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Abstract

The interannual sea level variability in the tropical Pacific is dominated by El Niño-Southern

Oscillation (ENSO). In recent two decades, the increasing occurrence of Central Pacific ENSO

(CP ENSO) contrasting with the classical Eastern Pacific ENSO (EP ENSO), termed with

respect to the locations of maximum Sea Surface Temperature anomalies (SSTa) during the

mature phase, post new challenges to the prediction of ENSO. In this thesis, the interannual sea

level variations in the tropical Pacific over the time span 1961-2014 are simulated to investigate

the dynamics of ENSO, especially of CP ENSO, using a linear multi-mode model, given the

good agreement of the ENSO-related sea level variations with the linear wave dynamics.

The linear, multi-mode model for the tropical Pacific is derived by fitting the modelled sea

level for multiple vertical modes driven by ERA-Interim monthly wind stress anomalies (named

ERA-I exp.) to satellite measurements along the equator in the satellite era (1993-2014) to

(i) assess the relative importance of the different vertical modes for ENSO-related variability,

and (ii) simulate the sea level throughout the thesis. The results show that the mode 2 is

dominant, although with some role for mode 1 in the western basin, mode 5 in eastern basin

and mode 3 for both regions. The model readily captures the observed ENSO events as well as

the pivot point associated with the so-called "tilt" mode. The pivot point is shifted westward

from the center of the basin because most of the wind stress variance is in the western basin.

A sensitivity experiment only driven by spatially uniform zonal wind stress suggests that the

Sverdrup transport is not fundamental to the recharge/discharge mechanism for EP ENSO,

although the spatial structure of the wind forcing does play a role in setting the amplitude of

the warm water volume.

Sea level anomalies for the period 1961-2002 reconstructed with the NCEP/NCAR and ERA-

40 wind forcing (named NCEP/NCAR exp. and ERA-40 exp.) compare well to tide gauge

records. The sensitivity experiments driven by only the zonal component of the two wind

stress products suggest that a large increasing trend in sea level found in the NCEP/NCAR

exp. rather than in ERA-40 exp. is related to a spurious eastward trend in NCEP/NCAR zonal

wind stress in the eastern-central Pacific. The westward shift of pivot point from the period

1961-2002 to the period 1993-2014 is attributed to a persistent upward trend in the zonal
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Abstract

stress variance along the equator west of 160◦W throughout the period 1961-2014.

The regression of the modelled sea level onto the principal components (PC) of EOFs of

SSTa and the lead/lag correlation between PC1 and PC2 before and after the 1976/77 climate

shift support the view that EOF1 and EOF2 can represent EP ENSO and CP ENSO after the

climate shift. However, little evidence for the occurrence of Central Pacific (CP) events before

the 1976/77 climate shift is found. After the climate shift, the thermocline feedback is found

to increase strongly in the CP (Nino4 region) concurrent with the increasing occurrence of CP

ENSO. This is associated with the increasing Bjerknes feedback there through the westward

shift of pivot point for sea level (and hence thermocline) variations due to the increasing zonal

wind variance in the western Pacific. These arguments imply a positive feedback in which CP

events are self-maintaining and suggest that they may be part of the natural variability of the

climate system and could occur episodically without the need for changes in external forcing.
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Zusammenfassung

Im tropischen Pazifik wird die Auslenkung des Meeresspiegels auf interannualen Zeitskalen

dominiert durch El Niño-Southern Oscillation (ENSO). In den letzten zwei Dekaden hat die

Häufigkeit von Central Pacific ENSO (CP ENSO) Ereignissen im Gegensatz zum klassischen

Eastern Pacific ENSO (EP ENSO), benannt nach den Regionen der größten Anomalie der

Meeresoberflächentemperatur (SSTa), zugenommen, wodurch neue Herausforderungen an die

Vorhersage von ENSO gestellt wurden. Da die Variabilität der Meeresoberflächenauslenkung

im Zusammenhang mit ENSO gut durch lineare Wellendynamik beschrieben werden kann,

sollen in dieser Arbeit die interannualen Schwankungen der Meeresoberflächenauslenkung über

den Zeitraum von 1961 bis 2014 mit Hilfe eines linearen Multi-Moden Modells simuliert werden,

um die Dynamik von ENSO, insbesondere von CP ENSO, zu untersuchen.

Für den tropischen Pazifik ist das lineare Multi-Moden Modell erstellt worden, indem die

modellierten Meeresspiegelschwankungen verschiedener Vertikalmoden, welche durch monatliche

Windschubspannungsanomalien aus ERA-Interim getrieben wurden (ERA-I exp. genannt), an

Satellitenmessungen entlang des Äquators im Zeitraum von 1993 bis 2014 gefitted wurden.

Das Ziel ist (i) die relative Bedeutung der verschiedenen Vertikalmoden für die Variabilität im

Zusammenhang mit ENSO zu bewerten und (ii) die Meeresspiegelschwankungen zu simulieren.

Die Ergebnisse zeigen, dass die zweite Vertikalmode dominiert, jedoch mit Beiträgen der er-

sten Mode im westlichen Becken, der fünften Mode im östlichen Becken und der dritten Mode

auf beiden Seiten des Beckens. Das Modell ist in der Lage, sowohl die beobachteten ENSO

Ereignisse als auch den Drehpunkt wiederzugeben, welcher mit dem so genannten Tilt Mode

zusammenhängt. Der Drehpunkt liegt westlich vom Zentrum des Beckens, da die meiste Var-

ianz in der Windschubspannung im westlichen Becken liegt. Ein Sensitivitätsexperiment, bei

welchem der Antrieb durch räumlich homogene zonale Windschubspannung erfolgt, legt nahe,

dass der Sverdrup Transport nicht von grundlegender Bedeutung für den Recharge/discharge

Mechanismus bei EP ENSO Ereignissen ist, obwohl die räumliche Struktur des Windantriebs

Einfluss auf die Amplitude der Warm Water Volume Mode hat.

Anomalien des Meeresspiegels, welche mit Windantrieb von NCEP/NCAR und ERA-40

rekonstruiert wurden (genannt NCP/NCAR exp. und ERA-40 exp.), stimmen im Zeitraum von
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Zusammenfassung

1961 bis 2002 gut mit Aufzeichnungen von Pegelstationen überein. Senitivitätsexperimente,

welche nur durch die zonale Komponente der zwei Windschubspannungsprodukte angetrieben

werden, legen nahe, dass der Anstieg des Meerespiegels, welcher nur im NCEP/NCAR exp.

nicht jedoch im ERA-40 exp. gefunden wird, im Zusammenhang mit einem künstlichen Anstieg

der ostwärtigen zonalen Windschubspannung in NCEP/NCAR im zentralen Pazifik steht. Die

westwärtige Verschiebung des Drehpunktes vom Zeitraum 1961-2002 und 1993-2014 kann

einem anhaltenden Anstieg der zonalen Windschubspannungsvarianz entlang des Äquators

westlich von 160◦W über den Zeitraum von 1961-2014 zugeschrieben werden.

Eine Regression des modellierten Meeresspiegels auf die Principal Components (PC) der

EOFs der SSTa und die lead/lag Korrelation zwischen PC1 und PC2 vor und nach dem

1976/77 Klimawechsel unterstützen die Ansicht, dass EOF1 und EOF2 EP ENSO und CP

ENSO Ereignisse nach dem Klimawechsel darstellen können. Allerdings konnten vor dem Kli-

mawechsel kaum Zentralpazifik (CP) Ereignisse nachgewiesen werden. Nach dem Klimawech-

sel ist das Thermoklinenfeedback im CP (Nino4 Region) deutlich stärker geworden, zeitgleich

mit dem häufigeren Auftreten von CP ENSO Ereignissen. Dies hängt mit der lokalen Ver-

stärkung des Bjerknes Feedbacks zusammen, ausgelößt durch die Verschiebung des Drehpunk-

tes für Meeresspiegelschwankungen (und damit auch Thermoklinenschwankungen) aufgrund

des Anstiegs der zonalen Windvarianz im westlichen Pazifik. Diese Argumente implizieren ein

positives Feedback in dem CP Ereignisse sich selbst erhalten und es liegt nahe, dass sie Teil der

natürlichen Variabilität des Klimasystem sein können und episodisch auftreten können, ohne

die Notwendigkeit von Veränderungen im äußeren Antrieb.

vi



1 Introduction

The tropical Pacific encompasses about half the circumference of the Earth at the equator, and

it is subject to dramatic climate variability on the interannual timescale, the El Niño-Southern

Oscillation (ENSO) (Philander , 1989; Neelin et al., 1998). Sea level integrates and reflects

multiple climatic and dynamical signals. The influence of anthropogenic forcing on the regional

sea level variability is not detectable over the altimetry era (since 1993 to present) (Meyssignac

et al., 2012). Instead, tropical Pacific sea level variability mostly results from the changes in

temperature in the water column in response to natural perturbations of the climate system,

i.e., ENSO, mainly through changes in wind forcing and in turn ocean circulation (Becker et al.,

2012; Rhein et al., 2013). ENSO is the first climate phenomenon shown to depend essentially

upon ocean-atmosphere coupled dynamics (Bjerknes, 1969) with widespread environmental

impacts both locally and globally due to global teleconnections in the ocean and atmosphere

(Trenberth et al., 1998). Common features of ENSO are well described and understood based

on nearly a half century of studies (see Neelin et al., 1998; McPhaden et al., 1998, and

references therein). In particular, the strong thermocline in the tropics and waveguide in the

equatorial regions enables the simplification of the complex ocean model to a one and a half

layer, shallow water model for the tropical oceans as a first approximation. This simple model

driven by monthly wind stress has potential for hindcasting interannual sea level variability and

associated ENSO events (Busalacchi and O’Brien, 1981; Busalacchi et al., 1983; Busalacchi

and Cane, 1985) as demonstrated in this thesis (Chapter 2).

However, in recent two decades, the increasing occurrence of the Central Pacific El Niño

(McPhaden, 2004) as shown in Figure 1.1 (right panel) with the largest sea surface temper-

ature anomalies (SSTa) in the central Pacific in the mature phase, and the failure for the

predicted 2014 El Niño event to develop (Imada et al., 2016; McGregor et al., 2016), post

new challenges to the prediction of ENSO. Thus, better understanding the event-to-event

difference of ENSO spatial patterns and evolution is important to improve the predictability of

ENSO. The emergence of the Central Pacific El Niño (McPhaden, 2004), in contrast with the

conventional Eastern Pacific El Niño (McPhaden, 1999) as shown in Figure 1.1 (left panel)

with the largest SSTa occur in the eastern Pacific in the mature phase, is an active area of
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Introduction

Figure 1.1: (Left) Monthly sea surface temperature anomalies (SSTa) for December 1997 relative
to the monthly climatology over 1950-1979. From McPhaden (1999). (Right) SSTa (color shading)
and anomalous surface currents (overlaid vectors) for October - December 2002. Reference periods
for SST and surface currents are 1971-2000 and 1993-2001 respectively. From McPhaden (2004).

present-day research due to their significant different global impacts (see Ashok and Yamagata

(2009); Capotondi et al. (2015) and references therein).

In this thesis, a linear, multi-mode model for the tropical Pacific is built to investigate sea

level variability mainly on the interannual timescale (Chapter 2), revisit the recharge/discharge

mechanism (Jin, 1997a,b) for Eastern Pacific ENSO (EP ENSO) with the largest SSTa occur-

ring in the eastern equatorial Pacific in the mature phase (Chapter 2 and 3), and explore the

physical mechanism for Central Pacific ENSO (CP ENSO) with the largest SSTa occurring in

the central equatorial Pacific in the mature phase (Chapter 4). The following sections explain

the motivations of the research in this thesis in detail.

1.1 Sea Level in Tropical Pacific

Sea level variability in the tropical Pacific is of great scientific interest as it is not only felt

by the population on the ocean margins and islands directly but is also a signature of ENSO

events which lead to considerable socioeconomic consequences in the tropics and elsewhere

(Becker et al., 2012).

1.1.1 History of Measurements

Measurements of sea level are the longest-running ocean observation system, with the very

first tide gauge records installed in ports of northwestern Europe to provide information on

ocean tides dating back to the mid-18th century (Meyssignac and Cazenave, 2012). Progres-

sively, motivated by the increasing interest in ENSO events, the Pacific Sea Level Network,

mainly using tide gauges, was established in the mid-1970s (Wyrtki , 1979). This developed

into a central focus of the Tropical Ocean-Global Atmosphere (TOGA) Program started in

1985 aiming to provide the real-time measurements of key oceanographic variables to support
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1.1 Sea Level in Tropical Pacific

seasonal-to-interannual climate studies (McPhaden et al., 1998), and contributing to the Per-

manent Service for Mean Sea Level (PSMSL, http://www.psmsl.org/). In spite of extending

this network, the limitation of tide gauge data in spatial (sparse in situ sites) and temporal

(multi-month- to multi-decade-long gaps) coverage hinders the reliable estimation of historical

mean sea level.

Since the early 1990s, the arrival of remote sensing sea surface by the altimetry installed

on the satellite has efficiently overcome this problem. High-precision satellite altimetry started

with the launch of ERA-1 in 1991 and Topex/Poseidon in 1992 and their successors later on to

measure the absolute sea level variations with respect to a reference ellipsoid that coincides with

the mean shape of the Earth. The sea level data have been processed by Ssalto/Duacs and dis-

tributed by Aviso with support from Cnes (AVISO hereafter, http://www.aviso.altimetry.fr/duacs/).

Tide gauge measurements play an important role in the reconstruction of sea level in the

past. For example, one method of reconstruction is described in Becker et al. (2012). This

method combines sparse but long tide gauge records with shorter global gridded sea level time

series from a ocean general circulation model or from satellite altimeter data by projecting

the tide gauge data onto the spatial patterns of the Empirical Orthogonal Functions (EOFs)

derived from the shorter time series. One thing to note is that there might be an issue if

the shorter time series are too short to include the lower frequency trends or if the spatial

patterns of the EOFs of variability change with time. Takahashi et al. (2011) adopted the

similar method but for sea surface temperature (SST) to study the ENSO diversity which will

be further discussed in Section 1.3.1.

In this thesis, however, a different method to reconstruct the sea level from 1961 to 2002

is developed. That is to build a linear, multi-mode model by fitting the model results to

altimetry measured sea level from 1993 to 2014, which is described in detail in Chapter 2.

Then, the tide gauge records at selected islands are used to validate reconstructed sea level

(Chapter 3). Note that tide gauges measure relative sea level to the seafloor, including vertical

crustal motions and thus the tide gauge records should be used with caution in the validation.

1.1.2 Changes and Causes

Roden (1963), the earliest work on the frequency spectrum of oceanographic and atmospheric

variables in the tropical Pacific, has shown that coherence lengths of sea level variations are

several hundred kilometers and are subject to the wind and current regimes. Since this work,

tropical Pacific sea level changes are often described in the frequency space separately, e.g. the

interannual, decadal, multidecadal variability or long-term trends (Timmermann et al., 2010;
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Introduction

Merrifield , 2011; Zhang and Church, 2012; Becker et al., 2012; Meyssignac et al., 2012; Han

et al., 2014; Forget and Ponte, 2015). Alternative ways to partition sea level variability are

in terms of (i) signals (phenomena of interest) and noises (the other variations), (ii) modes

of variability based on EOF analysis of sea level, (iii) physical processes and (vi) forcing and

response mechanism as provided by Forget and Ponte (2015). What follows is a brief discussion

on the interannual variability and long-term trends in tropical Pacific sea level as well as their

causes.

On the interannual timescale, the sea level variations are associated with ENSO (Becker

et al., 2012). If one performs the EOF analysis for the monthly sea level over time span 1992-

2011 on the global scale (Forget and Ponte, 2015), temporal fluctuations of EOF1 and EOF2

are highly correlated with Nino3.4 index (SSTa averaged between 170◦W–150◦W, 5◦S–5◦N,

representing EP ENSO) and the El Niño Modoki Index (EMI defined by Ashok et al. (2007),

representing CP ENSO) respectively; the spatial patterns in the tropical Pacific display zonal

seesaw in the 10◦S - 10◦N latitudinal band (EOF1) and a monopole centered on the central

equatorial region (EOF2). Sea level trends are not geographically uniform, are predominant in

the western Pacific, and have opposite signs pre-altimetry era compared to the altimetry era

(Timmermann et al., 2010). During the altimetry era, the sea level rise rate in the western

tropical Pacific (over 10 mmyr–1) is about 3 times of global mean value (Timmermann et al.,

2010; Qiu and Chen, 2012).

Roden (1963) noted a strong and direct relation between changes of sea level and of SST at

low frequencies, indicating that the regional sea level variability mostly results from temperature

changes. This has been confirmed by numerous studies as reviewed by Cazenave and Remy

(2011); Meyssignac and Cazenave (2012); Rhein et al. (2013) and a more recent study by

Forget and Ponte (2015). In the tropical Pacific, the interannual variations and trend patterns

of sea level are mostly associated with the changes of ocean temperature through changes in

the ocean circulation mostly driven by wind forcing (Busalacchi and Cane, 1985; Timmermann

et al., 2010). They are not stationary but fluctuate both in space and time in response to

natural climate modes of the ocean-atmosphere coupled system, e.g. ENSO, PDO (Pacific

Decadal Oscillation, see Liu (2012) and references therein).

1.2 Past Perspective: Eastern Pacific ENSO

El Niño, an oceanic interannual climate variability including the warming/cooling of east-

ern/western tropical Pacific Ocean, and the Southern Oscillation, an interannual seesaw in

tropical sea level pressure between the eastern and western hemispheres (Walker , 1923), are
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1.2 Past Perspective: Eastern Pacific ENSO

generated by coupled ocean-atmosphere interactions, first proposed by Bjerknes (1969). As

a result, they are often referred to as El Niño - Southern Oscillation (ENSO) including both

warm and cool phases of this interannual climate mode in the ocean-atmosphere coupled sys-

tem. As mentioned above, due to the different locations of maximum SSTa and associated

atmospheric heating, ENSO events are grouped into EP ENSO (Figure 1.1 left panel) and CP

ENSO (Figure 1.1 right panel) (Yeh et al., 2009). This section provides the overview for EP

ENSO, whereas the next section (Section 1.3) covers CP ENSO.

1.2.1 Description of EP ENSO

In 1970s and early 1980s, despite impressive scientific advances achieved in understanding El

Niño (e.g. Wyrtki , 1975), the extreme 1982/83 El Niño was not recognized until it was well de-

veloped, reflecting the urgent need for improved monitoring, understanding and prediction of El

Niño. As a result, the decade-long (1985-1994) Tropical Ocean - Global Atmosphere (TOGA)

program was implemented to provide real-time measurements of the following oceanographic

variables: sea level, SST, subsurface temperature, ocean currents and surface winds. The

significantly expanded observational database led to fundamental progress in our understand-

ing of the physical processes responsible for ENSO (Section 1.2.2) and to the improvement

of ENSO prediction from coupled ocean-atmosphere models (Neelin et al., 1998; McPhaden

et al., 1998, and references therein).

