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Abstract. In this study, high-resolution bathymetric multi-
beam and optical image data, both obtained within the Bel-
gian manganese (Mn) nodule mining license area by the au-
tonomous underwater vehicle (AUV) Abyss, were combined
in order to create a predictive random forests (RF) machine
learning model. AUV bathymetry reveals small-scale ter-
rain variations, allowing slope estimations and calculation of
bathymetric derivatives such as slope, curvature, and rugged-
ness. Optical AUV imagery provides quantitative informa-
tion regarding the distribution (number and median size) of
Mn nodules. Within the area considered in this study, Mn
nodules show a heterogeneous and spatially clustered pat-
tern, and their number per square meter is negatively corre-
lated with their median size. A prediction of the number of
Mn nodules was achieved by combining information derived
from the acoustic and optical data using a RF model. This
model was tuned by examining the influence of the training
set size, the number of growing trees (ntree), and the number
of predictor variables to be randomly selected at each node
(mtry) on the RF prediction accuracy. The use of larger train-
ing data sets with higher ntree and mtry values increases the
accuracy. To estimate the Mn-nodule abundance, these pre-
dictions were linked to ground-truth data acquired by box
coring. Linking optical and hydroacoustic data revealed a
nonlinear relationship between the Mn-nodule distribution
and topographic characteristics. This highlights the impor-
tance of a detailed terrain reconstruction for a predictive
modeling of Mn-nodule abundance. In addition, this study
underlines the necessity of a sufficient spatial distribution of
the optical data to provide reliable modeling input for the RF.

1 Introduction

High-resolution quantitative predictive mapping of the distri-
bution and abundance of manganese nodules (Mn nodules) is
of interest for both the deep-sea mining industry and scien-
tific fields such as marine geology, geochemistry, and ecol-
ogy. The distribution and abundance of Mn nodules are af-
fected by several factors such as local bathymetry (Craig,
1979; Kodagali, 1988; Kodagali and Sudhakarand, 1993;
Sharma and Kodagali, 1993), sedimentation rate (Glasby,
1976; Frazer and Fisk, 1981; von Stackelberg and Beiers-
dorf, 1991; Skornyakova and Murdmaa, 1992), availabil-
ity of nucleus material (Glasby, 1973), and bottom current
strength (Frazer and Fisk, 1981; Skornyakova and Murdmaa,
1992). As a consequence, the distribution and abundance of
Mn nodules is heterogeneous (Craig, 1979; Frazer and Fisk,
1981; Kodagali, 1988; Kodagali and Sudhakar, 1993; Koda-
gali and Chakraborty, 1999; Kuhn et al., 2011), even on fine
scales of 10 to 1000 m (Peukert et al., 2018a; Alevizos et al.,
2018). This increases the difficulty of quantitative predictive
mapping using remote-sensing methods. Vast areas of the
seafloor can be mapped by ship-mounted, multibeam echo-
sounder systems (MBESs). State-of-the-art MBESs feature a
low frequency (12 kHz) and can map ca. 300 km2 of seafloor
in 4500 m water depth per hour. Hence, low-resolution re-
gional maps can be created at a grid cell size of 50 to 100 m
within which the main Mn-nodule occurrence can become
apparent, based on the backscatter intensity (Kuhn et al.,
2011; Rühlemann et al., 2011; Jung et al., 2001). A general
separation in areas of high and low abundance (kg m−2) of
Mn nodules seems possible, especially in flat areas where
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sedimentological changes and physical influences on the
footprint size and incidence angle of the transmitted acous-
tic pressure wave can be corrected accurately (De Moustier,
1986; Kodagali and Chakraborty, 1999; Chakraborty and
Kodagali, 2004; Kuhn et al., 2010, 2011; Rühlemann et al.,
2011, 2013). However, the patchy distribution of Mn nod-
ules in size and number at meter-scale cannot be resolved
with ship-mounted MBES data (Petersen, 2017). For an oper-
ational resource assessment, a higher resolution of a few me-
ters grid cell size is needed to supply accurate depth, slope,
and Mn-nodule distribution variability (Kuhn et al., 2011).
Supplementary to the spatial mapping by acoustic sensors,
point-based measurements from box corer samples are used
as ground-truth data for training and validation of geosta-
tistical techniques (e.g., kriging) in order to create quanti-
tative maps of Mn-nodule abundance (Mucha et al., 2013;
Rahn, 2017). However, the generally low number of ground-
truth samples during surveys (usually below 10), their limited
sampling area (typically 0.25 m2), and the relatively large
distance between them (> 1 nm) prevent an accurate correla-
tion with the ship-based MBES data and thus a good predic-
tion of the total Mn nodules’ mass and distribution in large
areas (Petersen, 2017). Importantly, the sparse sampling with
box corers affects the performance of interpolation and geo-
statistical techniques, which are typically applied during data
analysis (Li and Heap, 2011, 2014; Kuhn et al., 2016). In
this article, we address this challenge by combining high-
resolution hydroacoustic and optical data sets acquired with
an autonomous underwater vehicle (AUV) and connecting
those data with a machine learning (ML) algorithm (here ran-
dom forests), in order to predict the spatial distribution of the
number of Mn nodules per square meter. Unlike geostatisti-
cal methods, ML can be used to incorporate information from
different bathymetric derivative layers and to detect complex
relationships among predictor variables without making any
prior assumptions about the type of their relationship or value
distribution (Garzn et al., 2006; Lary et al., 2016). To this
end, first predictions have already been achieved (Knobloch
et al., 2017; Vishnu et al., 2017; Alevizos et al., 2018). Here,
we present a complete data analysis workflow for potential
mining exploration (Fig. 1).

