is defined as the ratio between adjacent grid cell lengths. The 

recommended value of smoothness in the area of interest is 1.2. The below Figure shows the 

distribution of  M (left panel) and N (right panel) smoothness in the entire model domain. It is 

obvious that they meet the allowable range as can be seen in the scales.  

 

 

         
 Distribution of Grid smoothness in M-direction-Left and N-direction-Right, RS-Model 
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Appendix C: Sensitivity analysis on Horizontal Eddy Diffusivity 

 

 
Effects of Horizontal Eddy Diffusivity on surface temperature during summer (Jun-

September). 

 

 

 
Effects of Horizontal Eddy Diffusivity on surface salinity during summer (Jun-September). 
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Effects of Horizontal Eddy Diffusivity on surface temperature during winter (December-

March). 

 

 
 

Effects of Horizontal Eddy Diffusivity on surface salinity during winter (December-March). 
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Appendix D: Vertical distribution of Potential Temperature (°C) and Salinity (psu) 

along the main axis of the Red Sea. 

 

 

 
Vertical distribution of simulated potential temperature (°C) on (a) January, (b) April, (c) July 

and (d) October -2008. [Meridional cross-section along the main axis of the Red Sea]. 
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Vertical distribution of simulated salinity field (psu) on (a) January, (b) April, (c) July and (d) 

October -2008. [Meridional cross-section along the main axis of the Red Sea]. 
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