The characteristics of EP ENSO are documented in many observational studies (e.g. Del-

croix , 1998; McPhaden et al., 1998). Delcroix (1998) reported that, during warm events,

SST is higher than average in the east (Figure 1.1 left panel), sea level increases/decreases

in the east/west with the pivot point in the west, and westerly wind anomalies occur in the

west, confirming the Bjerknes feedback hypothesized by Bjerknes (1969) and introduced in

Section 1.2.3. The signals are most pronounced in the equatorial band. These authors used

the Southern Oscillation Index (SOI) (Wright, 1977) to identify EP ENSO. Alternative indices

for ENSO but based on SSTa are documented in Table 1 of Ashok et al. (2007), among which

the Nino3 index (Trenberth, 1997), spatially averaged SSTa over the Nino3 region (150◦W -

90◦W, 5◦S - 5◦N), is more commonly used for EP ENSO than the aforementioned Nino3.4

index (Yeh et al., 2009).

A very important oceanic variable among those variables mentioned above in the TOGA

program for understanding ENSO is the subsurface temperature, which gives the depth of

thermocline measured by 20◦C isotherm and in turn the Warm Water Volume (WWV) that

goes with EP ENSO and implies the ocean ’memory’ crucial to the periodicity of ENSO

(Wyrtki , 1985; Jin, 1997a; Meinen and McPhaden, 2000). Besides, it is well known that the
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thermocline depth in the tropics is proportional to sea level (Rebert et al., 1985). Therefore

the sea level is usually used as proxy data for the thermocline depth and the zonally integrated

sea level along the equator as the proxy for the WWV in the equatorial Pacific (Wyrtki , 1985;

Clarke, 2010). This is why to focus on the sea level variations in the tropical Pacific in this

thesis (Chapter 2) to revisit the recharge/discharge mechanism for EP ENSO (Jin, 1997a,b)

introduced in Section 1.2.3. The WWV in the equatorial band discharges (recharges) during

the warm (cold) phase of EP ENSO (Jin, 1997a), demonstrated by the observational results

that WWV leads Nino3 index and wind stress by about 7 months (Meinen and McPhaden,

2000).

1.2.2 Key Physical Processes in Tropical Pacific

In the tropical Pacific, the important physical processes in the large-scale ocean-atmosphere

interactions responsible for ENSO (Collins et al., 2010, and references therein) are listed below:

1. Thermal damping (negative feedback). The atmospheric damping of SSTa gen-

erally consists of sensible and latent heat fluxes, and surface short wave radiation and

long wave radiation fluxes.

2. Mean upwelling (negative feedback). The mean upwelling of subsurface cold water

in the eastern equatorial Pacific damps the positive thermal anomaly there, and increases

the climatological zonal temperature gradient along the equator.

3. Thermocline feedback (positive feedback). During El Niño, a flattened equatorial

thermocline (shallower in the east and deeper in the west) leads to a positive SSTa in

the eastern Pacific, through vertical advection of warmer subsurface water by upwelling

in the east.

4. Zonal advective feedback (positive feedback). The anomalous eastward advection

of the mean SST gradient contributes to positive SSTa in the eastern Pacific.

5. Ekman feedback (positive feedback). The anomalous westerly wind stress during

El Niño suppresses the pumping of subsurface cold water upwards.

6. Atmospheric intraseasonal variability (positive feedback). The intraseasonal at-

mospheric disturbances known as westerly wind events induce downwelling Kelvin waves

propagating eastward and deepening the thermocline in the east.

The Bjerknes stability index (Jin et al., 2006) including the first five processes in the frame-

work of the recharge/discharge mechanism by Jin (1997a) (Section 1.2.3) is useful to qual-

itatively estimate ENSO behaviour (Kim and Jin, 2011; Lübbecke and McPhaden, 2014; Im

et al., 2015; Wengel et al., 2017). Three main processes are thermocline feedback, zonal

6



1.2 Past Perspective: Eastern Pacific ENSO

advective feedback and thermal damping since the theoretical works of Hirst (1986) and Jin

and Neelin (1993). In particular, the relative importance the thermocline feedback and zonal

advective feedback in the equatorial Pacific to a large extent determines the main charac-

teristics of ENSO (An and Wang , 2000; Kang et al., 2004; Belmadani et al., 2010; Dewitte

et al., 2013), such as the emergence of CP ENSO in recent two decades as compared to EP

ENSO (Capotondi , 2013; Lübbecke and McPhaden, 2014; Chen and Majda, 2017), a topic

introduced in Section 1.3.2.

1.2.3 Physical Explanations

The growth of EP El Niño (EP La Niña) is supported by the Bjerknes feedback (Bjerknes,

1969) that includes three components (Lübbecke and McPhaden, 2017; Dippe et al., 2017):

(i) the anomalous westerly (easterly) wind stress in the west exciting downwelling (upwelling)

equatorial Kelvin waves that propagate eastward and deepen (elevate) the thermocline in the

east, (ii) the fluctuations of thermocline in the east induce local SSTa, i.e. the thermocline

feedback documented in the previous section, and (iii) the positive (negative) SSTa in the

eastern equatorial Pacific leading to anomalous westerly (easterly) wind to the west. As noted

in Section 1.2.1, the thermocline depth anomalies here are inferred from the variability of sea

level data used in this thesis.

However, the Bjerknes feedback does not help in understanding the osillatory nature of

EP ENSO. What drives the transitions between the warm events and cold events? It is

ultimately associated with the ocean ’memory’ provided by slow ocean adjustment in response

to wind forcing (Neelin et al., 1998). Considering the ocean dynamics, especially wind-forced

or boundary reflected Rossby waves and Kelvin waves, as crucial aspects, four mechanisms have

been proposed: Western Pacific Oscillator (Weisberg and Wang , 1997), Advective-Reflective

Oscillator (Picaut et al., 1997) and the other two as listed below:

1. Delayed Oscillator. Introduced by Suarez and Schopf (1988), the delayed oscillatory

attributes the transition of phase to the reflections of Rossby waves, generated in the

eastern coupling region, off the western boundary.

2. Recharge/Discharge Oscillator (RDO). Wyrtki (1985) first attached the impor-

tance of the buildup (loss) of the WWV in the western Pacific prior to (after) the El

Niño to the ENSO cycle. Based on this idea of recharge/discharge process and the

coupled model of Zebiak and Cane (1987), Jin (1997a) developed the well-known RDO

attributing a transition phase to the recharge/discharge of the upper ocean heat content

or WWV in the entire equatorial Pacific, demonstrated by observations (e.g. Meinen
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and McPhaden (2000, 2001); Bosc and Delcroix (2008)).

An example is the strong 1997/98 El Niño (McPhaden et al., 1998). At least a year before

the onset of this event, there was a build-up of the WWV (depression of thermocline) in

the western equatorial Pacific due to stronger than normal trade winds associated with weak

1995/96 La Niña. The depression of the thermocline propagated eastward leading to a build-

up of basinwide WWV and positive SSTa in the east. Then the Bjerknes feedback begins.

As such, this event is initiated by westerly wind events over the western Pacific and matured

in late 1997 and early 1998, suggesting that the WWV built up over the equatorial basin is

a precursor of El Niño event. On the other hand, during the Bjerknes feedback phase, the

thermocline deepened in the east and shoal in the west. The discharge of the western Pacific

WWV slowly developed into the depletion of the basinwide WWV till the onset of the next La

Niña. Thus the warm water in the equatorial band is built up at the onset of El Niño and lost

to the higher latitudes at the end of El Niño.

Note that the WWV across the equatorial basin (focus of the RDO) provides higher pre-

dictability for EP ENSO than the WWV in the western Pacific (focus of the delayed oscillatory

theory) (Li and Clarke, 1994; Meinen and McPhaden, 2000). The delayed oscillator failed to

predicted the aforementioned extreme 1997/98 EP El Niño for which the westerly wind events

over the western Pacific are important (McPhaden et al., 1998; McPhaden, 1999).

With respect to the RDO theory, however, there remains debate on the source of the

disequllibrium associated with the WWV. Jin (1997a) attibuted the discharge of zonal mean

WWV to the imbalance between the meridional Sverdrup transport and the western boundary

current transport. Bosc and Delcroix (2008) claimed that the equatorial WWV mostly come

from the net convergence and divergence of Ekman and geostrophic meridional transport. On

the other hand, Meinen and McPhaden (2001) found that zonal transport in the equatorial

region is not negligible for the recharge/discharge of WWV. Based on the analytical study by

Clarke (2010), the strong dependence of long Rossby wave speed on latitude and the reflection

of wave energy at ocean boundaries is crucial to the existence of the disequllibrium WWV.

This disagreement leads us to revisit the role of Sverdrup transport in the RDO mechanism in

Chapter 2.

1.3 Present Perspective: Emergence of Central Pacific
ENSO

As mentioned above (Figure 1.1), the SSTa patterns and evolution of events are different during

CP ENSO and EP ENSO. The following subsections introduce the scientific background of

8



1.3 Present Perspective: Emergence of Central Pacific ENSO

CP ENSO.

1.3.1 Description of CP ENSO

Since the late 1970s, ENSO events with SSTa’s in the central Pacific sandwiched by opposite

SSTa in the eastern and western equatorial Pacific have been observed (Ashok et al., 2007). To

identify these events, two indices were constructed: (i) the Trans-Niño Index (TNI, Trenberth

and Stepaniak (2001)) that is normalized SSTa over Nino1+2 region (0◦ - 10◦S, 90◦W -

80◦W) minus those in Nino4 region (5◦N - 5◦S, 160◦E - 150◦W), and (ii) the El Niño Modoki

Index (EMI, Ashok et al. (2007)) that is SST averaged over the central Pacific (165◦E -

140◦W, 10◦S - 10◦N) minus SST averaged over the western Pacific (125◦E - 145◦E, 10◦S -

20◦N) and the eastern Pacific (110◦W - 70◦W, 15◦S - 5◦N). The EMI, in comparison with

the TNI, is used in this thesis by considering the effects of the western tropical Pacific where

the CP ENSO events are triggered (Ashok et al., 2007; McPhaden, 2004).

Take the 2002/03 CP El Niño (McPhaden, 2004) as an example. During the second half of

2002, westerly wind anomalies excited equatorial waves decreasing the zonal SST gradient, and

drove intense eastward currents advecting the western Pacific warm pool to the east of the date

line. During October 2002 - January 2003, this warm event reached its peak phase with largest

(shorted-lived and weak) SSTa’s concentrated in the central (eastern) Pacific (Figure 1.1 right

panel). Unusual easterly wind anomalies confined to the east of 100◦W - 120◦W during this

event occurred along the equator, indicating different patterns of atmospheric convection from

those of EP El Niño (see Figure 2 in Ashok and Yamagata, 2009).

Ashok et al. (2007) noted the resemblance between these SSTa patterns and the EOF2 of

SSTa in the tropical Pacific and the high correlation between EMI and the time series for the

principal component of EOF2 (0.91) after the 1976/77 climate shift (Trenberth et al., 1998).

Therefore they claimed that EOF2 (EOF1) of SSTa represents the CP ENSO (EP ENSO)

mode. However, some studies address the role of the nonlinearity of ENSO in the occurrence

of CP ENSO (Takahashi et al., 2011; Dommenget et al., 2013). This disagreement between

Ashok et al. (2007) and Takahashi et al. (2011) comes from the controversy on the reason

for the regime shift in the lead/lag correlations between the TNI and Nino3.4 index with the

change in sign of the lead/lag relationship found by Trenberth and Stepaniak (2001) associated

with the 1976/77 climate shift (Trenberth et al., 1998). Was the regime shift caused by the

increasing occurrence of CP ENSO or is the regime shift a statistical artifact caused by the

extreme 1982/83 and 1997/98 EP El Niño events? Thus in this thesis, the view of Ashok

et al. (2007) is tested in Chapter 4 by presenting the signature of CP ENSO in a linear ocean

model.
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1.3.2 Physical Explanations

To understand the emergence of CP ENSO, the quantitative evaluation of physical processes

(see Section 1.2.2) is necessary (Capotondi et al., 2015, and references therein). In particular,

the selection of EP ENSO and CP ENSO are to a large extent determined by the relative im-

portance of the thermocline feedback and zonal advective feedback (Section 1.2.2). Figure 1.2

illustrates the relationship of these two processes along the equator, where several features

can be obtained: (i) the thermocline depth in the eastern Pacific is much shallower than that

in the western and central Pacific coincident with high regression coefficients of SSTa onto

thermocline depth anomalies indicating stronger thermocline feedback in the eastern Pacific

(bottom panel), (ii) the zero skewness of SST and the thermocline pivot point both locate at

150◦W, i.e. eastern edge of Nino4 region, (iii) in the Nino4 region, the regression coefficients

of SSTa onto the thermocline depth anomalies are negative, indicating the strong zonal ad-

vective feedback, and (iv) the zero skewness of SST (150◦W) locates to the west of the zero

skewness of thermocline depth (120◦W) due to increased warming by zonal advective feedback

in between.

Figure 1.2: (Bottom) Vertical section of the regression between temperature and thermocline depth
anomalies over 1958–2008. The black thick line indicates the zero contour of the first EOF mode of
temperature anomalies. The blue thick line indicates the mean thermocline depth and the black
thick dashed line indicates the mixed layer depth. The intersection between the black line and the
blue line therefore stands for the position of the thermocline pivot. The non-colored area indicates
where the regression values is below the 95% confidence level. The white contour indicates the
–0.4◦C contour of the dominant EOF of the 7-year low-pass filtered temperature anomalies and
indicates where stratification changes at decadal timescale are the largest. (Top) The skewness of
thermocline depth anomalies (blue line—left scale) and temperature anomalies (red line—right
scale). The vertical dashed lines indicate the position of the zero crossing for SST and themocline
depth. From Dewitte et al. (2013).
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1.4 Modelling ENSO-related Sea Level with Shallow Water Models

The maximum SSTa associated with CP ENSO occurs in the central Pacific where zonal

advective feedback is not negligible (Kang et al., 2004; Belmadani et al., 2010; Hu et al., 2013;

Chen and Majda, 2017; Capotondi et al., 2015, and references therein). However, the role

of thermocline feedback in CP ENSO remains under debate. Yeh et al. (2009) suggest that

a flatten thermocline in the equatorial Pacific due to global warming and resultant increasing

thermocline feedback in the central Pacific contributes to the increasing occurrence of CP

ENSO events. The increased thermocline feedback after the 1976/77 is confirmed by Dewitte

et al. (2013). On the other hand, McPhaden et al. (2011) find the dominant flavor of ENSO

changes from EP ENSO during 1980-1999 to CP ENSO during 2000-2010, concurrent with

a steeper thermocline slope, and conclude that this change is related to the natural decadal

variability. Lübbecke and McPhaden (2014) argue that the cooler background state during

2000-2010 in the central-eastern tropical Pacific led to a westward shift in the ascending branch

of the Walker circulation and smaller zonal wind fetch, which is favorable for CP ENSO and

weakens the thermocline feedback in the central-eastern Pacific. Therefore, the dynamics

governing ENSO diversity and the role of thermocline feedback remains unclear, which will be

explored in Chapter 4.

1.4 Modelling ENSO-related Sea Level with Shallow
Water Models

Sea level variations at ENSO-frequency in the tropical Pacific is almost exclusively baroclinic,

mainly characterized by the wind-forced baroclinic waves (Forget and Ponte, 2015). The ob-

servations also highlight the importance of the oceanic equatorial Kelvin waves and Rossby

waves for ENSO dynamics (e.g. White et al., 1990; Kessler , 1990; Chelton and Schlax , 1996).

Based on the theory of linear wave dynamics (Gill and Clarke, 1974; McCreary , 1981; Gill ,

1982), the wind-driven, large-scale, low-frequency oceanic motion can be separated into an

infinite number of baroclinic vertical normal modes that are eigensolutions of a stratified fluid

linearized about a state of rest. Each vertical normal mode corresponds to a group of shallow

water equations referred to as a shallow water model (SWM). Moon et al. (2004) pointed

out that interannual variations in the relative importance of different vertical wave modes is

important for the predictability of ENSO. Linear SWM’s for the gravest first two baroclinic

modes driven by observed wind stress anomalies are able to produce sea level anomalies com-

parable to observations (Busalacchi and Cane, 1985), outperforming that using only a single

mode (Busalacchi and O’Brien, 1981). The simple SWM’s driven by idealized winds improve

our understanding of the fundamental dynamics of ENSO (Cane and Sarachik , 1981), such as
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the recharge/dischage of the WWV (Clarke, 2010; McGregor et al., 2016). For the prediction

of ENSO, the oceanic SWM was incorporated into the intermediate coupled model of Zebiak

and Cane (1987) which was the first forecast model for ENSO and led to the built-up of the

RDO theory (Jin, 1997a) (Section 1.2.3). Hence, for the purposes of better understanding the

relative importance of vertical baroclinic modes in the interannual variability and those illus-

trated in previous sections, the AVISO sea level data with comprehensively spatial and temporal

coverage as compared to tide gauge records used in previous studies is more favorable to build

a linear, multi-mode model (Chapter 2).

1.5 Scientific Questions Addressed in This Thesis

In this thesis, a linear multi-mode model is built with the help of satellite measured sea level,

driven by ERA-Interim monthly mean wind stress provided by the European Centre for Medium-

Range Weather Forecasts (ECMWF) (Berrisford et al., 2009) to simulate the interannual sea

level variations during the satellite era (1993-2014) in Chapter 2 to answer the following

questions:

• Which vertical baroclinic modes are important for ENSO-related sea level variations in

the tropical Pacific? Does the model capture the characteristics of ENSO (e.g. the pivot

point of sea level)? Is the Sverdrup transport fundamental to the RDO mechanism for

EP ENSO?

This model is then used to reconstruct the sea level variations in the pre-satellite era (1961-

2002) driven by monthly wind anomalies from two popular reanalysis datasets, i.e. the 40-

yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-analysis (ERA-40)

(Kalnay et al., 1996) and the National Center for Environmental Prediction/National Center

for Atmospheric Research (NCEP/NCAR) Reanalysis (Uppala et al., 2005) to answer the

following question in Chapter 3:

• Which wind forcing dataset is more reliable? What are the changes in the characteristics

of ENSO-related sea level variations and their causes, particularly regarding the pivot

point of sea level?

Based on the simulations from Chapter 2 and 3, the following questions are addressed in

Chapter 4:

• Do the EOF1 and EOF2 of SSTa in the tropical Pacific represent EP ENSO and CP

ENSO? What is the role of the thermocline feedback in, and what is the underlying

mechanism for, the emergence of CP ENSO?
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2 Interannual Variability of Tropical
Pacific Sea Level from 1993 to 2014

In this chapter, a linear multi-mode model is built by fitting the model results for multiple

vertical baroclinic modes to the satellite measured sea level over the time span 1993-2014.

As such the important vertical modes and their influences are obtained. In addition, the role

of Sverdrup transport in the recharge/discharge mechanism is explored with the help of the

experiment driven by spatially uniform zonal wind stress.

Citation: Zhu, X., R. J. Greatbatch, and M. Claus (2017), Interannual variability

of tropical pacific sea level from 1993 to 2014, Journal of Geophysical Research:

Oceans, 122 (1), 602–616.