1.1 AUV hydroacoustic mapping

AUVs have proven their usefulness for multibeam data ac-
quisition in the deep-sea environment (Grasmueck et al.,
2006; Deschamps et al., 2007; Haase et al., 2009; Wynn et
al., 2014; Clague et al., 2014, 2018; Pierdomenico et al.,
2015; Peukert et al., 2018a). They achieve higher spatial and
vertical resolution compared to ship-mounted MBESs. This
is due to their operation close to the seafloor, which results
in a smaller footprint at a given beam angle and enables
the use of higher frequencies (Henthorn et al., 2006; Mayer,
2006; Caress et al., 2008; Paduan et al., 2009). Additionally,
AUVs avoid problems like near-surface turbulences, bubbles,

Figure 1. Schematic workflow of the data sets used in this study to
enable the spatial assessment of Mn nodules inside the study area.
The medium resolution of AUV MBES (meter scale) refers to the
comparison of the optical and physical data (centimeter scale).

ship noise, and strong sound velocity changes (Kleinrock
et al., 1992a, b; Jakobson et al., 2016; Paul et al., 2016).
They work independently from the surface vessel and op-
erate at a stable altitude. AUVs can efficiently conduct a
dive pattern of dense survey lines and thus reduce survey ef-
fort and costs (Chance et al., 2000; Bellingham, 2001; Bing-
ham et al., 2002; Danson, 2003; Roman and Mather, 2010).
High-resolution bathymetry enables computing bathymetric
derivatives like slope and rugosity with a similarly high res-
olution. These derivatives play an important role in predict-
ing Mn nodules’ distribution and abundance (Craig, 1979;
Kodagali, 1988; Skornyakova and Murdmaa, 1992; Kodagali
and Sudhakar, 1993, Sharma and Kodagali, 1993; Ko et al.,
2006). However, a small number of recent studies have inves-
tigated this role on an AUV scale (Okazaki and Tsune, 2013;
Peukert et al., 2018a; Alevizos et al., 2018).

1.2 Underwater optical data

Underwater optical data have generally played an important
role in the qualitative analysis of the seafloor features and for
the specific task of assessing Mn nodules’ distribution ex-
plicitly (Glasby, 1973; Rogers, 1987; Skornyakova and Mur-
dmaa, 1992; Sharma et al., 1993). The development of auto-
mated detection algorithms enabled quantitative optical im-
age data analysis and subsequent statistical interpretation of
Mn-nodule densities. The spatial coverage of optical imag-
ing is much higher than for box core sampling. The data
resolution remains high enough to reveal the high variance
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in the spatial distribution of nodules at meter scale. Thus
optical data can fill the investigation gap between ground-
truth sampling and hydroacoustic remote sensing (Sharma et
al., 2010, 2013; Schoening et al., 2012a, 2014, 2015, 2016,
2017a; Kuhn and Rathke, 2017). Moreover, mosaicking of
optical data could reveal mining obstacles such as outcrop-
ping basements or volcanic pillow lava flows. In addition,
seafloor photos are the source for evaluating benthic fauna
occurrences and related habitats on a wider area (Schoening
et al., 2012b; Durden et al., 2016).

1.3 Box corer sampling

Box coring is common to obtain physical samples of Mn nod-
ules and sediments for resource assessments and biological
studies. While optical data reveal only the exposed and semi-
buried Mn nodules, box corers collect the top 30–50 cm of
the seafloor with minimum disturbance, allowing an accu-
rate measure of the Mn nodules’ abundance (kg m−2). Box
coring data are used for training and validation in geostatis-
tical methods for quantitative and spatial predictions of Mn
nodules (e.g., Mucha et al., 2013; Knobloch et al., 2017). The
representativeness of box coring data is disputable as few de-
ployments can be made due to time constraints (ca. 4 h per
core) and as the spatial coverage of one sample is rather low
(ca. 0.25 m2).

1.4 Random forests

Random forests (RF) is an ensemble machine learning (ML)
method composed of multiple weaker learners, namely clas-
sification or regression trees (Breiman, 2001a). Within RF an
ensemble of distinct tree models is trained using a random
subsample of the training data for each tree until a maximum
tree size is reached. In each tree, each node is split using the
best among a subset of predictors randomly chosen at that
node instead of using the best split among all variables (Liaw
and Wiener, 2002). Thus, the process is double-randomized
which further reduces the correlation between trees. About
two-thirds of the training data are used to tune the RF while
the remaining “out-of-bag” (OOB) samples are used for an
internal validation. By aggregating the predictions of all trees
(majority votes for classification, the average for regression),
new values can be predicted. This aggregation keeps the bias
low while it reduces the variance, resulting in a more pow-
erful and accurate model. RFs have the ability to estimate
the importance of each predictor variable, which enables
data mining of the high-dimensional prediction data. Ter-
restrial studies use RFs in prospectivity mapping of mineral
deposits (Carranza and Laborte, 2015a, b; 2016; Rodriguez-
Galiano et al., 2014, 2015). In the marine environment, RFs
have been used to combine MBES bathymetry, backscatter,
their derivatives, sediment sampling, and optical data for var-
ious seabed classification and regression tasks (e.g., Li et al.,
2010, 2011a; Che Hasan et al., 2014; Huang et al., 2014).

Further studies showed the robustness of RFs for selected
data sets compared to other ML algorithms (Che Hasan et
al., 2012; Stephens and Diesing, 2014; Diesing and Stephens,
2015; Herkul et al. 2017), as well as to geostatistical and de-
terministic interpolation methods (Li et al., 2010, 2011a, b;
Diesing et al., 2014).