The candidate’s contribution to this publication are as below:

1. Setting up and running of the model

2. Analysis of the model results

3. Preparing and analysis of the observational datasets

4. Production of all figures

5. Contributing to the ideas in the manuscript

6. Drafting the first version of the manuscript
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Abstract A multimode, linear reduced-gravity model, driven by ERA-Interim monthly mean wind stress
anomalies, is used to investigate interannual variability in tropical Pacific sea level as seen in satellite altime-
ter data. The model output is fitted to the altimeter data along the equator, in order to derive the vertical
profile for the model forcing, showing that a signature from modes higher than mode 6 cannot be extracted
from the altimeter data. It is shown that the model has considerable skill at capturing interannual sea level
variability both on and off the equator. The correlation between modeled and satellite-derived sea level
data exceeds 0.8 over a wide range of longitudes along the equator and readily captures the observed
ENSO events. Overall, the combination of the first, second, third, and fifth modes can provide a robust
estimate of the interannual sea level variability, the second mode being dominant. A remarkable feature of
both the model and the altimeter data is the presence of a pivot point in the western Pacific on the equator.
We show that the westward displacement of the pivot point from the center of the basin is strongly influ-
enced by the fact that most of the wind stress variance is found in the western part of the basin. We also
show that the Sverdrup transport is not fundamental to the dynamics of the recharge/discharge mechanism
in our model, although the spatial structure of the wind forcing does play a role in setting the amplitude of
the ‘‘warm water volume.’’

1. Introduction

More than 40 years ago, interannual sea level variability in the tropical Pacific was being studied using line-
ar, reduced-gravity models driven by estimates of the observed surface wind stress [Busalacchi and O’Brien,
1981; Busalacchi et al., 1983]. At that time, the only available sea level data were from the sparse tide gauge
record. However, with the advent of satellite data, there has been a revolution in the available data cover-
age for sea level. Here, we revisit the ability of linear models to capture interannual variability in tropical
Pacific sea level, this time using a multimode modeling system and taking advantage of the temporally and
spatially comprehensive altimetric sea level data produced by Ssalto/Duacs and distributed by Aviso with
support from Cnes (http://www.aviso.altimetry.fr/duacs/).

In the tropical Pacific, interannual variability is dominated by the El Ni~no-Southern Oscillation (ENSO) phenom-
enum, with widespread environmental impacts locally, but also around the world due to the global telecon-
nections in the ocean and the atmosphere [Philander, 1989; Trenberth et al., 1998]. Observational studies [e.g.,
Delcroix, 1998; Forget and Ponte, 2015] have shown that sea level variations associated with ENSO feature an
east-west contrast along the equator and zonally uniform anomalies near the equator. These features are also
captured by analytical solutions for the linear response of the tropical Pacific Ocean to low-frequency wind
forcing [Clarke, 2010], where they correspond to what Clarke calls the ‘‘tilt’’ mode and ‘‘equatorial warm water
volume (WWV)’’, respectively (see Meinen and McPhaden [2000] and Meinen and McPhaden [2001] for an early
discussion of these modes). According to Clarke [2010], the tilt mode is a quasi-steady response to wind forc-
ing that varies in phase with the wind stress forcing, that is, the balance of the zonal wind stress by the zonal
pressure gradient; however, the WWV mode lags the wind stress due to the strong dependence of the west-
ward propagation speed for long Rossby waves on latitude. The phase lag is a key feature of the recharge/dis-
charge mechanism for ENSO [Jin, 1997] as reviewed by Neelin et al. [1998].

The early studies in the 1970s and 1980s suggested an important role for Kelvin and Rossby waves in the
dynamics of the tropical oceans and, indeed, in the dynamics of ENSO. Recent work has confirmed that the
interannual variability of sea level at low latitudes is almost exclusively baroclinic in origin [Forget and Ponte,
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2015]. Large-scale, low-frequency (interannual) oceanic motion can be separated into an infinite number of
baroclinic vertical normal modes [Gill and Clarke, 1974; Gill, 1982], of which the first few modes usually dom-
inate. Moon et al. [2004] claimed that interannual variations in the relative importance of different vertical
wave modes is important for the predictability of ENSO and Dewitte et al. [1999] analyzed the contributions
of the first four baroclinic modes to sea level variability for the period 1985–1994 using an ocean general
circulation model. The authors found that the first mode is most dominant in the western Pacific and the
second mode in the eastern Pacific. Other authors have also noted the dominance of the first and second
modes [Cane, 1984; Busalacchi and Cane, 1985; Yu and McPhaden, 1999; McPhaden and Yu, 1999].

Nevertheless, the relative importance of the different vertical modes is still not adequately explored. To pro-
vide more information about the relative importance of the different baroclinic modes for explaining the
interannual variability of sea level in the tropical Pacific Ocean, we conduct simulations using a multimode
modeling system. We assign the weighting to each mode with the help of altimeter data without assuming,
a priori, the vertical profile in the ocean for the wind-induced forcing, different from previous studies [Gill
and Clarke, 1974; Cane, 1984; Dewitte et al., 1999]. In particular, we fit the model results to the altimetric
measurements along the equator in order to diagnose the projection coefficients for each mode for the ver-
tical profile of the model forcing.

Clarke [2010] argues that the origin of the disequilibrium WWV mode is the strong dependence of the prop-
agation speed for long Rossby waves on latitude. On the other hand, in the original recharge/discharge the-
ory put forward by Jin [1997], an important role was assigned to the Sverdrup transport for transferring
mass to and from the equator. We address the role of the Sverdrup transport in our model using spatially
uniform wind stress forcing given by the time series of the zonally averaged zonal wind stress along the
equator, for which the Sverdrup transport is zero.

The paper is organized as follows. The description of the model and the methods employed are outlined in
the section 2. Section 3 shows the results and discusses the recharge/discharge mechanism using the mod-
el. Finally, section 4 summarizes the main conclusions.

2. Methods

2.1. Basic Equations
Our starting point is the Boussinesq, hydrostatic equations for a continuously stratified ocean linearized
about a state of rest. In spherical coordinates, these are given by
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where h is latitude, k is longitude, a is the radius of the Earth, f 52Xsin h is the Coriolis parameter, g is the
gravitational acceleration, qo a representative density for sea water, u, v, w are the velocity components in
the eastward, northward, and vertically upward directions, respectively, q0 is the density perturbation, p0 is
the pressure perturbation, (sx

s ; sy
s ) is the surface wind stress treated as a body force with a vertical structure

G(z), HE is a depth scale for the surface Ekman layer (here independent of both space and time), and Fu, Fv is
the lateral mixing of momentum with horizontal eddy viscosity coefficient, Ah, given by

Fuðu; vÞ5 Ah

a2

1
cos 2h

@2u

@k2 1
1

cos h
@

@h
cos h

@u
@h

� �
1u 12tan 2h
� �

2
2sin h
cos 2h

@v
@k

� �
(6)

Journal of Geophysical Research: Oceans 10.1002/2016JC012347

ZHU ET AL. TROPICAL PACIFIC SEA LEVEL VARIABILITY 603

15



Fvðu; vÞ5 Ah
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The boundary conditions are, at the surface z 5 0,

p05qogg and w5
@g
@t

(8)

where g denotes the sea level anomaly, and at the bottom z52H, w 5 0, where H is the total depth of the
ocean (assumed here to be flat).

As is well known, the solution to these equations can be expressed as the superposition of a infinite discrete
set of vertical normal modes [Gill and Clarke, 1974; Gill, 1982], so that the pressure perturbation p0, for exam-
ple, can be expressed as
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where the subscript n refers to the nth normal mode, p̂nðzÞ denotes the corresponding normalized vertical
structure function for pressure satisfying
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vertical mode is obtained by solving the shallow water equations
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Here repeated variables are consistent with those in equations (1–5), except for the subscript n referring
to the nth normal mode, Hn is the equivalent depth determined by the wave speed cn5

ffiffiffiffiffiffiffiffi
gHn
p

, and Gn5Ð 0
2H GðzÞp̂nðzÞdz is the wind forcing profile projection factor. The sea surface height anomaly, which is to

be compared to that from the satellite altimeter, is then given by

g5
X1
n51

p̂nð0Þgnðk; h; tÞ: (13)

Here, we do not specify the vertical profile of the wind forcing, G(z), a priori and first solve these equations
with Gn51 to obtain a corresponding field for gn which we denoted as g�n, excluding the barotropic mode
(n 5 0). We then make a least squares fit of the model-computed sea level anomalies to the sea level anom-
alies from the altimeter data. The fit is carried out along the equator across the whole of the equatorial
Pacific, to obtain fitting coefficients cn for each mode. The model-computed sea level is then given by

g5
XN

n51

cnp̂nð0Þg�nðk; h; tÞ (14)

where N is the number of modes used for the fit. The implied projection coefficients, Gn are given by

Gn5cn (15)

and the vertical profile for the wind forcing can then be obtained from

GðzÞ5
XN

n51

p̂nðzÞcn: (16)

2.2. Model Setup
The model domain extends from 112�E to 70�W zonally and from 12�S to 18�N meridionally, similar to that
of Busalacchi and O’Brien [1981], with the 300 m isobath taken as the coastline, and the horizontal resolution
is 0:5� in latitude and longitude. The eastern/western boundaries are treated as solid walls. Sponge layers,
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damping the velocity field only, with e-folding scale of 5� in latitude, are applied to the northern and south-
ern boundaries to eliminate wave propagation along those boundaries. The scale depth HE is chosen to be
300 m and the eddy viscosity coefficient Ah is 5000 m2 s21 everywhere (For this choice of lateral eddy vis-
cosity, the damping time scale for a mode with gravity wave speed c 5 1 m s21 is comparable to that
implied by the model of McCreary [1981] using vertical mixing. Here we have used the equatorial radius of
deformation for the length scale to derive the damping time scale for the lateral mixing. The similarity
between the two damping time scales shows that the damping we use here is similar to that implied by the
McCreary model). Monthly mean wind stress anomalies from January 1979 to September 2014 are used to
force the model. Anomalies are computed relative to the climatological monthly mean for each month for
the period 1993–2012 and are derived from ERA-interim monthly mean wind stress provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF) [Berrisford et al., 2009]. The satellite measured sea level
anomalies from January 1993 to September 2014 are those produced by Ssalto/Duacs and distributed by
Aviso with support from Cnes (http://www.aviso.altimetry.fr/duacs/).

To derive the vertical normal modes, the vertical profile of the buoyancy frequency is first calculated within
the region occupied by the model domain using the temperature and salinity data from the World Ocean
Atlas 2013 data set [Locarnini et al., 2013]. The resulting profiles are then averaged to produce an averaged
buoyancy frequency profile within the model domain. The averaged buoyancy frequency profile is then
used to compute the vertical modes. The resulting wave speeds of the first five baroclinic modes are 2.88,
1.72, 1.10, 0.82, and 0.67 m s21, respectively, and the corresponding vertical structure functions, p̂nðzÞ, are
shown in Figure 1a. The horizontal resolution of 0:5� in latitude and longitude is sufficient to resolve the

equatorial baroclinic Rossby radius of deformation
ffiffi
c
b

q
for the selected normal modes, where b is the latitu-

dinal gradient of the Coriolis parameter given by b5
2XcosðhÞ

a .

Two additional model experiments are carried out using exactly the same setup as above. In the first
(referred to as experiment ZMW), the meridional wind stress is set to zero and the zonal wind stress is spa-
tially uniform over the model domain. In this experiment, the zonal wind stress is given by the time series
of the zonal average along the equator of the zonal wind stress anomalies from the standard experiment;
that is from ERA-Interim. In the second, the meridional wind stress is again zero but the zonal wind stress is
given by the time series of the zonal mean zonal wind stress at each latitude (referred to as experiment
LatZM). The vertical profile for the model forcing in both these experiments is the same as in the standard
run. In experiment ZMW, because the wind stress is spatially uniform, the Sverdrup transport is zero.

3. Results

As described in section 2, the vertical structure of the wind forcing profile, given by G(z) in equations (1)
and (2), is deduced from the model solution by fitting monthly mean anomalies of the model sea level to
the AVISO data along the equator. The coefficients Gn (see equations (15) and (16)) obtained from the fit-
ting, and using increasing numbers of vertical modes, are shown in Table 1. It is clear that the weighting
assigned to modes 1 and 2 is quite stable once three or more modes are used. However, increasing the
number of modes from 4 to 5 reduces the weighting given to mode 4 and puts more weight into modes 3
and 5. Adding a sixth mode does not change this picture but using seven modes or more leads to the
appearance of large weightings that largely cancel out. This behavior is an indication that beyond mode 6,
it is no longer possible to separate the signature of the modes in the AVISO data. Equation (16) can be used
to construct the wind forcing profile, as shown in Figure 1b when using five modes and when using four
and six modes in Figure 1c. In all cases, the profile is strongly surface intensified, as one would expect, but
with a clear improvement in going from four to five or six modes. Note, in particular, the reduced amplitude
below 200 m depth when using five or six modes and also that there is little change in going from five to
six modes. Clearly, further reducing the amplitude below 200 m depth would require an accurate estimate
of cn for modes higher than 6, something that is not possible through fitting our model solutions to the
altimeter data. Since adding the sixth mode makes very little contribution to our results (the coefficient c6 is
close to zero) we work with five modes in what follows.

Before leaving Table 1, it is worth commenting on the weighting when using five modes. Note, in particular,
the dominance of mode 2 but also that some role is given to mode 3, followed by modes 1 and 5, with the
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smallest weighting being given to mode 4. These weightings assign the amplitude that is given to the forc-
ing for each mode in equations (10) and (11), with Gn5cn (equation (15)). It is, therefore, no surprise that
the second mode dominates our results, although with some role for modes 1, 3, and 5, as we shall see.
There are two reasons for favoring mode 5 over mode 4. The first is the consistency between the weightings
attached to each mode when going from five to six modes to make the fit (see Table 1). The second is the
improved vertical structure of the wind forcing profile shown in Figure 1 when using five or six modes as
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Figure 1. (a) The vertical structure functions, p̂ n , for modes 1–5. (b) The wind stress profile, G(z), obtained using five modes. (c) Same as Figure 1b but using four (red line) and six modes
(blue line).

Table 1. Projection Coefficients Gn (Unit: m1/2) Obtained by the Fitting When Using Different Numbers of Modes

G1 G2 G3 G4 G5 G6 G7 G8 G9

Two modes 7.07 29.73
Three modes 7.85 16.01 28.00
Four modes 7.96 18.66 10.25 17.73
Five modes 7.76 18.48 14.91 4.25 9.36
Six modes 7.76 18.48 14.92 4.15 9.54 20.13
Seven modes 7.58 18.30 16.45 21.66 33.98 249.09 31.41
Eight modes 7.54 18.40 16.12 21.59 36.42 264.39 62.43 217.15
Nine modes 7.71 19.26 13.07 3.79 18.12 4.11 2164.94 317.01 2178.16
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distinct from four modes, a point already
noted above. Nevertheless, whether or not
the fitting is really able to distinguish
between the fourth and fifth modes is a
moot point, given that the difference in the
gravity wave speeds for the two modes is
only 0.15 m s21. Another concern is the
impact of the mean flow on the modes, an
issue discussed by McPhaden et al. [1986]
who note that the higher the mode, the

more likely is an impact from the background flow. On the other hand, as shown by Brandt et al. [2016],
mode 4 plays a role in the annual cycle of the equatorial Atlantic and is well represented by dynamics line-
arized about a state of rest. Regarding the dominance of mode 2 in the tropical ocean, this was already
pointed out by Philander and Pacanowski [1980] and is discussed in detail there. We believe the difference
between our results and previous studies, in particular Cane [1984], Busalacchi and Cane [1985], Yu and
McPhaden [1999], and McPhaden and Yu [1999], is that we do not assume a vertical structure for the model
forcing a priori, rather determining it by fitting the model to the AVISO data. We note that the common
practice in previous studies, for example, Cane [1984], has been to assume that the vertical structure func-
tion G(z) in equations (1) and (2) is equal to HE=D over a surface Ekman layer of depth D and is zero below.
Table 2 shows the projection coefficients Gn in this case for different choices of the depth D. These projec-
tion coefficients can be compared directly to those shown in Table 1. It is immediately apparent that the
first mode now has a similar weight to that given to the second mode and also that less weight is given to
the higher modes (apart from the case with the shallowest D, i.e., D 5 50m), consistent with the relative
weightings of the modes found in previous studies. The different weightings given to the modes in our
case therefore follows directly from the freedom we give our model to determine the vertical structure
function G(z) by fitting to the altimeter data. It is also interesting to note that if the depth D were to vary in
time (as one would expect in a more realistic model), then one would expect the transition at the base of
the Ekman layer to be smoothed out and look something like our derived vertical profile shown in Figure 1.

The Hovmoeller diagrams of monthly mean sea level anomalies along the equator (Figure 2c) and higher lati-
tudes (Figure 3b) exhibit remarkably similar patterns as those seen in the altimetric observations (Figures 2b
and 3a), illustrating the practical value of regarding the wind forcing as the null hypothesis for the origin of
interannual sea level variability over the tropical Pacific. In particular, the model successfully captures the
ENSO events of various strengths and flavors, including both conventional El Ni~no (97/98, 06/07, 09/10) and
Modoki El Ni~no (94/95, 02/03, 04/05, i.e., positive anomalous sea levels do not extend to the eastern bound-
aries) [Ashok et al., 2007] events as well as the 95/96, 98/99, 07/08, 10/11 La Ni~na events. Along the equator
(Figures 2b and 2c), El Ni~no events are featured by positive anomalous sea level in the east and negative in
the west, and vice versa during La Ni~na events. The features, especially during the strong 97/98 El Ni~no and
98/99 La Ni~na, extend to other latitudes (Figures 3a and 3b), by means of Kelvin wave propagation along the
eastern boundary and subsequent Rossby wave propagation into the basin interior. This is in accordance with
inferences from the observed surface dynamic height anomaly made, for example, by Delcroix [1998].

In contrast to the typically eastward propagation along the equator (Figure 2), events away from the equa-
tor generally propagate westward (Figure 3). The propagation speeds along 10�S, 5�S, 5�N, and 10�N in the
model (Figure 3b) are comparable to those in the observations (Figure 3a), although at 15�N, the modeled
propagation speeds seem higher, even though many of the same events are seen in both the observations
and the model. A notable feature of both the model and the observations is an underlying symmetry about
the equator, which though not perfect, reflects the importance of the equatorial regions for generating off-
equatorial anomalies, be that by direct wind forcing or by wave propagation processes, as described above.

Another notable feature along the equator (Figure 2) is the presence of a pivot point in the western equato-
rial Pacific where anomalies tend to change sign and the variability is notably reduced. The pivot point
tends to be further west in the observations than in the model, no doubt reflecting processes missing from
our linear model set-up (e.g., zonal advection processes along the equator that are known to be important
in the western, central Pacific [e.g., Dewitte et al., 2013]). Comparing Figures 2c and 2e, it is clear that the
spatial structure of the wind forcing matters for the location of the pivot point. In the Figure 2e, the wind

Table 2. Projection Coefficients Gn (Unit: m1/2) When Specifying the
Vertical Profile G(z) Given by GðzÞ5HE=D Over a Surface Ekman Layer of
Depth D and G(z) 5 0 Below

D G1 G2 G3 G4 G5 G6

50 m 18.63 19.88 13.24 12.71 13.23 11.81
100 m 18.41 18.39 10.48 7.92 5.90 2.98
150 m 16.54 14.92 6.41 2.51 20.55 22.64
200 m 15.34 11.87 2.76 21.47 23.66 23.23
250 m 14.24 9.21 0.08 23.44 23.82 21.31
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forcing is purely zonal and spatially uniform and is given by the time series of the zonal mean of the anoma-
lous zonal wind stress along the equator shown in Figure 2d. While it is notable that this experiment cap-
tures the same events as the standard experiment (Figure 2b), the pivot point in this experiment is less
distinct and is shifted eastward. Looking at Figure 2a, we can see that in reality, most of the variability in the
zonal wind stress along the equator is found in the western part of the basin. If the wind stress anomalies
are always close to being in equilibrium with the anomalous zonal gradient of sea level along the equator,
as implied by the ‘‘tilt’’ mode of Clarke [2010], then we would expect the pivot point to the shifted westward
in Figure 2c compared to Figure 2e so that it coincides with the region where the variability in the zonal
wind stress is highest. That the pivot point tends to be shifted westward from the center of the basin even
in Figure 2e is an indication that the recharge/discharge mechanism is operating in our model, an issue dis-
cussed further later.
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Figure 2. Hovmoeller diagrams along the equator for (a) the zonal wind stress from ERA-Interim used to drive the standard model and (d) the zonal mean zonal wind stress. Also shown
are monthly mean sea level anomalies along the equator for (b) AVISO, (c) the multimode model (standard version), (e) the model when driven by the time series of zonal mean zonal
wind stress along the equator (shown in Figure 2d), and zero meridional wind stress (experiment ZMW). Units are Nm22 for wind stress and centimeters for sea level.
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Figure 4 shows the contribution to model sea level from each of the five modes. The dominance of the sec-
ond mode is immediately apparent. Modes 3 and 5, nevertheless, have a role to play; this can be seen most
clearly during the major El Ni~no events of 1997/1998 and 2009/2010, the largest amplitude events in the
wind forcing time series. The same conclusion applies if we redraw Figure 4, but this time for the model run
shown in Figure 2e that uses spatially uniform wind stress (not shown), implying that the spatial structure
of the wind stress is not important for determining the role played by the different modes along the equa-
tor. The importance of the second mode is also seen in Figure 5 where the standard deviation of the sea
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Figure 3. Hovmoeller diagrams of sea level anomalies along 108S, 58S, 58N, 108N, and 158N from (a) AVISO and (b) the standard version of the multimode model. Units are centimeters.
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level variability associated with each model is plotted (note the different scale used for the plots for
individual modes). Some role for mode 1 is apparent in the western Pacific, for mode 3 in both the west-
ern and eastern Pacific and for mode 5 in the eastern Pacific. The dominance of mode 2, even in the
western Pacific, is in contrast to the findings of Dewitte et al. [1999] that mode 1 was, if anything, slightly
more important that mode 2 in the west in their model study covering the period 1985–1994 (see also
Doi et al. [2010] who make a similar claim). Comparing the full, multimode model with the AVISO data, it
is clear that the amplitude of the variability captured by the model is similar to that seen in the observa-
tions in the equatorial region and to some extent off the equator near the western and eastern bound-
aries, especially in the west. However, it is also clear that the model lacks variability in off-equatorial
latitudes, one possible reason being the lack of tropical instability waves in the model. Nevertheless, as
we noted when discussing Figure 3, many of the events present in the AVISO data are also present in
the model.

Figure 6 shows the correlation between the model results and altimetric measurements. It should be noted
that a high correlation does not necessarily imply good model performance since correlation contains no
information about amplitude, something that should be borne in mind when interpreting the figure. In partic-
ular, mode 4 explains little amplitude (Figure 5) but still shows skill with correlation comparable to mode 3.
The multimode model (Figure 6a) nevertheless shows high correlations exceeding 0.7 (red coloring) over
wide regions, especially near the western and eastern boundaries as well as along the equator where correla-
tions widely exceed 0.8. A notable exception is the reduced correlation near the date line along the equator
that arises from the misplacement of the pivot point in the model, noted when discussing Figure 2. There is
clearly a related band of reduced correlation that extends eastward from the date line as one moves off the
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Figure 4. Hovmoeller diagrams along the equator for the contribution to sea level from modes 1–5 in the standard model run. Units are centimeters.
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equator that is suggestive of a discrepancy between the Rossby wave propagation speeds in the model and
the observations, although how this is linked to the reduced correlation on the equator is not clear. This is
also the region where the amplitude in the model is low compared to that in AVISO (Figure 5) suggesting the
role of processes missing from the model. The longitudinal structure of the correlation along the equator
resembles the results from the ocean general circulation model in Dewitte et al. [1999] (see their Figure 6),
despite the fact the phase speed for each mode is zonally uniform in our model and we are comparing our
model sea level anomalies to observations, not to sea level from a model as they are doing. Indeed, it is an
interesting point that our model, which uses zonally uniform gravity wave speeds for each mode, shows con-
siderable success at the equator despite the along-equator variations in the gravity wave speeds derived from
a normal mode analysis noted by Picaut and Sombardier [1993] and also by Dewitte et al. [1999]. Interestingly,
Dewitte et al. [1999] note a drop in the wave speed associated with the baroclinic modes in their model just to
the west of the date line (see their Figure 7b). Such a drop in wave speed may be a factor in the misplacement
of the pivot point in our model and suggests a role for physical processes other than linear wave dynamics.
As noted earlier, a possible candidate is zonal advection which is known to play a role in the western-central
Pacific [Dewitte et al., 2013]. Advective processes may also play a role off the equator.
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The correlation maps for each individual mode are shown in Figures 6b–6f. It is clear that, overall, the multi-
model (Figure 6a) shows better performance compared to any single mode, although mode 1 shows generally
higher correlations between 5�N and 10�N. Once again, the second mode comes closest to the performance
of the multimode model. Overall, the first two modes show the best performance among the modes in the
off-equatorial Pacific (poleward of 5�N/S), whereas the higher modes show high correlation in the equatorial
region (5�S–5�N) where modes 3 and 5, in particular, have a role to play, as we noted when discussing Figures
4 and 5. The phase in the eastern equatorial Pacific is almost exclusively affected by mode 2, with modes 1, 4,
and 5 playing relatively little role there, while in the west mode 1 becomes more prominent. In the central
equatorial Pacific, the correlation maxima slightly shift westward when going from lower to higher modes pre-
sumably related to the slower wave propagation speeds and the greater importance of local wind forcing.

Finally, we can examine the recharge/discharge mechanism [Jin, 1997] using our model (see Neelin et al.
[1998] for a review including discussion of the recharge/discharge mechanism). As noted earlier, Clarke
[2010] characterizes interannual equatorial variability, such as associated with ENSO, with what he calls the
‘‘tilt’’’ mode, in which the thermocline is tilted along the equator in quasi-equilibrium with the zonal wind
forcing, and the warm water volume (WWV) associated with a net upward or downward displacement of
the thermocline along the equator. Clarke [2010] argues that the existence of the WWV depends critically
on the variation of the propagation speed for long Rossby waves with latitude and is not related to meridio-
nal divergence of the flow due to the wind forcing, as suggested, for example, in the original paper by Jin
[1997] where an important role is assigned to the Sverdrup transport. We can investigate these modes in
our model by looking at the correlation (see Figure 7) between �g, the zonal mean sea level along the equa-
tor, and the zonal mean of the zonal wind stress along the equator (referred to as sx hereafter) shown in
Figure 2d. Here, �g is the signature of the WWV volume, being positive/negative when there is a greater vol-
ume of warm/cold water along the equator than in the mean.

First, Figure 7a shows the autocorrelation of sx indicating a weak tendency for oscillatory behavior with
period of about 54 months (�4.5 years) (the dashed blue lines, here, and also in Figures 7b and 7c indicate
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the 95% significance level). As can be seen from Figure 7b, the correlation between sx and �g from the stan-
dard multimode model agrees well with that from AVISO. The maximum negative correlation occurs at
about 12 months after the peak in the zonal mean zonal wind stress, implying that the WWV lags sx by
about 1 year or about a quarter cycle of the wind forcing after the wind stress maximum, in agreement with
Clarke [2010]. In other words, roughly 1 year after a maximum in the eastward wind stress anomaly along
the equator, the volume of warm water along the equator reaches a minimum, similar to what is shown in
the schematic of Jin [1997], his Figure 1. For individual modes (Figure 7c), the WWV of modes 1–5 lag sx by
about 5, 9, 14, 18 months, and around 20 months (noting that there is no distinct minimum for mode 5),
respectively. The increasing lag with mode number is an indication of the reduced wave speeds associated
with the higher modes and, in particular, the reduced off-equatorial Rossby wave speeds leading to a slower
off-equatorial adjustment, consistent with Clarke [2010]. Different from Figure 1 in Jin [1997] is the positive
correlation at lag 0 that arises when using sea level from both the multimode model and the AVISO data. It
is this positive correlation that has a tendency to shift the pivot point, noted when discussing Figure 2, to
the west. Assuming that the thermocline slope along the equator is always in equilibrium with the zonal
wind stress [see Clarke, 2010], then when the anomalous zonal mean zonal wind stress is eastward (west-
ward), the thermocline will be relatively deep in the east (west) and shallow in the west (east). However, the
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zero crossing, that is, the pivot point, will be shifted westward from the center of the basin because the
anomalous zonal mean thermocline depth is simultaneously displaced downward (upward). Nevertheless,
as we noted earlier, this effect seems to be less important than the presence of maximum wind stress vari-
ability along the equator in the west. Looking at the individual modes, this positive correlation increases
with mode number and for mode 1, is quite weak with the peak positive correlation actually occurring
about 4 months before the maximum in zonal mean zonal wind stress. Again, this behavior is an indication
of the reduction in the speed of the adjustment process as the mode number increases.

The sensitivity of the recharge/discharge mechanism to the spatial structure of the wind forcing is illustrat-
ed by the results of experiment ZMW that uses a spatially uniform zonal wind stress given by the time series
of sx , shown in the Figure 2d, and zero meridional wind stress (see Figure 2e). Figure 7b shows that the cor-
relation between sx and �g from this experiment is very little changed from that in the standard experiment
showing that the basic dynamics of the recharge/discharge mechanism is not affected in our model by the
spatial structure of the wind forcing. Since the Sverdrup transport is zero in this experiment (since the curl
of the wind stress is zero), it follows immediately that the recharge/discharge mechanism in our model
does not fundamentally depend on the Sverdrup transport, as in the original theory of Jin [1997]. Rather
our results are consistent with the conclusion of Clarke [2010] concerning the variation of the long Rossby
wave speed with latitude, especially given the lag dependence on mode number noted when discussing
Figure 7c.

The spatial structure of the wind stress, nevertheless, does matter for the amplitude of the WWV along the
equator. This is illustrated in Figure 8 showing the time series of the modeled zonal mean sea level along
the equator (corresponding to the WWV) compared to AVISO data. We first note that the amplitude cap-
tured by the standard model (labeled CTRL) is generally less than that seen in AVISO, although still a signifi-
cant fraction of the latter, and that the two time series are highly correlated. Next we note that the
amplitude in the model run with spatially uniform forcing (labeled ZMW) is less than that in CTRL indicating
a role for the spatial structure of the wind forcing in determining the amplitude of the WWV. In a further
experiment (labelled LatZM), only the zonal wind stress is used and this is given by the time series of the
zonal mean of the zonal wind stress at each latitude and so has no variations with longitude. Generally, this
increases the amplitude of the WWV along the equator compared to ZMW but still does not explain all the
amplitude captured by CTRL, implying a role for zonal variations in the zonal wind stress along the equator
for determining the amplitude of the WWV (note that the WWV in CTRL does not depend on the meridional
wind stress as can easily be shown by running an experiment driven by the zonal wind stress only).

To understand this further, we note that zonally integrating equation (12) gives us the equation for �gn, the
contribution to �g from mode n,
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Figure 8. The time series of the zonal mean sea level anomaly along the equator from AVISO, the standard experiment (CTRL), the experi-
ment with spatially uniform wind stress (ZMW), and the experiment run using zonal wind stress that is zonally uniform at each latitude
(LatZM).
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where kE and kW are the longitudes at the eastern and western boundaries of the model domain, respec-
tively. Clarke [2010] noted that in his analytic solutions, there is a tendency for the zonal and meridional
divergence to cancel (as in the Sverdrup balance). However, as is clear from equation (17), for �gn to change,
there must be a net meridional divergence at the equator, as indicated by the derivative with respect to lat-
itude. We have seen that to understand the basic dynamics it is enough to consider the case with spatially
uniform wind forcing (for which the Sverdrup transport is zero). Consider the spin-up from a state of rest
with gn50 following the sudden switch-on of a spatially uniform zonal wind forcing. For eastward wind
forcing, the associated Ekman transport leads to convergence on the equator and an increase in gn, consis-
tent with the picture at zero lag in Figures 7b and 7c. More than an equatorial Rossby radius from the equa-
tor, there is a corresponding Ekman divergence, leading to a reduction in gn. The reduction in gn

propagates to the equator as Kelvin waves along the western boundary and then along the equator as
equatorial Kelvin waves, leading to the negative correlation in Figures 7b and 7c at positive lags. It should
be noted that the effect of wave propagation is to counter the Ekman convergence/divergence so that in
steady state, u5v50 and the zonal wind stress is exactly balanced everywhere by the zonal pressure gradi-
ent given by an east-west slope in gn [e.g., McCreary, 1981] (It is worth noting that in the general case, the
final steady state is given by the Sverdrup balance everywhere in the domain. Since the Sverdrup balance
applies to the steady state, at least in the context of the linear dynamics being considered here, it follows
immediately that the recharge/discharge mechanism cannot be associated with Sverdrup balance since the
recharge/discharge mechanism is fundamentally unsteady.). The correlations we see in Figures 7b and 7c
therefore arise from the incomplete nature of the adjustment to the changing wind forcing across the mod-
el domain, including the off-equatorial regions, with longer lags the higher the mode, consistent with the
longer adjustment time the higher the mode. This interpretation is basically as described in the review
paper by Neelin et al. [1998] but here nicely illustrated using our multimode model and shown to be consis-
tent with satellite altimeter data, that is, AVISO.

4. Summary

We have used a multimode shallow water model to examine sea level variability as seen in satellite altime-
try (AVISO) over the period 1993–2014 (see http://www.aviso.altimetry.fr/duacs/). The weighting given to
each mode was assigned by fitting the model results to the observed sea level variability along the equator.
The weighting in turn defines the vertical profile for the wind stress forcing which, as can be seen in Figures
1b and 1c is strongly surface intensified, as one would expect. Using seven or more modes, it was not possi-
ble to assign a realistic weight to each mode, presumably because the signal associated with mode 7 or
higher cannot be extracted from the AVISO data. Since the sixth mode is associated with basically zero
amplitude, we used the first five modes for our study.

The results show a remarkable agreement between the model sea level and the AVISO data, particularly
along the equator but also at higher latitudes where the main events in the monthly mean AVISO data are
captured. The model successfully captures the ENSO events of various strengths and flavors, including the
conventional El Ni~no events of 1997/1998, 2006/2007 and 2009/2010) and the Modoki El Ni~no events of
1994/1995, 2002/2003, and 2004/2005 [Ashok et al., 2007] as well as the 1995/1996, 1998/1999, 2007/2008
and 2010/2011 La Ni~na events. The dominance of the second baroclinic mode is apparent, although with
some role for modes 1, 3, and 5, particularly in the western equatorial Pacific for mode 1, the eastern equa-
torial Pacific for mode 5, and both regions for mode 3. The higher modes are particularly prominent during
the major El Ni~no events of 1997/1998, 2006/2007, and 2009/2010 (see Figure 4) when the wind forcing is
particularly large in amplitude. We argue that one reason for differences in the weighting assigned to the
different modes here from previous studies is the freedom we give the model to choose the vertical profile
for the wind forcing in the model based on the fitting to the altimeter data.

An interesting feature of our results is the presence of a pivot point in the western Pacific on the equator,
either side of which sea level variations tend to be 180� out of phase. The placement of the pivot point
seems to depend mostly on the fact that most of the variations in zonal wind stress are found in the west-
ern part of the basin, although there is also a signature from the recharge/discharge mechanism in which
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eastward/westward zonal mean zonal wind stress anomalies are associated with a downward/upward dis-
placement of the zonal mean thermocline along the equator at zero lag. We also showed that the recharge/
discharge mechanism in the model does not depend for its basic dynamics on the spatial structure of the
wind forcing and, in particular, on the Sverdrup transport as in the original theory of Jin [1997], and is more
in agreement with the approach of Clarke [2010]. The spatial structure of the wind forcing nevertheless has
a role to play in determining the amplitude of the ‘‘warm water volume’’ along the equator.
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3 Reconstructing Tropical Pacific Sea
Level Variability for The Period
1961-2002 Using A Linear
Multi-mode Model

In this chapter, the model built in Chapter 2 is applied to the pre-satellite era driven by ERA-40

and NCEP/NCAR monthly wind stress anomalies for comparison, since the latter was reported

having spurious trends in the eastern Pacific. The westward shift in the pivot point over the

period 1961-2014 is investigated and is attributed to an increase in zonal wind stress variance

of the western equatorial Pacific over the same time period.
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Abstract Monthly mean sea level anomalies in the tropical Pacific for the period 1961–2002 are
reconstructed using a linear, multimode model driven by monthly mean wind stress anomalies from the
NCEP/NCAR and ERA-40 reanalysis products. Overall, the sea level anomalies reconstructed by both wind
stress products agree well with the available tide gauge data, although with poor performance at Kanton
Island in the western-central equatorial Pacific and reduced amplitude at Christmas Island. The reduced
performance is related to model error in locating the pivot point in sea level variability associated with the
so-called ‘‘tilt’’ mode. We present evidence that the pivot point was further west during the period 1993–
2014 than during the period 1961–2002 and attribute this to a persistent upward trend in the zonal wind
stress variance along the equator west of 160�W throughout the period 1961–2014. Experiments driven by
the zonal component of the wind stress alone reproduce much of the trend in sea level found in the
experiments driven by both components of the wind stress. The experiments show an upward trend in sea
level in the eastern tropical Pacific over the period 1961–2002, but with a much stronger upward trend when
using the NCEP/NCAR product. We argue that the latter is related to an overly strong eastward trend in zonal
wind stress in the eastern-central Pacific that is believed to be a spurious feature of the NCEP/NCAR product.

1. Introduction

In the tropical Pacific, simplified ocean models (e.g., reduced-gravity, shallow water models) driven by esti-
mates of the observed wind stress are able to reproduce sea level fluctuations not only on the interannual
time scale (Qiu & Chen, 2012; Zhu et al., 2017) but also on decadal and multidecadal time scales (Qiu &
Chen, 2012; Timmermann et al., 2010). However, before the satellite era, the only direct measurements of
sea level are from tide gauges, mostly located on islands, resulting in a very sparse spatial coverage com-
pared to that from the satellite altimeter, leading to uncertainty in the variability of sea level in the presatel-
lite era on a range of time scales (Rhein et al., 2013). There are also uncertainties in simulated and projected
sea level rise in climate models (Church et al., 2013), not least arising from uncertainties in the initial condi-
tions used for future projections (Bordbar et al., 2015).

Given that a multimode linear model has considerable success at reproducing interannual sea level variabil-
ity in the tropical Pacific as seen by the satellite altimeter (Zhu et al., 2017), one way to estimate sea level
variability in the presatellite era is to run the same model using estimates of the surface wind stress from
reanalysis, e.g., the 40 year European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis
(ERA-40) (Kalnay et al., 1996) and/or the National Center for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) Reanalysis (Uppala et al., 2005). However, these wind stress products
are, themselves, subject to error that can, in turn, lead to errors in the simulated sea level variability. The
problem is highlighted by a recent study using the Max Planck Institute Earth System Model (Pohlmann
et al., 2017). These authors demonstrate that a large artificial trend in NCEP/NCAR-zonal wind stress in the
eastern-central tropical Pacific reduces the hindcast prediction skill for sea surface temperature in the tropi-
cal Pacific when the NCEP/NCAR product is used as part of the initialization.