2 Study area

The study area lies in the Clarion–Clipperton Zone (CCZ;
ca. 4× 106 km2) in the eastern central Pacific Ocean. The
CCZ has triggered scientific and industrial interest for sev-
eral decades due to its high resource potential in Mn-nodule
deposits (Hein et al., 2013; Petersen et. al., 2016) with an
average nodule abundance of 15 kg m−2 (SPC, 2013). At the
time of writing, the International Seabed Authority (ISA) has
granted 17 exploration licences inside the CCZ (Fig. 2a). The
study area described here is part of the Belgian GSR (Global
Sea Mineral Resources) license area (Fig. 2b) and will be
referred to as block G77 (Fig. 2c). Overall, this part of the
Belgian license area has a high bathymetric range and com-
plex morphology, due to the presence of submarine volca-
noes, solitary seamounts, and seamount chains. Block G77 is
characterized by a low bathymetric range (77 m) and mostly
gentle slopes (95 % of the area below 5◦). An exception is
located in the eastern part, where subrecent small-scale vol-
canic activity created 15 cone-shaped morphological features
of up to 55 m height and 150 m width that are clustered in an
area of ca. 700 m× 380 m. Despite the gentle slopes, block
G77 is characterized by an uneven microrelief (according to
Dikau, 1990) especially in the western part, where small (2–
4 m) depressions coexist next to short (2–4 m) protrusions. In
the central part, a 30 m high elevation acts as a natural barrier
between the western part of the study area that features more
relief and the eastern part that is deeper and has less relief
(Fig. 2c).

3 Methodology

3.1 Hydroacoustic data acquisition and post-processing

The data (Greinert, 2016) were collected in March 2015
during cruise SO239 EcoResponse (Martínez Arbizu and
Haeckel, 2015) with the German research vessel Sonne.
Ship-based mapping was conducted with a hull-mounted
Kongsberg EM 122 MBES (12 kHz, 0.5◦ along- and 1◦

across-track beam angle, 432 beams with 120◦ swath an-
gle). High-resolution MBES data were acquired with AUV
Abyss (GEOMAR, 2016) inside block G77 equipped with a
Teledyne Reson Seabat 7125 MBES (200 kHz, 2◦ along- and
1◦ across-track beam angle, 256 beams with 130◦ swath an-
gle). The data (60 km of survey lines) were acquired from
50 m altitude and with 100 % swath overlap resulting in an
insonification of 9.5 km2. Post-processing of the AUV data
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Figure 2. (a) Areas of Particular Environmental Interest (APEIs), licensed areas (white), and the Belgium/GSR licenses area (black) within
the CCZ. (b) Regional bathymetric map of the study area, created by the EM 122 MBES on R/V Sonne (cruise SO239). (c) Block G77,
mapped by AUV Abyss with a Teledyne Reson Seabat 7125 MBES.

was conducted with the Teledyne PDS2000 software for
data conversion of the raw data into s7k and GSF format.
Further multibeam processing (sound velocity calibration,
pitch/roll/yaw/latency artifacts correction) was performed
using the Qimera™ software. The largest uncertainties during
AUV operations result from inaccurate navigation and local-
ization in the deep-sea environment (Paull et al., 2014). AUV
Abyss has a combination of five different systems for naviga-
tion and positioning: Global Positioning System (GPS) when
at the sea surface, Doppler velocity log (DVL) when 100 m
or less from the ground, inertial navigation system (INS),
long baseline acoustic navigation (LBL), and dead reckon-
ing (GEOMAR, 2016). Each system has its own limitations
that contribute to the total navigation error (Sibenac et al.,
2004; Chen et al., 2013) that generally results in position-
ing drifts over time. Consequently, this affects the position
accuracy of the MBES and optical data. Our AUV MBES
data processing and an absolute geo-referencing of the result-
ing AUV bathymetry grid with the EM122 ship data, supple-
mented with the use of MBnavadjust in MB-Systems (Caress
et al., 2017), resulted in a well-calibrated AUV bathymetric
data set. The position of the AUV image data “only” relies
on the abovementioned sensors with a “small” position error

that is not quantifiable. Backscatter data were excluded from
the modeling procedure due to artifacts and a generally poor
quality. The output grid cell size for the analyses was set to
3 m× 3 m. The depth raster was exported as ASCII format
for further analysis in SAGA GIS v.6.3.0. SAGA includes
numerous tools that focus on terrain analysis (Conrad, 2015).
Eight bathymetric derivatives were computed (Table 1) with
the SAGA algorithms (Appendix A).

3.2 Optical data acquisition and post-processing

High-resolution optical data (20.2 megapixels) were acquired
by the DeepSurveyCamera system on board AUV Abyss
(Kwasnitschka et al., 2016). During image acquisition, the
altitude above ground was 5 to 11 m, resulting in an over-
lap between the images of ca. 60 % in each direction. In
total, 11 276 photos were acquired in block G77 (Greinert,
2017) and analyzed with the automated image analysis al-
gorithm CoMoNoD (Schoening et al., 2017a, b, c). For each
image this algorithm delineates each individual Mn nodule
and provides quantitative information on each nodule (size
in cm2, alignment of main axis, geographical coordinate of
the nodule). This information is further aggregated per image
to provide the average number of Mn nodules per square me-
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Table 1. The bathymetric derivatives computed in SAGA GIS and used as predictor variables.