The objective of the present study is to reconstruct monthly sea level variability in the equatorial Pacific for
the period 1961–2002 using the linear, multimode model of Zhu et al. (2017) driven by monthly mean wind
stress fields from the NCEP/NCAR and ERA-40 reanalysis products. The multimodel of Zhu et al. (2017) has
its origin in the early work by Busalacchi and O’Brien (1981) and Busalacchi et al. (1983). However, unlike
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skill at reproducing monthly mean
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tide gauges in the presatellite era
� A spurious eastward trend in the

zonal wind stress in the NCEP/NCAR
product leads to a spurious upward
trend in model-computed sea level in
the eastern Pacific
� The pivot point at the equator was
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western equatorial Pacific
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those early studies that consider only a single baroclinic normal mode, Zhu et al. (2017) consider the first
five baroclinic normal modes. They also do not specify a vertical structure for the wind forcing term; rather,
the vertical structure is derived by fitting model-computed sea level variability to that seen by satellite data
along the equator. Nagura and McPhaden (2010) take a similar approach to modeling the equatorial Indian
Ocean but restricting to long, equatorial waves (waves for which the zonal flow is in geostrophic balance
along the equator) and using a method based on McCreary (1981) to project the wind forcing onto the dif-
ferent vertical modes. Likewise, Qiu and Chen (2012) have used a nonlinear, 11=2 layer model driven by
observed wind stress to simulate tropical Pacific sea level variability over the period 1993–2009.

The paper is organized as follows. In section 2, the model setup and data are described. In section 3, we
show the reconstructed sea level anomalies obtained using the linear, multimode model and validate the
model performance against the available tide gauge and satellite data. We also examine the model-
computed trends in sea level and the impact of the trend in the NCEP/NCAR reanalysis noted by Pohlmann
et al. (2017) on the modeled sea level. The interannual variability is, not surprisingly, dominated by El Ni~no-
Southern Oscillation (ENSO) events (Becker et al., 2012) and leads us into a discussion of the pivot point in
the western-central Pacific that is a manifestation of the ‘‘tilt’’ mode of Clarke (2010) and the associated
trends in zonal wind stress variance. Finally, section 4 provides a summary and discussion.

2. Methods

We adopt the linear, multimode model described in Zhu et al. (2017). This model is a linear combination of linear,
shallow water models for the first five baroclinic vertical normal modes (see Gill (1982) and McCreary (1981) for a dis-
cussion of vertical normal modes). The weighting given to each mode is the same as used in Zhu et al. (2017) and
was obtained by running the model using monthly mean wind stress anomalies from ERA-Interim and fitting the
simulated sea level anomalies along the equator to those of the satellite altimeter measured sea level anomalies pro-
duced by Ssalto/Duacs and distributed by AVISO with support from Cnes (http://www.aviso.altimetry.fr/duacs/; here-
after, this data set is referred to as AVISO). Readers who are interested in the details are referred to Zhu et al. (2017).

In our experiments, except for the wind forcing, the model configuration is the same as in Zhu et al. (2017), including
the model domain (12�S–18�N, 112�E–70�W), coastline (300 m isobath), horizontal resolution (0:5�30:5�), boundary
conditions (solid walls at the eastern/western boundaries, sponge layers applied to the momentum equations at the
northern/southern boundaries with e-folding scale of 5� in latitude) and a horizontal eddy viscosity of 5,000 m2 s21.

Two standard experiments are, respectively, driven by monthly mean wind stress anomalies from the National
Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR hereafter) Reanalysis
(Uppala et al., 2005) and the 40 year European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis
(ERA-40 hereafter) (Kalnay et al., 1996). Both model runs are carried out for the period from the 1 September 1957
to the 1 August 2002 and the analysis period is 1 January 1961 to 1 August 2002 to exclude the model spin-up.

Figure 1. Locations of tide gauge stations (white squares): Rabaul in the western basin, Kanton Island and Christmas
Island in the central basin, Baltra Island and Sancrist Island in the eastern basin. The contour shading denotes the correla-
tion between monthly means of AVISO and model-computed sea level for the period 1993–2014 (using the same color
scale as in Figure 6a of Zhu et al. (2017) and note that there are no negative correlations in the region shown).
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The wind stress anomalies are referenced to the respective monthly mean wind stress climatologies from NCEP/
NCAR and ERA-40 for the analysis period 1961–2002. These two standard experiments are called the NCEP/NCAR
experiment and the ERA-40 experiment, respectively. In addition, we also conduct two sensitivity experiments
forced only by zonal wind stress anomalies from the NCEP/NCAR and ERA-40 data sets; these experiments are
called NCEP/NCAR-zonal and ERA-40-zonal, respectively. We also make use of the results from the standard exper-
iment of Zhu et al. (2017) that is driven by monthly mean wind stress anomalies from the ERA-Interim reanalysis
(Berrisford et al., 2009). In this experiment, the anomalies are referenced to the period 1993–2014.

To validate the model, we use sea level obtained from the tide gauge stations marked in Figure 1. The data
were downloaded from the Permanent Service for Mean Sea Level (Holgate et al., 2013; PSMSL, 2016).
We also use the satellite measured sea level anomalies from January 1993 to September 2014 from AVISO
at 1=4� resolution in latitude and longitude.

3. Results

3.1. The Model Performance
To gain an overview of the model performance, we first show Hovmoeller diagrams of the zonal wind stress
and sea level anomalies along the equator from the NCEP/NCAR and ERA-40 experiments (Figure 2). Both

Figure 2. Hovmoeller diagrams along the equator, showing monthly means of zonal wind stress anomalies from (a) the NCEP/NCAR and (b) the ERA-40 products,
and model-computed sea level anomalies from (c) the NCEP/NCAR experiment and (d) the ERA-40 experiment.
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experiments reproduce the documented El Ni~no events (e.g., 65/66, 72/73, 82/83, 86/87, and 97/98 El Ni~nos)
and La Ni~na events (e.g., 64/65, 70/71, 84/85, 88/89, and 99/00 La Ni~nas) (Wang & Fiedler, 2006), where the
86/87 El Ni~no (Ashok et al., 2007) and the 88/89 La Ni~na (Capotondi et al., 2015) are examples of Modoki
ENSO events. Comparing the two experiments, NCEP/NCAR-zonal wind stress anomalies (Figure 2a) experi-
ence a large eastward trend near 120�W during 1961–2002, which is missing from ERA-40 (Figure 2b), as
reported by Pohlmann et al. (2017). There is a corresponding positive trend in sea level in the eastern equa-
torial Pacific basin in the case driven by NCEP/NCAR wind stress anomalies (Figure 2c) that, again, is missing
from the ERA-40 experiment (Figure 2d) and which we discuss further in section 3.2. An interesting feature
of the results of both experiments is the presence of a ‘‘pivot’’ point near the center of the basin about
which the modeled sea level along the equator has a tendency to tip up and down, as in a see-saw. The
presence of the pivot point is the manifestation of the ‘‘tilt’’ mode that has been discussed by Clarke (2010).
The pivot point was noted by Zhu et al. (2017) in their model experiments and is also found in AVISO, a
topic we discuss in more detail in section 3.3.

To evaluate the performance of the models in more detail, Figure 3 compares the sea level anomaly time
series from the NCEP/NCAR and ERA-40 experiments with the tide gauge observations at the five tide gauge
stations marked in Figure 1 (all data are monthly means). As a check, the tide gauge data are verified
against AVISO, i.e., during the satellite era, in Figure 4, from which it is clear that there is good agreement.
(Note the suggestion of a problem with the tide gauge at Rabaul between 1995 and 1998 given the offset

Figure 3. The time evolution of monthly mean sea level anomalies (in cm) from the tide gauge measurements (black lines), the NCEP/NCAR experiment (red lines),
and the ERA-40 experiment (blue lines) at the tide gauge locations shown in Figure 1. Trends are shown by corresponding, colored straight lines. Here the labeling
on the x axis refers to 1 January of each year. Note also that there is only a short time period, from 1961 to 1968, for which data are available from Sancrist.
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from AVISO during this period, an offset that is not present before 1995.) Looking at Figure 3, we see that
the model has skill at reproducing the interannual sea level variations. To quantify this, we compute the cor-
relations between observed and reconstructed sea level at Rabaul (4:2�S, 152:2�E), Kanton (2:8�S, 171:7�W),
Christmas (2:0�N, 157:5�W) and Baltra (0:4�S, 90:3�W) for the time period 1985–1997 for which we have
almost continuous tide gauge records (any data gaps are filled by linear interpolation). During this 13 year
long period, the correlations at Rabaul, Kanton, Christmas, and Baltra for the NCEP/NCAR (ERA-40) experi-
ments are 0.85 (0.82), 0.09 (0.31), 0.68 (0.87), and 0.84 (0.84), respectively. Based on the method of Ebisuzaki
(1997), these correlations are significantly different from zero at the 95% level with the exception of those
at Kanton. The drop off in correlation at Kanton is consistent with the spatial pattern of correlation for the
period 1993–2014 between AVISO and the model-computed sea level anomalies noted by Zhu et al. (2017)
and shown by the color shading in Figure 1. The region of relatively low correlation near Kanton Island is, in
turn, related with the misplacement of the pivot point in the model, a topic we return to in section 3.3. At
Christmas Island, the model has skill at capturing events, especially in the ERA-40 experiment, but generally
underestimates the amplitude, consistent with Figure 5 in Zhu et al. (2017) (in particular, compare their Fig-
ures 5a and 5b). Interestingly, the region of reduced correlation near Kanton Island is also the region in
which Bunge and Clarke (2014) argue that the relationship between variations in sea surface height and the
depth of the 20�C isotherm is obscured by the influence of rainfall. These authors note the importance of
zonal advective processes in this region (see also Dewitte et al., 2013), processes that are missing from the

Figure 4. The time evolution of monthly mean sea level anomalies (in cm) from the tide gauge measurements (black) and satellite altimetry measurements (gray)
at the tide gauge locations shown in Figure 1. As in Figure 3, the labeling on the x axis refers to 1 January of each year. Note also that no tide gauge data are
available from Sancrist for the AVISO period.
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multimode model and which Zhu et al. (2017) argue contribute to the reduced performance of their model
in this region.

3.2. The Trends in Model-Computed Sea Level
In addition to the interannual variability, Figure 3 also shows the trend in the model time series at the loca-
tions of the tide gauges. It is notable that the NCEP/NCAR experiments shows an upward trend at Sancrist
and Baltra in the eastern equatorial Pacific that is much stronger than that found in the ERA-40 experiment.
This difference in the trend between the two experiments in the eastern equatorial Pacific is clear when
looking at Figures 5a and 5b. To determine the origin of the trend, we use the experiments driven by only
the zonal wind stress: the NCEP/NCAR-zonal experiment and the ERA-40-zonal experiment. The spatial dis-
tribution of the sea level trend in these experiments is shown in Figures 5c and 5d and is very similar to
that in Figures 5a and 5b. It follows that the zonal wind stress primarily determines the model-computed
sea level trend in the tropical Pacific. Furthermore, it is clear that the large positive trend in sea level in the
eastern tropical Pacific in the NCEP/NCAR experiment is associated with the large eastward trend in zonal
wind stress in the NCEP/NCAR product (Figure 5e) that, in turn, has been attributed as spurious by Pohl-
mann et al. (2017). It follows that the large upward trend in sea level in the NCEP/NCAR experiment is
almost certainly spurious and that the weaker upward trend in the ERA-40 experiment is more reliable.
Indeed, both NCEP/NCAR and ERA-40-zonal wind stress anomalies exhibit an eastward trend, corresponding

Figure 5. Spatial pattern of the trend in sea level over the period 1961–2002 (in cm yr21) in (a) the NCEP/NCAR experiment, (b) the ERA-40 experiment, (c) the
NCEP/NCAR-zonal experiment, and (d) the ERA-40-zonal experiment, as well as the corresponding trend in the zonal wind stress anomalies (in N m22 yr21) from
(e) the NCEP/NCAR and (f) the ERA-40 products.
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to a weakening of the Walker circulation associated with the 1976–1977 climate shift (Trenberth et al.,
1998), but this is much stronger in the NCEP/NCAR case. Qiu and Chen (2012), by considering the later
period 1993–2009, noted the opposite trend in tropical Pacific sea level to that noted here, in both AVISO
data and in a nonlinear 11=2 layer, reduced gravity model driven by observed wind stress. These authors
attribute the trend in this case to the strengthening of the Walker circulation after the transition of the
Pacific Decadal Oscillation from a warm to a cold equatorial phase in the last 1990s (Minobe, 2002), consis-
tent with our results.

3.3. Interannual Variability and the Pivot Point
As noted earlier, an interesting feature of equatorial sea level variability is the presence of a ‘‘pivot’’ point
near the center of the basin about which the modeled sea level along the equator has a tendency to tip up
and down, as in a see-saw. The ‘‘pivot’’ point is associated with the ‘‘tilt’’ mode of Clarke (2010). Along the
equator, the gradient of sea level associated with the ‘‘tilt’’ mode is close to being in equilibrium with the
zonal wind stress. In the simplest example, the anomalous (departure from the mean) zonal wind stress is
uniform along the equator and the corresponding anomalous (departure from the mean) sea level associ-
ated with the ‘‘tilt’’ mode varies linearly along the equator, with a zero crossing near the center of the basin
(see Figure 2e in Zhu et al. (2017) and the discussion thereon). The sea level variability associated with the
‘‘tilt’’ mode therefore tips up and down, as in a see-saw, about the zero crossing; what we refer to here as
the ‘‘pivot’’ point. In reality, most of the variability in zonal wind stress along the equator is found in the
western Pacific (see Figure 2a in Zhu et al., 2017) with the result that the ‘‘pivot point’’ moves westward, as

Figure 6. Variance in monthly means of (a) zonal wind stress anomalies from NCEP/NCAR, ERA-40 and ERA-Interim and (b) model-computed sea level anomalies
along the equator from the NCEP/NCAR and ERA-40 experiments and the experiment in Zhu et al. (2017) driven by ERA-Interim monthly wind stress anomalies.
Also shown is the variance of monthly mean sea level anomalies from AVISO.
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can be seen by comparing Figures 2c and 2e in Zhu et al. (2017). It follows, as noted by Zhu et al. (2017),
that the location of the pivot point is determined by the longitude range over which the zonal wind stress
exhibits the largest temporal variability.

Figure 6 shows the variance of monthly zonal wind stress and sea level along the equator as a function
of longitude in the different model experiments and also in AVISO. The peak in zonal wind stress vari-
ability from NCEP/NCAR near 140�W is associated with the spurious trend in this product noted in sec-
tion 3.2. Apart from the peak, the variability in zonal wind stress tends to be less in the NCEP/NCAR than
in the ERA-40 product and this is reflected in the lower variability in the model-computed sea level in
this case shown in Figure 6b. The minimum in variance of sea surface height, reflecting the location of
the pivot point, is also broader, less clearly defined and extends further to the east in the NCEP/NCAR
than in the ERA-40 experiment. It is notable that all three model versions, including that discussed by
Zhu et al. (2017), show generally lower variability in sea level than AVISO. This is similar to the finding of
Nagura and McPhaden (2010) who compared sea level variability as seen by AVISO with sea level vari-
ability from a simple model for the Indian Ocean, a model with similarities to the one used here (see
section 1). It is also notable that the minimum in sea level variance is shifted eastward in the model

Figure 7. (a) Time series of the variance in monthly mean zonal wind stress at 165:5�E (red line) and 130�W (blue line) on the equator in 21 year running windows.
(b) The trend in the time series of the variance of zonal wind stress in 21 year running windows plotted as a function of longitude along the equator and covering
the time period 1961–2014. Note that the ERA-40 product is used from 1961 to 1992 and the ERA-Interim product from 1993 to 2014.
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compared to AVISO. The eastward shift in the pivot point compared
to AVISO was noted by Zhu et al. (2017) who attributed this error to
the lack of zonal advection in the model (Dewitte et al., 2013), as
noted earlier.

Also shown in Figure 6a is the variance of the zonal wind stress
from ERA-40 in the subperiods 1961–1977 and 1978–2002, before
and after the 1976–1977 climate shift (Trenberth et al., 1998). A
notable increase and westward shift in zonal wind stress variance is
found after the climate shift in the western equatorial Pacific in the
ERA-40 product and there is a further increase in variance in the
ERA-Interim product covering the period 1993–2014. By contrast, in
the eastern tropical Pacific, the increase in zonal wind stress vari-
ance after the climate shift, i.e., for the 1978–2002 period, is not
found in the ERA-Interim product covering 1993–2014. This issue is

explored further in Figure 7a, where 21 year running windows are used to compute the zonal wind
stress variance (the ERA-40 product is used from 1961 to 1992 and the ERA-Interim product from 1993
to 2014). The situation in the western equatorial Pacific is illustrated on the equator at 165:5�E, where
there is a systematic increase in zonal wind variance throughout the study period, with no evidence of
any influence from the 1976 to 1977 climate shift or, indeed, of the Pacific Decadal Oscillation which is
known to have changed phase in both 1976–1977 and 1998–1999 (Minobe, 2002). Somewhat different
behavior is seen further east on the equator at 130�W. Figure 7b shows the trend in zonal wind stress
variance, again using 21 year running means over the period 1961–2002, but this time as a function of
longitude along the equator. From this figure, one can see that the upward trend in zonal wind stress
variance is found throughout the equatorial Pacific west of 160�W with very little trend in variance fur-
ther east. The situation in the western equatorial Pacific is consistent with the westward shift in the
region of zonal wind stress variability, especially after 1999, that has been noted by L€ubbecke and
McPhaden (2014). From what we show here, however, the increase in zonal wind stress variance in the
western equatorial Pacific seems to be part of a much longer time scale trend than considered by these
authors.

Comparing the model-computed sea level variability shown in Figure 2 for the period 1961–2002 with Fig-
ure 2 from Zhu et al. (2017) for the period 1993–2014 leaves the impression that the pivot point is located
further west in the later period. This can be quantified by computing Empirical Orthogonal Functions (EOFs)
from monthly mean sea level anomalies along the equator, for both the different model experiments and
for AVISO. Doing this, one finds that the first EOF typically explains about 70% and the second mode around
20% of the variance, indicating their dominance (see Table 1). The spatial pattern and principal component
(PC) time series associated with the first two EOFs computed from AVISO are shown in Figure 8. For AVISO,
EOF1 explains 71% and EOF2 19% of the variance. The prominent El Ni~no events of 1997–1998 and 2009–
2010 are clearly evident, especially in the PC times series for EOF1. EOF1 corresponds to what Clarke (2010)
calls the ‘‘tilt’’ mode, for which the tilt in sea level along the equator is close to being in equilibrium with the
zonal wind stress (Clarke, 2010). Indeed, the PC time series for EOF1 is highly correlated with the time series
of the zonal mean of the zonal wind stress (0.84 in the case of AVISO and wind stress from ERA-Interim; see
Table 1). In what follows, the longitude of the zero crossing in the spatial structure of EOF1 will be taken as
the location of the pivot point.