Derivative Description

Slope (S) The first derivative of the bathymetry; describes the steepness of a surface

Plan curvature (Pl.C) The second derivative of the bathymetry; perpendicular to the direction of the maximum slope
(Zevenbergen and Thorne, 1987)

Profile curvature (Pr.C) The second derivative of the bathymetry; parallel to the direction of the maximum slope (Zeven-
bergen and Thorne, 1987)

Topographic position index (TPI) Compares the elevation of a single pixel to the average of multiple cells surrounding it at a
defined distance (Weiss, 2001).

Broad-scale (TPI_B) Distance: 150–400 m

Medium-scale (TPI_M) Distance: 50–150 m

Fine-scale (TPI_F) Distance: 0–50 m

Concavity (C) In each cell its value is defined as the percentage of concave downward cells within a constant
radius (Iwahashi and Pike, 2007). Here, a 10-cell radius was used.

Terrain ruggedness index (TRI) A quantitative measure of surface heterogeneity; can be explained as the sum change in eleva-
tion between a central pixel and its neighborhood (Riley et al., 1999). Here, a 10-cell radius was
used.

ter (Mn nodules m−2), the nodule coverage of the seafloor in
percent, and the nodule size distribution in square-centimeter
size quantiles. The algorithm has successfully been applied
for quantitative assessment and predictive modeling of Mn
nodules (Peukert et al., 2018a; Alevizos et al., 2018). Nev-
ertheless, the derived number of Mn nodules m−2 is subject
to uncertainties due to the limitations of the CoMoNoD al-
gorithm and the nonconstant altitude of the AUV, especially
in areas with slopes. The CoMoNoD algorithm cannot de-
tect sediment-covered Mn nodules due to the low or nonex-
istent contrast. It may count two or more adjacent small Mn
nodules as one big nodule or misinterpret benthic fauna or
rock fragments with similar visual features as Mn nodules.
The CoMoNoD algorithm fits an ellipsoid around each de-
tected Mn nodule, which limits the first two disadvantages as
it splits huge Mn nodules and accounts for potentially buried
parts (see discussions in Schoening et al., 2017a). In general,
the first two disadvantages lead to underestimations while
the third one results in an overestimation of the number of
Mn nodules per square meter. These limitations are common,
and the need for corrections (e.g., a factor that describes the
ratio between the number of Mn nodules seen in the photo
and the number of nodules counted in box corers, consider-
ing for the different spatial scales) has been acknowledged
(Sharma and Kodagali, 1993; Sharma et al., 2010, 2013;
Tsune and Okazaki, 2014; Kuhn and Rathke, 2017). Recent
studies show that the difference between image estimates and
the abundance in box corer data (due to sediment covered Mn
nodules) can be 2–4 times higher (Kuhn and Rathke, 2017).
In this study, none of the box corers was obtained exactly at
a location for which optical data exist; thus, no direct com-

parison and verification exist. Taking box corer samples for
verification requires ultrashort baseline (USBL) navigation
and imaging of the seafloor prior to the physical sampling.
The effects of the nonconstant flying altitude on the detec-
tion of Mn nodules per square meter are explained in detail
below. For each photo location, the depth and the bathymet-
ric derivative values were extracted from the hydroacoustic
data. As no absolute geo-referencing could be performed for
the AUV-based photo surveys, drifting sensor data will have
an effect on the alignment between bathymetric and photo
information, which was considered while interpreting the re-
sults.

3.3 Data exploration and spatial analysis

The data exploration, spatial plotting, and analysis was per-
formed with ArcMap™ 10.1, PAST v3.19 (Hammer et al.,
2001), and R (R Development Core Team, 2008). All data
were projected as a UTM Zone 10N coordinate system (to
enable spatial analysis). The existence of spatial autocor-
relation in the distribution of Mn nodules m−2 was exam-
ined by the global Moran’s index (GMI) and Anselin local
Moran’s index (LMI). Both GMI (Moran, 1948, 1950) and
LMI (Anselin, 1995) are well-established for examining the
overall (global) and local spatial autocorrelation, respectively
(e.g., Goodchild, 1986; Fu et al., 2014). GMI attains values
between−1 and 1 with high positive values indicating strong
spatial autocorrelation. High positive LMI index values indi-
cate a local cluster. This cluster could be a group of observa-
tions with high–high (H–H) or low–low (L–L) values regard-
ing the examined variable. A high negative index value im-
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plies local outliers, like high–low (H–L) or low–high (L–H)
clusters, in which an observation has a higher or lower value
in comparison to its adjacent observations. Both Moran’s in-
dex analyses were performed in ArcMap™ 10.1 (for param-
eter settings see Appendix A). One decimal was retained in
the presentation of the results from statistical analysis and RF
modeling.

3.4 Box corer data

A total of five box corers (0.5 m× 0.5 m surface area) were
obtained close to the study area (coordinates not given due to
confidentiality). However, one is located within block G77
(Fig. 3a); this is the result of independent sampling schemes
and purposes during the cruise. Nevertheless, all box core
samples (maximum distance < 1.5 km) were analyzed and
used for further analyses. In the three box corers, the number,
size, and weight of nodules were measured and the abun-
dance (kg m−2) was estimated (mean value: 26.5 kg m−2).
The total number of Mn nodules within each box corer was
compared with the number of Mn nodules on the surface re-
sulting in an average ratio of 1.32 (Table 2). This means that
≈ 25 % of the nodules are not seen on the surface but are
completely buried within the sediment (down to a depth of
about 15 cm).

3.5 RF predictive modeling

The RF modeling was performed with the Marine Geospatial
Ecology Tools (MGET) toolbox in ArcMap™ 10.1. MGET
(Roberts et al., 2010) uses the randomForests R package for
classification and regression (Liaw and Wiener, 2002). Our
target variable (number of Mn nodules m−2 ) is continuous,
so regression was applied. We followed the three main steps
to establish a good model by selecting predictor variables,
and calibration/training of the model and finally validating
the model results.

Selection of predictor variables. The depth (D) and its
derivatives (Table 1) were used as predictor variables. Al-
though RFs can handle a high number of predictor vari-
ables with similar information, the exclusion of highly cor-
related variables can improve the RF performance and de-
crease computation time (Che Hasan, 2014; Li et al., 2016).
Thus, the correlation between derivatives was investigated
using the Spearman’s rank correlation coefficient. None of
the variable pairs was perfectly correlated (ρ ≥ 95), and con-
sequently, all of them were used for RF modeling (Ap-
pendix A).

Calibration of the model. During the calibration process,
the RF parameters were adjusted as follows. The number
of predictor variables to be randomly selected at each node
(mtry), the minimum size of the terminal nodes (nodesize),
and the number of trees to grow (ntree) were set to the default
values, in order to investigate the optimum training size. For
regression RF the default mtry value is 1/3 of the number of

predictor variables (rounded down), nodesize is 5 and ntree
is 500 (Liaw and Wiener, 2002). RF has been demonstrated
to be robust regarding these parameters, and the default val-
ues have given trustworthy results (e.g., Liaw and Wiener,
2002; Diaz-Uriarte and de Andres, 2006; Cutler et al., 2007;
Okun and Priisalu, 2007; Li et al., 2016, 2017). With regards
to the subsampling method (replace), the subsampling with-
out replacement was selected. Although the initial implemen-
tations of the RF algorithm use subsampling with replace-
ment (Breiman, 2001a), later studies showed that this process
might cause a biased selection of predictor variables that vary
in their scale and/or in their number of categories, resulting
in a biased variable importance measurement (Strobl et al.,
2007, 2009; Mitchell, 2011). Based on recent findings, the
raw variable importance was preferred (unscaled) as the fi-
nal parameter (Diaz-Uriarte and de Andres, 2006; Strobl et
al., 2008, 2009; Strobl and and Zeileis, 2008). Using these
settings, the influence of the training sample size was exam-
ined (10 % to 90 % of the total sample in steps of 10 %) and
compared based on the mean of squared residuals (MSR) us-
ing the respective equation provided in the randomForests
R package (Liaw and Wiener, 2002). The different training
groups need to be considered as representative of the total
sample, in order to capture the heterogeneity of the Mn nod-
ules’ spatial distribution. The spatially random selection of
subsamples by MGET ensured similar statistical character-
istics in each group (Appendix A). For each case of differ-
ent training sample size, the model was run 10 times and the
results are presented as the average value of these 10 runs
(Appendix B). Since the optimal training sample size was
defined, the influence of the number of growing trees (ntree)
and the influence of the number of predictor variables to be
randomly selected at each node (mtry) was examined. Only
for the already defined optimum training size were 10 dif-
ferent ntree values (100 to 1000 in steps of 100) and seven
different mtry values (1 to 7 in steps of 1) tested and com-
pared based on the MSR values. In each case of a different
ntree and mtry parameter, the model was run 10 times, and
the results are presented as the average value of these 10 runs
(Appendix B).

Selection and external validation of the optimal model.
Based on the abovementioned results and considering the
sampling and computational cost, the optimal model was se-
lected, run for 30 iterations, and applied to the entire study
area. Its predicted values were validated with the observed
values from the remaining data set that was not used. Several
validation measures were used including the mean absolute
error (MAE), the mean squared error (MSE), and the root
mean squared error (RMSE). The combined use of MAE and
RMSE is a well-established procedure as the MAE can eval-
uate better the overall performance of a model (all individual
differences have equal weight), while the RMSE gives dis-
proportionate weight to large errors showing an increased
sensitivity to the presence of outliers. Due to this charac-
teristic, RMSE is suitable for outlier detection analysis but
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Table 2. The number of Mn nodules on the sediment surface, the total number of Mn nodules per box core, the ratio of those two values, and
the distance of the box corer deployments from the study area in block G77.

Box corer Total number Number of Mn nodules Ratio Abundance Distance from
station of Mn nodules at the surface (kg m−2) G77 area (km)

BC20 40 27 1.5 – 0
BC21 67 58 1.1 27.1 1.4
BC22 29 21 1.4 27.1 0.6
BC23 32 20 1.6 25.2 0.1
BC24 17 16 1.0 – 1
Average 37 28 1.32 26.5 0.6

should not be used solely as an index for the model per-
formance (Willmott and Matsuura, 2005). Both MAE and
RMSE are measured in the same unit as the data. In addition,
the R2, Pearson (r), and Spearman’s rank correlation coeffi-
cients were used to identify the correlation between predicted
and initial values. Finally, the descriptive statistics of pre-
dicted and initial values were compared and a residual anal-
ysis was performed.

3.6 Resource assessment

As the optimal RF model was applied to the entire block G77,
an estimate of the abundance (kg m−2) was computed, based
on the analogy between the corresponding abundance mea-
sured from the average number of Mn nodules in the box
corer data and the number of Mn nodules m−2 in each cell of
the final result of the RF model. Considering that the collec-
tor can recover buried Mn nodules from a maximum depth
of 10–15 cm (Sharma, 1993, 2010), the ratio of 1.32 was ap-
plied to account for Mn nodules not detected in the images,
and areas with a slope of > 3◦ were excluded, assuming that a
potential mining vehicle is limited to less steep slopes (UN-
OET, 1987).