EOF1 is shown in Figure 9a for AVISO, the two model runs, ERA-40 and NCEP/NCAR for the period 1961–
2002, and the standard model run from Zhu et al. (2017) that is driven by wind stress anomalies from ERA-
Interim for the period 1993–2014. It is clear that the zero crossing (and by implication the pivot point) is
located further to the west in AVISO than in the model runs, consistent with the previous discussion. In the
case of the NCEP/NCAR experiment, the zero crossing is located some 30� further east than in AVISO, a bias
that has its origin in the spurious trend in the NCEP/NCAR wind stress product. Focusing on the more reli-
able ERA-40 experiment, we see a westward shift of almost 10� longitude in the zero crossing in the model
experiment from Zhu et al. (2017) compared to the ERA-40 experiment discussed here. This is the shift we
anticipated earlier and is a consequence of the increase and westward shift in the zonal wind stress variance
along the equator in the western Pacific shown in Figures 6 and 7b.

Table 1
The Percentage of Variance Explained by Each of the First Two EOFs for Sea
Level Variability Along the Equator Computed From AVISO and in the Different
Model Experiments (ERA-I Refers to the Standard Experiment in Zhu et al.
(2017) Covering the Period 1993–2014)

EOF1 (%) EOF2 (%) Correlation

AVISO 71 19 0.84 (0.39)
ERA-I 72 20 0.84 (0.42)
ERA-40 (61-02) 70 23 0.77 (0.30)
NCEP (61-02) 70 22 0.82 (0.30)

Note. Also shown is the correlation between the principal component time
series of EOF1 and the zonal mean of the zonal wind stress along the equa-
tor (the 95% significance levels based on the method of Ebisuzaki (1997) are
indicated in the brackets).
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Figure 9. The first EOF of sea level variability along the equator from the full length of the model reconstructions and
from AVISO.

Figure 8. The (a) spatial structure and (b) principal component time series for the first two EOFs of sea level variability along the equator from AVISO (PC1: red
line; PC2: blue line). The PC time series are normalized by their respective standard deviations.
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4. Summary and Discussion

We have used the linear, multimode model of Zhu et al. (2017) to reconstruct monthly mean sea level vari-
ability in the tropical Pacific using monthly mean wind stress anomalies from the NCEP/NCAR and ERA-40
wind reanalysis. Zhu et al. (2017) noted that their model-computed sea level agrees well with the satellite-
derived sea level provided by AVISO. Here the analysis period of 1961–2002 is mostly before the satellite
era and includes the 1976–1977 climate shift (Trenberth et al., 1998). The simulated sea level anomalies cap-
ture the major ENSO events and generally compare well with the sea level anomalies measured by the avail-
able tide gauges shown in Figure 3, although the events in the modeled time series at Christmas Island
have lower amplitude than observed. An exception is the tide gauge station at Kanton Island, which is
located in the region with the lowest correlation between the model-computed sea level and AVISO (Zhu
et al., 2017). The reduced correlation is due to the misplacement in the model of the pivot point along the
equator associated with the ‘‘tilt’’ model of Clarke (2010)—see Zhu et al. (2017) for a detailed discussion.

The origin of the trend in sea level in both experiments is explored using sensitivity experiments driven by
only the zonal wind stress anomalies from the NCEP/NCAR and ERA-40 products. In both cases, the spatial
pattern of the sea level trend is well-captured in the sensitivity experiments compared to the experiments
driven by both components of the wind stress, indicating the importance of the zonal wind stress for deter-
mining the trends in sea level in the tropical Pacific. Compared to ERA-40, NCEP/NCAR-zonal wind stress
anomalies exhibit a much larger eastward trend in the eastern-central tropical Pacific that Pohlmann et al.
(2017) conclude is spurious. It follows that the much larger upward trend in sea level in the eastern tropical
Pacific in the NCEP/NCAR compared to the ERA-40 experiment is also, almost certainly, spurious.

We noted that the relatively poor model performance at Kanton Island is due to the presence of a pivot
point along the equator about which sea level has a tendency to tip, as in a sea-saw. This behavior is the
manifestation of the ‘‘tilt’’ mode that has been discussed by Clarke (2010) by which the tilt in sea level along
the equator is close to being in equilibrium with the zonal wind stress. As noted by Zhu et al. (2017), the
pivot point in the model is located to the east of the pivot point in the satellite data, i.e., AVISO, behavior
that was attributed to the missing zonal advection in the model. A way to quantify the location of the pivot
point is to identify its location with the zero crossing of the first EOF for sea level computed from data along
the equator. The extreme eastward location of the pivot point in the experiment driven by the NCEP/NCAR
wind stress product is another indication of the spurious trend in this wind stress product. The analysis also
shows a more westward location in the pivot point during the period 1993–2014 than in the ERA-40 experi-
ment. We attribute the westward shift in the pivot point to an increase and westward shift in zonal wind
stress variance in the western equatorial Pacific throughout the period 1961–2002. This increase in zonal
wind stress variance seems to be independent of the Pacific Decadal Oscillation and part of a much longer
time scale mode of variability, possibility related to anthropogenic climate change, and requiring further
study.
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4 ENSO Diversity and Thermocline
Feedback for The Period 1961-2014
Assessed Using A Linear Multi-mode
Model

Whether or not EOF1 and EOF2 of SSTa over the tropical Pacific can represent EP ENSO

and CP ENSO is under debate. Besides, the change of thermocline feedback responsible for

the emergence of CP ENSO is uncertain. Chapter 3 shows that the westward shift of sea

level pivot point is associated with the increasing variability in zonal wind stress, motivating

the exploration of the possible mechanism for emergence of CP ENSO. All these issues are

addressed in this chapter.
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Abstract10

Monthly mean sea level variations computed using a linear, multi-mode model are11

combined with satellite measurements to assess ENSO diversity and thermocline feed-12

back in the equatorial Pacific for the period 1961-2014. We find little evidence for13

the occurrence of Central Pacific (CP) events before the 1976/77 climate shift. After14

the climate shift, thermocline feedback in the CP (Nino4 region) is found to increase15

strongly. At the same time, the Bjerknes feedback mechanism is shown to increase in16

strength in the Nino4 region, concurrent with the increased occurrence of CP events.17

An important point is that the emergence of the thermocline feedback in the Nino418

region can be related to changes in the wind field over the equatorial Pacific; in par-19

ticular, the westward shift of the pivot point for sea level (and hence thermocline)20

variations associated with the increase in zonal wind stress variance in the western21

equatorial Pacific, the latter in turn being related to the increased frequency of CP22

events due to the Bjerknes feedback. As the pivot point shifts westward, the Nino423

region is found increasingly to the east of the pivot point enabling the thermocline24

feedback to operate there. These arguments imply a positive feedback in which CP25

events are self-maintaining and suggest that they may be part of the natural variabil-26

ity of the climate system and could occur episodically without the need for changes27

in external forcing.28

29

Keywords: ENSO diversity; Thermocline feedback; Bjerknes feedback; Pivot point;30

Shallow water model31
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1 Introduction32

El Niño Southern Oscillation (ENSO) is the dominant mode of interannual variability33

in the coupled ocean-atmosphere system in the tropical Pacific (Becker et al., 2012).34

In recent decades, observational studies reveal the occurrence of El Niño events with35

the largest Sea Surface Temperature (SST) anomalies in the central equatorial Pacific36

(e.g. Ashok et al., 2007; Lee and McPhaden, 2010; McPhaden, 2004), contrasting with37

“typical” El Niño events for which the largest SST anomalies occur in the eastern38

Pacific (e.g. McPhaden, 1999). These different SST patterns are associated with39

different anomalous atmospheric convection patterns and lead to significantly different40

global impacts from those associated with the conventional El Niño events (Ashok and41

Yamagata, 2009).42

Given the different flavours of ENSO, the scientific community has sought to43

classify ENSO diversity based on various methods (Capotondi et al., 2015). For44

example, Ashok et al., (2007) argue that the first and second Empirical Orthogonal45

Functions (EOFs) for SST in the tropical Pacific represent the canonical Eastern46

Pacific ENSO events (EOF1) and the Central Pacific (what they call ”Modoki”)47

ENSO events (EOF2), respectively. They propose the El Niño Modoki Index (EMI),48

using SST in three different boxes, as a measure for Central Pacific ENSO events. The49

EMI and the principle component (PC) time series for EOF2 are highly correlated50

(0.91) during their study period of 1979-2005. The EMI is derived from the contrast51

between the spatially-averaged SST in the central Pacific and the spatially-averaged52

SST in the western and eastern Pacific, and is related to the Trans-Nino Index (TNI)53

of Trenberth and Stepaniak, (2001) (correlation with the EMI of -0.87 over the period54

1979-2005). Takahashi et al., (2011) and Dommenget et al., (2013) point out, however,55

that ENSO in fact, exhibits quite nonlinear behaviour. Dommenget et al., (2013)56

note that strong warm and weak cold events tend to have maximum amplitude in57

the eastern tropical Pacific whereas weak warm and strong cold events are, instead,58

focussed on the central tropical Pacific. Takahashi et al., (2011) further argue that59

ENSO events are best described by E and C indices, the axes of which are rotated60

anticlockwise in PC1-PC2 space by 45◦ from the standard PC1 and PC2 axes, and61

that El Niño Modoki events are a part of the C regime. To define their EOFs,62

Takahashi et al., (2011) use the period 1979-2009 and project data from the much63

longer period 1870-2010 onto these EOFs to create their PC time series. Likewise,64

the EOFs used by Ashok et al., (2007) to define ENSO Modoki are based only on the65

period 1979-2005. Indeed, Ashok et al., (2007) show that EOF2 has a very different66

character before than after the 1976/77 climate shift (Trenberth et al., 2002) (see67

Section 4 of Ashok et al., (2007)), a topic we investigate further here. Interpreting68

Takahashi et al., (2011) is therefore complicated by the change in the spatial pattern69

of the EOFs (especially EOF2) in different epochs, for example, before and after the70
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1976/77 climate shift(note, however, that these authors claim that using a spatial71

domain to compute EOFs that is more confined to equator than that used by Ashok72

et al., (2007) reduces the sensitivity of the EOFs to the time period used for their73

computation). In the following, we follow the terminology of Yeh et al., (2009) and74

refer to Central Pacific (CP) events (corresponding to ENSO Modoki) and Eastern75

Pacific (EP) events, and study the period 1961-2014.76

A number of studies have pointed out that the relative importance of thermocline77

feedback and zonal advective feedback, the most prominent two physical processes78

among those responsible for the evolution of ENSO (Jin et al., 2006), is critical for79

understanding ENSO diversity (e.g. Belmadani et al., 2010; Capotondi, 2013; Dewitte80

et al., 2013; Lübbecke and McPhaden, 2014). In terms of what causes the increasing81

occurrence of CP El Niño events during recent decades, Yeh et al., (2009) suggest that82

the flattening and strengthening of the thermocline along the equator in the central83

Pacific after the 1976/77 climate shift led to a more important role for thermocline84

feedback there, a change Yeh et al., (2009) attribute to global warming. They ar-85

gue that with a flatter, stronger thermocline, cold subsurface water can more easily86

influence SST through mean vertical advection. This seems to be supported by De-87

witte et al., (2013) who argue that thermocline feedback has, indeed, become more88

important in the central equatorial Pacific since the 1976/77 climate shift. On the89

other hand, McPhaden et al., (2011) find a systematic shift from the 1980-1999 to the90

2000-2010 periods in which the trade winds strengthened, the thermocline steepened91

and the prevailing ENSO flavor converted from EP El Niño to CP El Niño . These re-92

sults appear to contradict Yeh et al., (2009), particularly concerning whether a flatter93

or steeper thermocline slope along the equator favours the occurrence of CP events.94

McPhaden et al., (2011) further conclude that the change in ENSO characteristics95

from 1980-1999 to 2000-2019 occurred naturally rather than being forced by global96

warming, as claimed by Yeh et al., (2009). In addition, Lübbecke and McPhaden,97

(2014) argue that the cooler background state during 2000-2010 in the central-eastern98

tropical Pacific led to a westward shift in the ascending branch of the Walker circu-99

lation and smaller zonal wind fetch, which is favorable for CP El Niño events and100

weakens the thermocline feedback in the central-eastern Pacific. Thus, the dynamics101

governing ENSO diversity and the role of thermocline feedback remains unclear.102

In two recent studies, we have shown that a linear, multi-mode model driven by103

surface wind stress anomalies taken from reanalysis has considerable success at re-104

producing monthly mean sea level variability in the equatorial Pacific for the periods105

1961-2002 (Greatbatch et al., 2017, submitted to Journal of Geophysical Research106

Oceans; hereafter G17) and 1993-2014 (Zhu et al., 2017). Here, we use these sim-107

ulations together with COBE2 SST data (Hirahara et al., 2014) to (i) revisit the108

relationship between EOFs of SST in the tropical Pacific and ENSO diversity be-109

fore and after the 1976/77 climate shift and (ii) analyse and interpret the change of110
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thermocline feedback associated with ENSO diversity during the analysis period of111

1961-2014. In section 2, we introduce the model simulations and datasets employed.112

In section 3, we analyse how EOF1 and EOF2 of SST relate to ENSO diversity before113

and after the 1976/77 climate shift (section 3.1). Additionally, the changing strength114

of the thermocline feedback in the equatorial Pacific is analyzed and its relationship115

with ENSO diversity is discussed (section 3.2). Finally, we provide a summary and116

discussion in section 4.117

2 Data118

For Empirical Orthogonal Function (EOF) analysis of SST anomalies over the tropical119

Pacific, we employ the COBE2 SST dataset (Hirahara et al., 2014) for the period120

1961-2014. The results based on COBE2 SST are consistent (not shown) with those121

from HadISST (Rayner et al., 2003) frequently used in previous studies. Additionally,122

different SST indices for ENSO, as mentioned in section 1, are used, in particular the123

El Niño Modoki Index (EMI) and the Nino3 and Nino4 indices. EMI, obtained from124

http://www.jamstec.go.jp/, is defined by Ashok et al., (2007) as the SST averaged125

over the central Pacific (165◦E - 140◦W, 10◦S - 10◦N) minus SST averaged over the126

western Pacific (125◦ - 145◦E, 10◦S - 20◦N) and eastern Pacific (110◦ - 70◦W, 15◦S127

- 5◦N). The Nino3 or Nino4 indices, obtained from https://www.esrl.noaa.gov/psd,128

refer to the area-averaged SST anomalies over the Nino3 (150◦W - 90◦W, 5◦S - 5◦N)129

or Nino4 regions (160◦E - 150◦W, 5◦S - 5◦N) respectively (the exact time period130

used to reference the anomalies varies according to context and is given in the text).131

Moreover, sea level indices for the Nino3 and Nino4 regions, denoted SLA[Nino3] and132

SLA[Nino4] respectively, are calculated by replacing SST anomalies in the definition133

formulae for the indices by sea level anomalies (SLA’s), either from AVISO or from134

the model with, in the case of Nino4, some adjustment in the location used for the135

averaging, as explained later. Following Rebert et al., (1985), these sea level indices136

are used as a proxy for anomalies in the depth of the thermocline.137

SLA’s for the period of 1993-2014 and 1961-2002 are taken from the standard138

experiment in Zhu et al., (2017) and the ERA-40 experiment described in G17, re-139

spectively. The former experiment uses a linear, multi-mode ocean model driven by140

ERA-Interim monthly mean wind stress anomalies from 1979 to 2014, relative to141

the climatological monthly mean for each month for the period of 1993-2012, and142

provided by the European Centre for Medium-Range Weather Forecasts (ECWMF)143

(Berrisford et al., 2009). The multi-mode model is the sum of five linear shallow144

water models, one for each of the first five baroclinic modes, over the model do-145

main (112◦E - 70◦W, 12◦S - 18◦N). The projection coefficients of wind stress for146

the five modes are derived by fitting time variations of sea level along the equator147

from the model to the satellite measured time variations of sea level from 1993 to148
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2014 provided by Ssalto/Duacs and distributed by AVISO with support from Cnes149

(http://www.aviso.altimetry.fr/duacs/) (hereafter referred to as AVISO). The resul-150

tant multi-mode model is further applied in the ERA-40 experiment to reconstruct151

the sea level variations during the pre-satellite era. Here, the model is driven by152

the 40-yr ECMWF Re-analysis (ERA-40) (Kalnay et al., 1996) monthly mean wind153

stress anomalies from 1957 to 2002 relative to the climatological monthly mean for154

each month for the period 1961-2002. The SLA’s from the experiments were validated155

using AVISO observations and tide gauge measurements from the Permanent Service156

for Mean Sea Level (Holgate et al., 2013) (see Zhu et al., (2017) and G17 for the157

details). To clarify the difference between the thermocline feedback in our study and158

Dewitte et al., (2013), the sea surface height for the period 1961-2009 from the SODA159

reanalysis dataset (version 2.2.4, Giese and Ray, (2011)), which is applied in Dewitte160

et al., (2013), is also used in the analysis.161

3 Results162

3.1 ENSO diversity from 1961 to 2014163

In this section, we explore the relationship between ENSO diversity and EOFs of SST164

over the tropical Pacific (112◦E - 70◦W, 12◦S - 18◦N)1 before and after the 1976/77165

climate shift. We begin with the study period 1961-2002, limited by the ERA-40166

experiment in G17 where the linear, multi-mode model is driven by the ERA-40167

wind stress anomalies from 1957 to 2002. The subperiods of 1961-1977 and 1978-168

2002 correspond to before and after the 1976/77 climate shift, respectively. Later we169

examine the period 1993-2014 using AVISO satellite data and the model results of170

Zhu et al., (2017).171

In Ashok et al., (2007), the EP and CP events are identified with the variability172

associated with the first two EOFs of SST in the tropical Pacific. We therefore begin173

by showing the spatial patterns and principal components of the first and second EOFs174

of SST in the tropical Pacific before and after the 1976/77 climate shift in Figures 1175

and 2. The time series of Nino3 and EMI (Ashok et al., 2007) are also plotted in176

comparison with the principal component time series PC1 and PC2, respectively.177

Together, these first two EOFs account for almost 60% of the variance in monthly178

mean SST in both time periods and are well-separated both from each other and179

from the third EOF according to the criterion of North et al., (1982). The spatial180

patterns of the first EOF are almost the same both before and after the climate shift181

(Figure 1a and 1b), and the PC time series are well correlated with the Nino3 SST182

index (Figure 1c and 1d) in both time periods. It follows that EOF1 provides a good183

representation for the traditional EP events both before and after the 1976/77 climate184

1The domain used to compute the EOFs is the same as the model domain used by Zhu et al.,

(2017)
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shift. By contrast, for the second EOF, the spatial patterns differ markedly before185

and after the climate shift (compare Figures 2a,b), having the appearance of being186

shifted eastward in the later period when there is also the emergence of anomalies in187

the western Pacific of the same sign as those found in the eastern Pacific. Indeed,188

it was the tripole structure of EOF2 after the 1976/77 climate shift that motivated189

the definition of the EMI proposed by Ashok et al., (2007) in which SST averaged190

over boxes in the eastern and western Pacific is subtracted from SST averaged over191

a box in the central Pacific and, furthermore, the spatial pattern of EOF2 in the192

later period (Figure 2b) resembles the spatial pattern of SST usually associated with193

CP events. On the other hand, the spatial pattern of EOF2 in the earlier period194

resembles more a modification of the conventional EP ENSO events represented by195