4 Results

4.1 Data exploration

The analysis of AUV photos with the CoMoNoD algorithm
(Schoening et al., 2017a) revealed a rather heterogeneous
pattern of Mn nodules m−2 in the study area, showing ad-
jacent areas with high and low Mn-nodule number (Fig. 3a).
The number of Mn nodules m−2 changes within less than
100 m in the overall study area and in the two main subareas
b and c (Fig. 3a–c). In half of the photos (48 %), the number
of Mn nodules m−2 varies from 30 to 43 with the mean value
being 36.6 Mn nodules m−2. The very small change of 5 %
trimmed mean value indicates the absence of extreme out-
liers, which is confirmed by box plot analysis (Appendix B).
Further analysis of their descriptive and distribution char-
acteristics was performed in order to assess the presence
of normality in the data, with the result that the number of

Mn nodules m−2 is approximately normally distributed (Ap-
pendix B). Although the presence of normality in data is not a
prerequisite assumption in order to perform the RF (Breiman,
2001a), as it is with geostatistical interpolation techniques
like kriging (e.g., Kuhn et al., 2016), this examination can
give us a better understanding of the Mn nodules’ distribu-
tion inside the study area, and it is an important step in order
to examine potential extreme observations which may be de-
rived from wrong measurements and could artificially change
the training range during RF predictive modeling. Moreover,
an absence of linear correlation was observed between Mn
nodules m−2 and the produced bathymetric derivatives, indi-
cating the complexity of the phenomenon (Appendix B).

4.2 Spatial analyses

Spatial analyses revealed the presence of a spatial autocor-
relation in the distribution of Mn nodules m−2. The GMI,
with I = 0.6989, p<0.01, and a Z score > 2.58 indicates a
positive spatial autocorrelation. According to the incremen-
tal analysis, the index takes its highest value in the first 50 m
with a gradual decrease, approaching 0 values after a dis-
tance of 400 m (Fig. 4a). Similarly, the results from the LMI
show that the main size of the spatial clusters does not ex-
ceed 400 m in either direction (Fig. 5a). The main types of
these clusters are H–H and L–L groups (Fig. 4b and Table 3).
A distinct “buffer/transitional zone” with Mn nodules was
found between these two clusters, which does not show a sig-
nificant autocorrelation (Fig. 5b, c). Approximately one-third
of the data does not have a significant clustering (NS). In the
subarea c, the few local H–L and L–H groups are located
in the outer parts of these zones without significant spatial
clustering. Both H–L and L–H (from the entire study area)
only account for 2.1 % of the data (Table 3). The compari-
son of the number of Mn nodules m−2 between the groups
shows a clear discrimination between H–H and L–L clusters
(Fig. 5b). The H–H clusters are in areas with 37.9–78.2 Mn
nodules m−2 whilst the L–L clusters are in areas with 6.8–
35.2 Mn nodules m−2.

The application of the LMI reveals a bias that exists in the
data due to the sampling procedure, especially in the subarea
b (Fig. 5b). Here, the presence of the slope around 2.8◦ forced

www.biogeosciences.net/15/7347/2018/ Biogeosciences, 15, 7347–7377, 2018



7354 I.-Z. Gazis et al.: Quantitative mapping and predictive modeling

Figure 3. (a) The spatial distribution of Mn nodules m−2 inside block G77 and the box corer position. (b) The spatial distribution of Mn
nodules m−2 inside the subarea b. (c) The spatial distribution of Mn nodules m−2 inside the subarea c.

Figure 4. (a) The GMI decrement due to increasing distance, after the first 50 m. (b) The range of Mn nodules m−2 in each clustered group.

the AUV to vary its altitude between the ascending and de-
scending phase (Fig. 6b). This variation seems to affect the
image quality, resulting in fewer nodules being counted for
higher altitudes of the AUV (Figs. 7 and 8). This is also

confirmed by the distribution map of the Mn nodules m−2

(Fig. 3b). It is important to emphasize that this difference
shows up clearly in the LMI results (Fig. 5b) and not in the
distribution map (Fig. 3b); here the arbitrary choice of color
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Figure 5. (a) The spatial distribution of the significant cluster types inside the block G77. (b) The spatial clusters inside the subarea b. (c) The
spatial clusters inside the subarea (c).

Table 3. Number and percentage of samples in each type of spatial
clustering.

Cluster type H–H H–L L–H L–L NS

Counts (n) 3472 121 113 3523 4047
Counts (%) 30.8 1.1 1.0 31.2 35.9

scale can hide this bias during plotting. The comparison of
the detected Mn nodules m−2 in these adjacent lines, inside
the small subarea b, gives a ratio ≈ 1.4 between photos that
have been acquired at 7–9 m altitude and those at 9–11 m al-
titude. The ratio is higher (≈ 1.8) between photos from 5–
7 and 9–11 m altitude. In contrast, the ratio between photos
from 5–7 m altitude and those at 7–9 m altitude is≈ 1.25, in-
dicating that the problem mainly exists at upper and lower
flying altitudes. Despite their different ratio, none of these
groups contain extremely high or low values of Mn nodules
m−2. Moreover, in several parts of the block, the photos from
higher altitude are the only source of information without the
ability for further comparison, and consequently, they cannot
be excluded from the modeling procedure.

Spatial distribution of median size. Plotting of the median
size in square centimeters (Fig. 9) showed that the number of
Mn nodules m−2 is anti-correlated to the median Mn-nodule
size. The Spearman’s rank correlation coefficient and R2 be-
tween these two variables are −0.50 and 0.25, respectively,
supporting this observation (Fig. 10a); other studies found
similar results (Okazaki and Tsune, 2013; Kuhn and Rathke,
2017; Peukert et al., 2018a). The box plot analysis of the me-
dian size values between the H–H and L–L clustered groups
showed that although the L–L group contains the entire range
of median size values (2.8 to 15.9 cm2), the H–H group does
not contain values above 10 cm2 (2.7–10 cm2). This means
in consequence that in areas with significant clustering of
higher numbers of Mn nodules m2, the size of Mn nodules
tends to be smaller (Fig. 10b).

4.3 RF predictive modeling

4.3.1 Effect of training sample size and ntree and mtry
parameters

The results of the modeling procedure demonstrate that the
RF algorithm is influenced by the size of the training sample
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Figure 6. (a) The altitude of AUV Abyss inside block G77. (b) The altitude inside the small subarea b, where the presence of the slope forces
the AUV to modify its altitude, flying closer to the seafloor in the ascending phase (blue lines) and farther from the seafloor in the descending
phase (red lines). (c) In the big subarea c, the AUV flying altitude is mainly constant between 7–9 m for the entire part.

Figure 7. Scatterplot of the AUV altitude (m) and the estimated
number of Mn nodules m−2 inside subarea b. The colors correspond
to the color scale in Fig. 7.

(Fig. 11a). This finding is in accordance with other studies,
in which larger training samples tended to increase the per-

formance of RF (Li et al., 2010, 2011b; Millard and Richard-
son, 2015). The inclusion of a more representative range of
the observed values, and consequently a larger spectrum of
the causal underlying relationships, assists the RF to build
a better model for the prediction of the value distribution
inside the study area. For our data, the decrement becomes
smaller when the size of the training sample increases fur-
ther; it reaches a minimum value of 0.2 between 80 % and
90 %, showing that these additional 10 % do not notably ben-
efit the RF model. However, the absence of stabilization of
the error to a minimum value indicates that more optical data
are needed from this block. The small decrement in error be-
tween 80 % and 90 % was the decisive factor to select 80 %
of the data as training samples (also considering the larger
number of remaining validation data and the reduced com-
putational effort). Based on this data set, the examination
of different numbers of trees showed that the RF error re-
mains constant after 600 trees (Fig. 11b). Less trees result
in a larger error; this becomes particularly evident with less
than 300 trees. With more than 300 trees the range of the
error is reduced (Appendix B). A higher number of trees en-
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Figure 8. Adjacent AUV photos from consecutive dive tracks that were obtained inside subarea b from (a) lower (5–7 m) and (b) higher
(9–11 m) altitudes. Note the decrement in the image brightness. (The area of the photos represents the central part of the photo, i.e., ca. 1/4
of the original photo size.)

Figure 9. (a) The spatial distribution of median Mn-nodule size (in cm2). (b) The estimation of median Mn-nodule size in subarea b and
mainly in its southern part has been probably affected by the nonconstant altitude of the AUV. (c) The distribution of the median size inside
subarea c shows also a clumped pattern.
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Figure 10. (a) The plot of median size (cm2) and number of Mn nodules m−2. (b) The range of median size (cm2) in each type of cluster.
Note the distinct difference in the range between the H–H and L–L cluster type.

ables higher mtry values as there are more opportunities for
each variable to occur in several trees (Strobl et al., 2009).
Similarly to the ntree parameter, a larger number of mtry val-
ues results in a reduced error (Fig. 11c). The error reaches a
minimum and cannot be reduced further for mtry= 6; with
values below 3, the error increases significantly. The differ-
ent numbers of ntree reduced the error by only 0.6 in the
MSR (from 18.8 to 18.2); in contrast, different mtry values
reduced the error by 5.8 in the MSR (23.4 to 17.6), high-
lighting its importance for the prediction accuracy. In gen-
eral a higher number of mtry values is suggested for RF stud-
ies with correlated variables to result in a less biased result
regarding the importance of each variable; this is because
the higher number increases the competition between highly
correlated variables, giving more chances for different selec-
tions (Strobl et al., 2008). The finally selected mtry value of
6 coincides with the recommended approach for mtry (de-
fault, half of the default, and twice the default) suggested
by Breiman (2001a). Despite the importance of this analysis,
within the model with 80 % of the data as a training sample,
the decrease in error by the use of RF tuned values instead
of RF default values was only 0.7 in the MSR values, whilst
the greatest reduction in error (16.5 in the MSR values) came
from the increase in training data set size. This highlights the
increased sensitivity of the method with respect to training
data and that the recommended settings in the R randomFor-
est package (Lia and Wiener, 2002) give trustworthy results,
increasing its simplicity and operational character.

4.3.2 Selection, application and external validation of
the optimal model

Based on the abovementioned findings, the optimal RF re-
gression model, which uses 80 % of training data, 600 trees,
and 6 predictor variables to be randomly selected at each
node, was selected and applied to the entire block G77. The

Table 4. The values of validation measures between predicted and
observed data.

MAE MSE RMSE R2 Pearson Spearman

3.1 19.0 4.4 0.8 0.9 0.9

comparison of the predicted values with the observed values
from the remaining 20 % (2255 observations) of validation
data showed a good predictive performance (Table 4). Ana-
lytically, MAE and RMSE have very low values, R2 has a
high value, and both Pearson’s and Spearman’s correlation
coefficients show a strong positive correlation between the
predicted and observed values. The small deviation between
MAE and RMSE and the same good correlation of the Pear-
son and Spearman factor point towards the absence of ex-
tremely high or low predicted values (outliers). Moreover,
the performance is rather stable among all the iterations (Ap-
pendix B).

The scatterplot and box plot (Fig. 12a and b) illustrate this
good match between predicted and observed values, as con-
firmed also by the descriptive statistics (Table 5). The resid-
ual analysis confirmed further the robustness of the model
(Appendix B).