EOF1, as point that is already noted in Section 4 of Ashok et al., (2007). Given how196

the EMI is defined, it is not surprising that it is highly correlated with PC2 in the197

later period (Figure 2c). In the earlier period, however, before the 1976/77 climate198

shift (Figure 2d), the correlation between the EMI and PC2 is considerably reduced199

and the relevance of the EMI as an independent index during this time period is called200

into question. It is notable that Ashok et al., (2007) could not identify CP ENSO201

amongst the EOFs of SST before the 1976/77 climate shift, only after. They point202

out that CP events were, at best, very weak before the climate shift. These results203

also question the statement in Takahashi et al., (2011) that the spatial pattern of204

EOF2, admittedly computed in a slightly smaller spatial domain, is not sensitive to205

the time domain. From our analysis, it is difficult to identify any evidence for the206

existence of CP events before the 1976/77 climate shift.207

Given that the EMI is not a good substitute for PC2 before the 1976/77 climate208

shift , we use PC1 and PC2 instead of Nino3 and EMI for the further analysis in this209

section. Figure 3 and 4 show the regression of SLA’s from the ERA-40 experiment in210

G17 onto PC1 and PC2, respectively, for the two time periods. Also shown are the211

corresponding regressions of monthly mean zonal wind stress, TAUX, on PC1 and212

PC2. In the case of EOF1 (Figure 3), the spatial patterns of both regressed sea level213

and TAUX are very similar either side of the 1976/77 climate shift as expected: in214

the warm phase of ENSO, strong westerly wind anomalies are evident west of 120◦W215

(Figure 3c and 3d), and sea level is higher than normal in the east while lower in216

the west (Figure 3a and 3b), corresponding to the so-called tilt mode (Clarke, 2010),217

and in agreement with the Bjerknes feedback hypothesis (Bjerknes, 1969) for the EP218

events. In the case of EOF2 (Figure 4), however, the spatial patterns of both regressed219

sea level and TAUX experience a significant change following the 1976/77 climate220

shift. Before the 1976/77 climate shift (Figure 4a), the pattern of SLA associated with221

EOF2 looks like a propagating Rossby wave, suggesting that it is somehow related to222

the ENSO adjustment process, whereas after the 1976/77 climate shift (Figure 4b),223

the sea level has positive anomalies on the equator (rather than negative there, as in224
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the earlier period), although there is still some suggestion of Rossby wave propagation225

off the equator. The regressed TAUX in the pre-climate shift period (Figure 4c) has226

weak easterly anomalies along the equator, suggesting the decaying phase of ENSO227

when PC2 is in its positive phase. In the post-climate shift period (Figure 4d),228

the spatial pattern of regressed TAUX looks quite different with westerly anomalies229

now appearing west of the date line along the equator. Indeed, along the equator,230

the pattern of regressed TAUX now looks somewhat similar, but westward shifted,231

to that associated with EOF1 (Figure 3d), and similar to the scenario described in232

Lübbecke and McPhaden, (2014) that is favorable for CP events. Likewise, after the233

1976/77 climate shift , we see the emergence of strong easterly wind anomalies east234

of the date line. These anomalous zonal wind patterns agree with those during CP235

events in observational studies (see Figure 5b in McPhaden, (2004)) and are consistent236

with the emergence of CP events after the 1976/77 climate shift. On the other hand,237

before the 1976/77 climate shift, the behaviour of EOF2 is very different from that238

associated with CP events.239

To further understand the change in the sea level and TAUX regressions associated240

with EOF2, we look at the lagged correlation of PC1 and PC2 before and after241

the 1976/77 climate shift (Figure 5). We see that before the 1976/77 climate shift,242

PC2 lags PC1 with the maximum correlation (0.57, above the 95% significant level)243

occurring at the lag of 10 months, consistent with the suggestion above that EOF2244

reflects the decaying phase of ENSO before the 1976/77 climate shift(see also Section245

4 of Ashok et al., (2007) where the same lag correlation is noted). On the other246

hand, after the 1976/77 climate shift, PC2 leads PC1 with a maximum correlation of247

0.52 (above the 95% significant level) about 12 months before the peak in PC1. The248

relatively long lead time indicates that PC2 is not always linked to the onset phase249

of EP ENSO. Takahashi et al., (2011) raise concern that the extreme 1982/83 and250

1997/98 El Niño events can distort conclusions drawn concerning changes associated251

with the 1976/77 climate shift, in particular regarding the change in the relationship252

between the TNI index and the Nino3.4 index for SST before and after the climate253

shift that was noted by Trenberth and Stepaniak, (2001). To determine whether these254

extreme EP El Niño events influence our conclusions, we set the PC1 and PC2 to zero255

during the extreme warm events (1982/83 and 1997/98 El Niño events) and repeat256

the analysis used to produce Figures 4 and 5. The results show no significant change257

(not shown).258

Finally in this section, we show figures corresponding to Figures 3 and 4 but for259

the period 1993-2014 for which we have satellite-derived sea level data from AVISO.260

The spatial patterns shown in Figure 6b,c for EOF1 are very similar to those shown261

in Figure 3 and confirm the robustness of the EP events, as represented by EOF1262

of SST, beyond 2002. Comparing the regression of PC1 on the AVISO satellite data263

(Figure 6a) with that from the multi-mode model (here the standard run in Zhu et264
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al., (2017)), we see the eastward shift in the modelled sea level compared to AVISO265

that was noted by Zhu et al., (2017). Looking at Figure 7 for EOF2, we again see the266

eastward shift when comparing Figure 7a,b, but also basically the same picture that we267

see in Figure 4b,d, i.e. for the post-climate shift period 1978-2002, that was discussed268

above. If anything, the Rossby wave-type structure in the sea level regression is more269

prominent here than in Figure 4b, with the sea level regression pattern looking rather270

like a mixture of that before and after the climate shift in Figure 4. On the other271

hand, the regression of the zonal wind stress, TAUX, looks very similar to that in272

Figure 4d with westerly wind anomalies in the western equatorial Pacific when PC2273

is in its positive phase.274

3.2 Thermocline feedback in the eastern and central Pacific275

during the period from 1961 to 2014276

In this section, we explore changes in thermocline feedback in the eastern and central277

tropical Pacific, one of the key ingredients for understanding ENSO diversity. Here278

the study period spans 1961-2014: SLA’s for the period 1993-2014 come from the279

standard experiment in Zhu et al., (2017) and for the period 1961-1992 from the280

ERA-40 experiment in G17. It should be noted that the multi-mode model was driven281

by the monthly mean wind stress climatologies for the separate periods of 1961-2002282

and 1993-2012 in order to adjust the reference state so that all anomalies are now283

referenced to the monthly mean climatology for the period 1961-2014. Of particular284

interest here are changes in thermocline feedback in the Nino3 and Nino4 regions in285

the eastern and central equatorial Pacific, respectively. Dewitte et al., (2013) have286

shown evidence using the SODA ocean reanalysis of Giese and Ray, (2011) that the287

role of thermocline feedback has increased in the Nino4 region since the 1976/77288

climate shift , a topic we investigate further here.289

3.2.1 Adjusting the model-computed sea level to correspond to the Nino4290

region291

We noted at the end of the Section 3.1 that model-computed sea level is shifted to the292

east compared to AVISO in the western-central equatorial Pacific. The eastward shift293

can be clearly seen in the Hovmoeller diagram shown in Figure 2 of Zhu et al., (2017)294

when comparing model and AVISO and is related to the too eastward position of the295

pivot point associated with the “tilt” mode in the model compared to AVISO, leading296

to relatively low model skill in the western-central Pacific (see Zhu et al., (2017) and297

G17). These authors attribute this displacement to the lack of zonal advection in the298

model. It therefore makes sense to shift the box used for model-computed sea level in299

the Nino4 region eastward from that used for SST. To do this, we use the standard300

experiment from Zhu et al., (2017)) and shift the box eastward along the equator301
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from the standard Nino4 box until the correlation over the period 1993-2014 between302

detrended AVISO, averaged over the standard Nino4 region, and detrended modelled303

sea level, averaged over the shifted box, reaches a maximum. In fact the maximum304

correlation is 0.91 when the box is shifted eastward by 17◦. The shifted box is shown305

using solid yellow lines in Figure 7b. From this figure, it can be seen that the spatial306

structures of the regressed sea level anomaly on PC2, as seen by AVISO in the Nino4307

box (solid yellow lines) in Figure 7a are also seen in the model in the shifted box308

(solid yellow lines) in Figure 7b, giving us confidence in the use of the shifted box.309

3.2.2 Change in thermocline feedback310

In order to assess the importance of thermocline feedback, we use the correlation311

between the variations in sea level and those of SST. Variations in sea level are312

here being used as a proxy for variations in thermocline depth. The link between313

sea level variations and thermocline depth anomalies in the equatorial oceans is well314

known (Rebert et al., 1985) and is implicit in the multi-mode model since we use315

only the first five baroclinic modes to model sea level, with no contribution from316

the barotropic model. In fact, the model response to the imposed wind forcing is317

dominated by the second baroclinic mode (Zhu et al., 2017). It is also well-known318

that the thermocline feedback is not as effective in the central Pacific as in the eastern319

Pacific. Indeed, Dewitte et al., (2013), using SODA data, find a negative correlation320

between anomalous SST and thermocline depth in the Nino4 region over the period321

1950-2008 (see their Figure 2) and especially before the 1976/77 climate shift (their322

Figure 3).323

Figure 8 shows the spatial distribution of the correlation between SST and sea324

level variations from both AVISO and the ERA-Interim experiment from Zhu et325

al., (2017) for the period 1993-2014. Using AVISO (Figure 8a), we see that the326

equatorial Pacific is covered by positive correlations with values over 0.80 in the327

eastern Pacific (Nino3 region) and mostly over 0.60 in the central Pacific (Nino4328

region), indicating very strong thermocline feedback in the eastern Pacific and even329

quite strong thermocline feedback in the Nino4 region. Using sea level taken from330

the linear model (Figure 8b), the strength of thermocline feedback is well reproduced331

in the Nino3 region but deviates from AVISO over and to the west of the standard332

Nino4 region (dashed yellow lines). As noted above, this is where the model error in333

placing the pivot point for the “tilt” mode occurs. This problem is fixed by shifting334

the Nino4 box used for the modelled sea level to that shown by the solid yellow lines,335

as discussed above, for which the resultant strength of the thermocline feedback from336

the linear model experiment is comparable to that from AVISO in the Nino4 region.337

Now we combine the two experiments, i.e. the ERA-40 experiment (1961-1992)338

and the ERA-Interim experiment (1993-2014), as described above, in order to in-339

vestigate the changes in the thermocline feedback over the period 1961 to 2014 in340
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the eastern Pacific (Nino3 region) and the central Pacific (Nino4 region). Figure 9341

shows the 15-year running correlations between SST and sea surface height, both from342

AVISO and the linear model experiments, averaged over the Nino3 or Nino4 regions343

(the reason for using 15 year running means is to ensure some meaningful overlap with344

the AVISO period; the results do not differ in any substantive way if 21 year running345

windows are used). The time series are detrended within each 15-year running win-346

dow before calculating the correlations. Note that the correlations from the model347

experiments for both the Nino3 and Nino4 regions agree well with those derived from348

AVISO during the period of overlap. In contrast with the eastern Pacific where the349

implied thermocline feedback is continuously strong (> 0.8) over the analysis period,350

the implied thermocline feedback in the central Pacific undergoes a dramatic increase,351

with the correlation increasing from about 0.4 to over 0.7, comparable to that in the352

eastern Pacific in the most recent 15 year period. This result is consistent with the353

increase in thermocline feedback in the Nino4 region noted by Dewitte et al., (2013),354

although their correlations (see their Figure 3) are consistently lower than we find355

here. Dewitte et al., (2013) correlated SST with the depth of the 20◦C isotherm, the356

latter being calculated from SODA ocean reanalysis data (Giese and Ray, 2011). As357

a check, we have computed the 11-year running correlation between SST and sea level358

variations in the Nino4 region using sea level data from SODA, the model-computed359

sea level and AVISO, shown in Figure 10. It is clear that when using sea level from360

SODA (dashed blue line), there is generally good agreement with the model (solid361

blue line), showing that the difference from Dewitte et al., (2013) arises from their use362

of the depth of the 20◦C isotherm to compute the correlation and our use of sea level.363

The use of an 11 year running window here is because the SODA data only runs to364

2009 and we wanted to show some overlap with AVISO. It is notable that many of the365

variations in the running correlation are found when using both sea level from SODA366

and sea level from the model. This suggests that these variations have their origin367

in the variations in the wind forcing since the model is forced only by wind stress.368

Generally speaking the correlation between SST and sea level from SODA tends to369

higher/lower than when using model sea level early/later in the analysis period with370

excellent agreement between with AVISO during the overlap period.371

We next note that G17 found a large increasing trend in the 21-yr running variance372

of zonal wind stress, TAUX, in the western equatorial Pacific over the period 1961 to373

2014, with the largest increase occurring near 165.5◦E on the equator (see their Figure374

7). Figure 11 shows the 21-yr running variance of TAUX at 165.5◦E, 0◦N and the 21-375

yr running correlations between SST and sea level variations, as computed from our376

model and averaged over the Nino4 region, for the period 1961 to 2014. Note that all377

the time series have been detrended within the each 21-yr window (detrending was not378

applied by G17). Both time series show a similar upward trend, even showing a jump379

centred around 1990, suggesting that the wind at 165.5◦E, 0◦N is active in improving380
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the thermocline feedback in the Nino4 region. G17 also noted that one consequence381

of the upward trend in zonal wind stress variance in the western equatorial Pacific382

is the westward shift of the pivot point of sea level (and hence the thermocline)383

associated with the “tilt” mode. A westward shift in the pivot point puts the Nino4384

region more clearly to the east of the pivot point suggesting the possibility that the385

Bjerknes feedback can operate there, exactly as it does in the Nino3 region further386

east, consistent with the emergence of CP ENSO events in recent decades. In fact, as387

can be seen from Figure 9 in G17, based on AVISO data, the pivot point was located388

near 160◦E on the equator during the period 1993-2014, right at the western edge of389

the standard Nino4 box and, furthermore, was almost certainly located further to the390

east before that time, as argued there.391

3.2.3 Assessing the Bjerknes feedback for the Nino4 region392

The next step in the argument is to show that Bjerknes feedback does indeed operate393

in the central Pacific and, more importantly, that the strength of this feedback has394

increased during the analysis period, a factor that could explain the increased occur-395

rence of CP events. To do this, we use the approach taken by Dippe et al., (2017)396

(see their Section 6) and look for a relationship between three key variables: SST397

anomalies and sea level anomalies in the Nino4 region as in the previous analysis,398

and zonal wind stress anomalies in the region 5◦S - 5◦N, 150◦E - 180◦E (hereafter399

the CPwest region), indicated by the solid-line-edged boxes in Figure 7a,b,c. The400

longitudinal range of the CPwest region is chosen based on Figure 7b in G17, and is401

such that within the box, the trend in the 21yr running variance of zonal wind stress402

for the period 1961-2002 exceeds half of the maximum trend (∼ 8×10−6N2m−4yr−1)403

that is found at 165.5◦E, 0◦N. Figure 12 shows the correlations in the 21 year running404

window from 1961 to 2014 between pairs of the three variables: SST anomalies in405

the standard Nino4 box, sea level anomalies in the shifted Nino4 box from the linear406

model experiments, and zonal wind stress anomalies in the CPwest region. The higher407

these correlations, the stronger is the implied Bjerknes feedback centred on the Nino4408

region. It is clear that all three correlations have an upward trend during the analysis409

period. Furthermore, remembering that we are using a 21 year running window here,410

the upward shift in the correlations, which starts in the late 1980’s, coincides with the411

first of the 21 year windows to sit entirely in the post-1976/77 climate shift period.412

Of particular importance in closing the Bjerknes feedback loop is the increase in ther-413

mocline feedback, indicated by the SST/sea level correlation, that was already noted414

in the previous paragraph. What these results indicate is that: (i) SST anomalies in415

the Nino4 region lead to zonal wind stress anomalies in the CPwest region (black);416

(ii) zonal wind stress anomalies in the CPwest region drive sea level anomalies (i.e.417

thermocline depth anomalies) in the Nino4 region, presumably through equatorial418

Kelvin waves (red curve); and (iii) thermocline depth (here sea level) anomalies in419
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the Nino4 region influence SST anomalies through thermocline feedback (blue curve),420

hence closing the Bjerknes feedback loop. Furthermore, the strength of this loop421

has increased during the time period that CP events have become more common, in422

particular since the 1976/77 climate shift.423

Following on from the previous paragraphs, we envisage the following scenario.424

Variations in zonal wind stress to the west of the Nino4 region excite equatorial Kelvin425

waves that propagate eastwards and lead to variations in the thermocline depth in the426

Nino4 region. Furthermore, because of the westward shift in the pivot point, these427

thermocline depth variations are analogous to variations in thermocline depth in the428

Nino3 region, further east, that are traditionally associated with ENSO events. These429

thermocline variations have the potential to influence SST in the Nino4 region through430

the thermocline feedback and, indeed, we have presented evidence for an increase431

in the thermocline feedback in the Nino4 region in recent decades. The resulting432

SST variations manifest themselves in an increased occurrence of CP events (Lee433

and McPhaden, 2010), the SST variability in turn, through the Bjerknes feedback,434

leading to the increased variance in zonal wind stress west of the Nino4 region which,435

in turn, acts to maintain the westward shift in the pivot point. In effect, the Bjerknes436

feedback mechanism operates further west than during EP events, an effect that is437

facilitated by the westward shift of the pivot point for thermocline variations. The438

above analysis suggests that episodes of CP events could occur naturally as part of a439

positive feedback process involving the westward shift of the pivot point. It is known440

that come coupled models exhibit episodes in which CP events become prominent441

(Capotondi et al., 2015), perhaps associated with the positive feedback noted here.442

4 Summary and discussion443

We began by revisiting the relationship between ENSO diversity and EOFs of SST444

over the tropical Pacific (112◦E - 70◦W, 12◦S - 18◦N), here utilizing sea level for445

the tropical Pacific computed using a linear, multi-mode model for the period 1961-446

2014, together with AVISO satellite data that is available from 1993 onwards . Ashok447

et al., (2007) used the second EOF of SST (EOF2) to identify Central Pacific (CP)448

events (what they called ENSO Modoki events) and introduced the EMI index (ENSO449

Modoki Index), based in the spatial pattern of EOF2, as a means of measuring these450

events. Their analysis, however, was confined to the time period after the 1976/77451

climate shift and they had difficulty identifying CP events before the 1976/77 climate452

shift. The existence of CP events is actually quite controversial. Indeed, Takahashi453

et al., (2011) and Dommenget et al., (2013) have argued that ENSO is fundamentally454

nonlinear and that a linear EOF analysis leads to the misleading interpretation that455

CP events, associated with EOF2, operate independently from the East Pacific (EP)456

events, captured by EOF1. Here, we found that the spatial pattern of EOF1 to be457
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quite robust either side of the 1976/77 climate shift and well represents the traditional458

EP events. By contrast, EOF2 is shifted to the west before the 1976/77 climate459

shift and shows the emergence of anomalies in the western Pacific of the same sign as460

those found in the eastern Pacific, consistent with the SST pattern usually associated461

with CP events, after the 1976/77 climate shift. Consistently, the regression of sea462

level and zonal wind stress onto the principal component time series, PC1 and PC2,463

show a significant difference in their spatial patterns either side of the 1976/77 climate464

shift in the case of PC2. The sea level associated with EOF2 in the earlier period looks465

like a propagating Rossby wave and the zonal wind stress has weak easterly anomalies466

along the equator, suggesting the decaying phase of ENSO. The regression in the later467

period, on the other hand, not only shows the characteristics of CP El Niño events468

in the observational studies (e.g. McPhaden, 2004) but also shows similarities to the469

regression patterns obtained using PC1, be they westward shifted. In particular,470

for the positive phase of EOF2, a region of westerly wind stress anomaly along the471

equator is now found in the western equatorial Pacific. These results support the view472

that CP events emerged after the 1976/77 climate shift and, furthermore, that they473

have many of the characteristics usually associated with ENSO.474

We then set out to assess and interpret the change in the thermocline feedback in475

the Nino3 and Nino4 regions associated with ENSO over the period 1961-2014. The476

thermocline feedback is measured by the correlation between SST anomalies and sea477

level anomalies (a proxy for thermocline depth anomalies). Dewitte et al., (2013) show478

evidence, using the SODA ocean reanalysis, that the role of thermocline feedback has479

increased in the Nino4 region and attribute it to the increased stratification in the480

western-central tropical Pacific. Our results also show that the thermocline feedback481

in the Nino4 region underwent a dramatic increase, with the correlation between SST482

and sea level increasing from about 0.4 to over 0.7 in recent decades. We argue that483

this change is rooted in changes in the wind field over the equatorial Pacific, especially484

the western equatorial Pacific, where there was a strong increase in the variance of485

the zonal wind stress throughout our analysis period of 1961-2014.486

As noted above, Dewitte et al., 2013 argue that the increase in thermocline feed-487

back in the Nino4 region was a consequence of the change the strength of the ther-488

mocline following the 1976/77 climate shift. It is an interesting point that changes in489

stratification are not considered by the linear multi-mode model we have used to com-490

pute sea level, since it uses a fixed set of vertical normal modes, derived as described491

in Zhu et al., (2017) from World Ocean Atlas data (Locarnini et al., 2013). Further-492

more, the wind projection coefficients for each vertical mode are fixed throughout493

the analysis period. It follows that the vertical movement of the thermocline that,494

in turn, can influence SST through the thermocline feedback, is not influenced by495

changes in stratification in our analysis. While this does not preclude the possibility496

that changes in stratification can change the SST, it does place emphasis on the role of497
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the wind field in the dynamics of the changing thermocline feedback. It is also worth498

pointing out that CP events occur not only when the thermocline is anomalously flat499

along the equator, as in the years after the 1976/77 climate shift (Yeh et al., 2009),500

but also when the thermocline is anomalously steep, as in the early years of the 21st501

century (Lübbecke and McPhaden, 2014; McPhaden et al., 2011). This also points to502

an important role for the wind field in the dynamics of ENSO diversity.503

The concurrence of increasing thermocline feedback in the Nino4 region, increas-504

ing zonal wind stress variability to the west of the Nino4 region, and the increased505

occurrence of CP events, led us to investigate the Bjerknes feedback (Bjerknes, 1969)506

, as it applies to the Nino4 region. To do this, we followed the approach used in507

Section 6 of Dippe et al., (2017) and work with three key variables: SST and sea508

level anomalies in the Nino4 region and zonal wind stress anomalies in the region509

of 5◦S - 5◦N, 150◦E - 180◦E (called CPwest region) immediately to the west of the510

Nino4 region. CPwest is the region associated with the increasing trend in zonal wind511

stress variance (see Greatbatch et al., submitted; G17). The correlations between the512

pairs of the three variables all exhibit an upward trend during the analysis period,513

indicating that the Bjerknes feedback loop is closed and has been strengthening. Of514

particular importance for closing the loop is the increase in the thermocline feedback515

in the Nino4 region. Moreover, G17 have pointed out that one consequence of the516

increasing zonal wind stress variance in the western Pacific is to shift the pivot point517

associated with the “tilt” mode of Clarke, (2010) to the west. This, in turn, helps to518

increase the thermocline feedback in the Nino4 region, in turn facilitating the emer-519

gence of the Bjerknes feedback in the Nino4 region, favorable for the occurrence of520

the CP events. Furthermore, an increase in the occurrence of CP events increases521

the variance of the zonal wind stress to the west through the Bjerknes feedback. The522

analysis suggests that episodes of CP events could occur naturally as part of a positive523

feedback process involving the westward shift of the pivot point, a topic for further524

investigation.525
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(a) 61-77 EOF1 (46.51%)
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Figure 1: Dimensional spatial pattern of the first Empirical Orthogonal Function

(EOF1) of COBE2 SST anomalies for the period of (a) 1961-1977 and (b) 1978-

2002. Explained variance is denoted in the bracket. (c, d) Normalized time series

of the principal component (PC1) corresponding to (a) and (b) respectively, with the

contemporary Nino3 index superimposed. The correlation between PC1 and the Nino3

index is indicated in each panel. The star subscript refers to correlations above 95%

significance level based on the method of Ebisuzaki, (1997).
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(a) 61-77 EOF2 (16.41%)
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Figure 2: Same as Figure 1, but for EOF2 and with the El Niño Modoki Index (EMI)

substituted for the Nino3 index.
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(a) 61-77 regressed SLA
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(c) 61-77 regressed TAUX
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Figure 3: Spatial patterns of (a) sea level anomalies (SLA) from the ERA-40 ex-

periment in G17 driven by ERA-40 monthly wind stress anomalies and (c) ERA-40

zonal wind stress anomalies (TAUX) regressed onto PC1 for COBE2 SST anomalies

at zero lag for the period of 1961-1977. (b, d) Same as (a) and (c) respectively, but

for the period of 1978-2002. The superimposed black contour lines denote the 95%

significance level based on the method of Ebisuzaki, (1997).
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(a) 61-77 regressed SLA

150 °E 160 °W 110 °W

10 °S

EQ

10 °N

(b) 78-02 regressed SLA

150 °E 160 °W 110 °W

10 °S

EQ

10 °N

c
m

-4

-3

-2

-1

0

1

2

3

4

(c) 61-77 regressed TAUX

150 °E 160 °W 110 °W

10 °S

EQ

10 °N

(d) 78-02 regressed TAUX

150 °E 160 °W 110 °W

10 °S

EQ

10 °N

N
m

-2

×10
-3

-9.6

-6.4

-3.2

0

3.2

6.4

9.6

Figure 4: Same as figure 3, but regressed onto PC2 for SST anomalies.
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Figure 5: Lagged correlations between PC1 and PC2 of COBE2 SST for the period

of 1961-1977 (red curve) and 1978-2002 (blue curve). The corresponding 95% signif-

icance levels based on the method of Ebisuzaki, (1997) are denoted by the horizontal

dashed colored lines, and the coordinates of maximum correlations are highlighted by

the colored dots and text. Positive (negative) lag means PC1 leads (lags) PC2.
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(a) regressed SLA from AVISO(93-14)
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(b) regressed SLA from ERA-Interim exp.(93-14)
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Figure 6: Spatial patterns of (a) AVISO SLA, (b) SLA from the standard ERA-

Interim experiment in Zhu et al., (2017) and (c) ERA-Interim TAUX regressed onto

PC1 for COBE2 SST anomalies at zero lag for the period of 1993-2014. The super-

imposed black contour lines denote the 95% significance level based on the method of

Ebisuzaki, (1997). The rectangle boxes in (a) and (b) indicate the Nino3 box.

22

70



(a) regressed SLA from AVISO(93-14)
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(b) regressed SLA from ERA-Interim exp.(93-14)
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Figure 7: Same as figure 6, but regressed onto PC2. The yellow boxes indicate the

Nino4 boxes used for the analysis. In (b), this is shifted to the east from the standard

Nino4 box (shown using dashed lines yellow lines). The cyan box shows the CPwest

region used for assessing the strength of the Bjerknes feedback (see text for details).
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Figure 8: (a) Spatial distribution of correlations between COBE2 SST anomalies and

SLA from satellite observations (AVISO) for the period 1993-2014. The rectangular

boxes show the Nino3 (blue) and Nino4 (yellow) regions used for computing the sea

level indices SLA[Nino3] and SLA[Nino4] from AVISO, respectively. (b) Same as

(a), but for SLA from the standard experiment driven by ERA-Interim monthly wind

stress anomalies in Zhu et al., (2017). The regions for computing SLA[index] from

the model experiments are shown as in (a). Note that for the Nino4 region, this is

shifted to the east from the standard Nino4 box (shown by dashed yellow lines).
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Figure 9: 15-yr running correlation from 1961 to 2014 between Nino3 and

SLA[Nino3] (red solid curve), Nino4 and SLA[Nino4] (blue solid curve), indicat-

ing the strength of the thermocline feedback in the Nino3 and Nino4 regions. The

SLA[index] is computed from the ERA-40 experiment for the period of 1961-1992 and

from the ERA-Interim experiment for the period of 1993-2014, as explained in the

text. The corresponding running correlations using AVISO sea level are shown by the

black (grey) line for the Nino3 (Nino4) regions, respectively.
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Figure 10: 11-yr running correlation between SST and SLA[Nino4] for the Nino4

regions from the multi-mode model experiments (1961-2014), SODA (1961-2009) and

AVISO (1993-2014).
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Figure 11: 21-yr running variance from 1961 to 2014 of zonal wind stress, TAUX, at

160◦E, 0◦N (red curve-right scale) and 21-yr running correlation from 1961 to 2014

between Nino4 and SLA[Nino4] (blue curve-left scale). The correlation is shown.

SLA’s are same as those used in Figure 9. Similarly, TAUX is the combination of

ERA-40 for the period of 1961-1992 and ERA-Interim for the period of 1993-2014.
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Figure 12: 21-yr running correlations for the period 1961-2014 pairs of the variables

SST (for the Nino4 region), SLA[Nino4] and spatially averaged zonal wind stress over

the box CPwest (5◦S - 5◦N, 150◦E - 180◦E), representing the three components of the

Bjerknes feedback. The Nino4 and CPwest boxes are shown by the yellow and cyan

boxes in Figure 7b and Figure 7c, respectively.
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5 Summary

In this thesis, the interannual sea level variations in the tropical Pacific over the time span

1961-2014 are simulated to investigate the dynamics of ENSO using a linear multi-mode

model, given the good agreement of the ENSO-related sea level variations with the linear

wave dynamics. A special focus is the dynamics of the increasing occurrence of the Central

Pacific ENSO (CP ENSO) contrasting with the classical Eastern Pacific ENSO (EP ENSO),

termed with respect to the locations of maximum Sea Surface Temperature anomalies (SSTa)

during the mature phase, which posts new challenges to the prediction of ENSO in recent two

decades.

The previous three chapters give the answers to the scientific questions raised in Chapter 1.5

as follows.

• Which vertical baroclinic modes are important for ENSO-related sea level

variations in the tropical Pacific? Does the model capture the characteristics

of ENSO (e.g. the pivot point of sea level)? Is the Sverdrup transport

fundamental to the recharge/discharge oscillator (RDO) mechanism for EP

ENSO? (Chapter 2)

→ In the linear multi-mode model for the tropical Pacific (112◦E - 70◦W, 12◦S -

18◦N) built in this thesis, the weighting given to each mode was assigned by fitting

the modelled sea level anomalies (SLA) forced by ERA-Interim monthly wind stress

anomalies (named ERA-I exp.) to the AVISO SLA along the equator over the

period 1993-2014. The signal associated with modes higher than mode 6 (with

approximately zero amplitude) cannot be extracted from the AVISO data. Thus the

model includes the first five vertical modes. Mode 2 is dominant, although with

some role particularly in the western equatorial Pacific for mode 1, the eastern

equatorial Pacific for mode 5, and both regions for mode 3.

The model successfully captures the ENSO events of various strengths and flavors.

An interesting feature is the presence of a pivot point in the western Pacific on the

equator that seems to depend mainly on the fact that most variations in zonal wind

stress occur in the western basin, although there is also a signature from the RDO
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in which eastward/westward zonal mean zonal wind stress anomalies are associated

with a downward/upward displacement of the zonal mean thermocline along the

equator at zero lag.

It is also shown that the recharge/discharge of the warm water volume (WWV)

does not depend on the spatial structure of the wind forcing and, in particular, on

the Sverdrup transport as in the original RDO theory, although the spatial structure

of the wind forcing has a role to play in determining the amplitude of the WWV

along the equator.

• Which wind forcing dataset is more reliable? What are the changes in the

characteristics of ENSO-related sea level variations and their causes, partic-

ularly regarding the pivot point of sea level? (Chapter 3)

→ SLA for the period 1961-2002 are reconstructed with the NCEP/NCAR and ERA-

40 wind forcing (named NCEP/NCAR exp. and ERA-40 exp. respectively) vali-

dated by tide gauge records. The ERA-40 wind product is more reliable than the

NCEP/NCAR product with higher correlations between modelled sea level and tide

gauge data. Besides, the sensitivity experiments driven by only the zonal compo-

nent of the two wind stress products suggest that a large increasing trend in sea

level found in the NCEP/NCAR exp. but not in the ERA-40 exp. is related to a

spurious eastward trend in NCEP/NCAR zonal wind stress in the eastern-central

Pacific.

A way to quantify the location of the pivot point is to identify its location with

the zero crossing of the EOF1 for sea level along the equator. The analysis also

shows a more westward location in the pivot point during the period 1993–2014

than 1961-2002. It is attributed to a persistent upward trend in the zonal stress

variance along the equator west of 160◦W throughout the period 1961-2014.

• Do the EOF1 and EOF2 of SSTa in the tropical Pacific represent EP ENSO

and CP ENSO? What is the role of the thermocline feedback in, and what

is the underlying mechanism for, the emergence of CP ENSO? (Chapter 4)

→ The regression of sea level from ERA-I exp. and ERA-40 exp. onto the principal

component (PC) of EOF2 of SSTa show significantly different spatial patterns

either side of the 1976/77 climate shift, whereas those of EOF1 remain quite

robust throughout the climate shift. The sea level associated with EOF2 in the

earlier period looks like a propagating Rossby wave suggesting the decaying phase

of ENSO, whereas that in the later period shows the characteristics of CP ENSO
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in the observations. Consistently, PC1 leads (lags) PC2 before (after) the 1976/77

climate shift. These results support the view that EOF1 and EOF2 can represent EP

ENSO and CP ENSO after the climate shift, but little evidence for the occurrence

of Central Pacific (CP) events before the 1976/77 climate shift is found.

After the climate shift, the thermocline feedback in the CP (Nino4 region) is found

to increase strongly. At the same time, the Bjerknes feedback mechanism is shown

to increase in strength in the CP, concurrent with the increased occurrence of CP

events. An important point is that the emergence of the thermocline feedback in

the Nino4 region can be related to the westward shift of the pivot point for sea

level (and hence thermocline) variations associated with the increase in zonal wind

stress variance in the western equatorial Pacific, the latter in turn being related

to the increased frequency of CP events due to the increasing Bjerknes feedback.

As the pivot point shifts westward, the Nino4 region is found increasingly to the

east of the pivot point enabling the thermocline feedback to operate there. These

arguments imply a positive feedback in which CP events are self-maintaining and

suggest that they may be part of the natural variability of the climate system and

could occur episodically without the need for changes in external forcing.

All results presented in this thesis are based on the linear multi-mode model and thus rely on

the assumption that the basic dynamics of ENSO phenomenon is mainly controlled by the linear

wave dynamics. Unlike in previous studies, the vertical profile for the wind forcing in the ocean

is not set a prior but determined by the fitting coefficients for the first five modes and thus is

more realistic. Due to the lack of zonal advection in the model, the pivot point for sea level is

displaced systematically to the east of the pivot point in AVISO leading to reduced correlations

between model results and AVISO data in the region near the pivot point. While this should

not influence the relative westward shift of the pivot point in the period 1993-2014 compared

to 1961-2002 found in Chapter 3, this has to be considered in Chapter 4 when assessing the

changes in thermocline feedback in the central Pacific (Nino4 region) including/near the pivot

point. The method is to shift the Nino4 region for the modelled SLA eastward to the location

where the correlation between the modelled SLA averaged over the shifted region and the

AVISO SLA averaged over the normal Nino4 region reaches the maximum. Note that the

changes in the stratification associated with the 1976/77 climate shift, which is attributed

to the increase of thermocline feedback in the Nino4 region by Dewitte et al. (2013), is not

included in the linear multi-mode model because both the vertical structure of vertical modes

and of the wind forcing profile remains unchanged either side of the 1976/77 climate shift.

Therefore, the mechanism for the emergence of CP ENSO in terms of the linear wave dynamics
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proposed in this thesis provides a novel insight for understanding ENSO diversity.

5.1 Outlook

In the mechanism proposed in this thesis for the emergence of CP ENSO in recent two decades,

the location of the pivot point for sea level (hence thermocline) plays the key role. The

westward shift of pivot point leads to increased thermocline feedback and thus increasing

Bjerknes feedback in the central Pacific (Nino4 region). As illustrated in Figure 1.2 from

Dewitte et al. (2013), the pivot point of thermocline depth on the equator corresponds to the

zero skewness of SST. The cold SST asymmetry in the western equatorial Pacific is associated

with the dominance of zonal advective feedback as noted by Belmadani et al. (2010). These

authors also point out that the biases in the advection terms are to a large extent induced

by the biases in the mean surface circulation. Thus, modifying the linear multi-mode model

linearized about a state of rest used in this thesis into a multi-mode model linearized about

a realistic mean flow, by extending the method employed in Claus et al. (2014) from using

barotropic mean flow to using baroclinic mean flow, is of interest for the influence of mean

flow on the characteristics of CP ENSO.

Current state-of-the-art climate models, i.e. coupled general circulation models, still have

problems in simulating the important features of ENSO or the strength of feedbacks, and

there is uncertainty in the future projection for ENSO (Collins et al., 2010; Capotondi et al.,

2015, and references therein). A recent study by Bayr et al. (2017) on the influence of the

mean state of the Pacific on the atmospheric feedback shows that the cold bias (La Niña-

like mean state) in the Nino4 region, a common problem in current climate models, leads to

the rising branch of the Walker Circulation locating in the far west and a weak convective

response, which causes different ENSO dynamics than in observations. The mean state of

the Walker circulation is important for the Bjerknes feedback, which is a main concept in

this thesis to explain the CP ENSO. Besides, they suggest that the mean state SST is a

major source of ENSO diversity. Given that the equatorial cold bias and its consequences are

common in climate models, they suggest to use only one climate model to reduce possible

other causes in further relevant investigations. Motivated by their results, it is important

to look at the proposed mechanism of dependence of the Bjerknes feedbacks in this thesis

on the pivot point in a climate model especially in terms of the oceanic physical processes

(see Section 1.2.2), in particular the relative importance of thermocline feedback and zonal

advective feedback (Belmadani et al., 2010; Lübbecke and McPhaden, 2014). The relative

importance of these feedbacks is of particular interest for deep understanding of ENSO diversity
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and leading oscillator mechanism (see Section 1.2.3) for CP ENSO, for which the RDO is not

thought to be important (Capotondi , 2013).

The Atlantic Nino (e.g. Lübbecke and McPhaden, 2017; Dippe et al., 2017), a counterpart

of Pacific ENSO in the Atlantic Ocean, is another possible direction for future work based on

the method of a linear multi-mode model in this thesis. However, the smaller basin of the

Atlantic compared to the Pacific, and the associated basin mode resonances (Brandt et al.,

2016), may influence the accuracy of the relative importance of vertical modes from this model.
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