The statistical analysis also reveals the limitations of the
RF model which cannot predict beyond the range of training
values. It underestimates the maximum predicted values and
overestimates the minimum values (Fig. 12b and Table 5),
a limitation also mentioned by other authors (e.g., Horning,
2010). This happens because in regression RF, the result is
the average value of all the predictions (Breiman, 2001a).
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Figure 11. (a) The effect of training sample size in RF error (in MSR). (b) The effect of the ntree parameter in RF error (in MSR) for the
80 % training size. (c) The effect of the mtry parameter in RF error (in MSR) for the 80 % training size.

Figure 12. Comparison between observed and predicted values: scatterplot (a) and box plots (b).

4.3.3 RF-predicted distribution of Mn nodules m−2

The final application of the RF model for the entire block
G77 predicts that the majority of the area is covered by 30–
45 Mn nodules m−2 (Fig. 13). In the central western part the
distribution is quite uniform (at this scale) with few small ar-
eas of lower numbers. In the western part, there are two ex-
tended areas along the base of the hill with the lowest num-
ber of Mn nodules m−2. Both of these areas have a linear
shape in N–S direction and follow the seafloor topography
with increased slope (> 3◦). The third main patch with mini-
mum Mn nodules m−2 occurs in the eastern depression part.
In contrast, areas with a higher number of Mn nodules m−2

are located mainly in the central upper part of the hill and
eastward facing slope of eastern depression and south of the
subrecent hydrothermally active area.

4.3.4 RF importance

The analysis of the RF variable importance showed that the
best explanatory variable for the distribution of Mn nod-
ules m−2 is depth (Fig. 14a). The partial dependence plot

of depth shows that there are specific depths, which promote
higher numbers of Mn nodules m−2 aggregated in a nonlin-
ear way (Fig. 14b). The two most important variables are the
TPI_B and TPI_M. TRI, TPI_F, C, and S follow in impor-
tance (Fig. 14a). All of them also contribute in a nonlinear
way. (Appendix B). Pl.C and Pr.C do not contribute signifi-
cantly as explanatory variables in the performance of the RF
model (Fig. 14a and Appendix B). Although the RF demon-
strates good overall performance, the small study area and
the arbitrary choice of the spatial scales for the TPI and other
derivatives limit the potential of these variables as indica-
tive explanatory variables on a broader scale. It is well estab-
lished that surface derivatives are scale-dependent with dif-
ferent analysis scales to create alterations in results. Thus the
combined use of different scales (here TPI) in the analysis
and modeling procedure can produce models that do cap-
ture the natural variability and scale dependence (Wilson et
al., 2007; Miller et al., 2014; Ismail et al., 2015; Leempoe
et al., 2015). Due to the lack of relevant literature for AUV
scale data sets, the C and TRI were created with the default
scales of SAGA GIS v.6.3.0, while the three different TPI
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Table 5. Descriptive statistics of observed and predicted values.

Mean SE 5 % trim. mean Median Mode SD Min Max C.L (95 %)

Observed 36.5 0.2 36.3 36.3 40.8 9.4 12.8 78.2 0.4
Predicted 36.7 0.2 36.5 36.2 33.9 7.8 16.2 60.2 0.3

Figure 13. The RF-predicted distribution of Mn nodules m−2 inside block G77.

values were selected based on the minimum possible corre-
lation among them.

4.3.5 Estimation of abundance (kg m−2) of Mn nodules

The predicted Mn-nodule distribution was combined with the
abundance from box corer data (and corrected with the ratio
of buried to unburied Mn nodules, in order to include the top
∼ 15 cm of the sediment), resulting in the Mn nodules’ abun-
dance map shown in Fig. 15. According to this map, block
G77 is a promising area for mining operations. The entire
block is above the cutoff abundance of 5 kg m−2 (UNOET,
1987), with a mean value of 33.8 kg m−2. We calculated that
84 % of block G77 has slopes below 3◦; steeper slopes are lo-
cated mainly at the outer parts of the block, a fact that would
ease establishing an ideal mining path. In this respect, the
AUV scale mapping provides vital information for a poten-
tial mining path by decreasing the possibility of machine fail-
ure due to poorly mapped steep slopes not detected by, e.g.,
ship-based bathymetry (Peukert et al., 2018b). Mn-nodule
distribution maps with this resolution increase the mining ef-
ficiency because local deposit variations can significantly af-
fect the performance of the pickup rate, which is likely deter-
mined by technical parameters of the mining vehicle as well
as the size, burial depth, and abundance of Mn nodules in the
seafloor (Chung, 1996). The exclusion of areas with slopes
> 3◦ resulted in 8 km2 minable seafloor surface. Assuming a
constant 80 % collection efficiency (Volkmann and Lehnen,
2018) and a 30 % reduction in the Mn-nodule weight by the
removal of water (Das and Anand, 2017), the dry mass of

Table 6. The estimated amount of metal mass for five metals, based
on the average values of metal content inside CCZ and a five-metal
HCL-leach recovery method (Volkmann, 2015).

Total wet mass (t): 270 400

Total dry mass (t): 189,280

Metal content Mn Ni Cu Co Mo

Wt % 26.68 1.31 1.11 0.22 0.06
Equal to (t) 50 500 2480 2101 416 113
90 % metal 45 450 2232 1891 374 102
recovery (t)

Mn nodules that can be extracted from the surface and the
first 15 cm of the sediment column amounts to ca. 190 000 t.
In a back-of-the-envelope calculation this quantity – assum-
ing constant metal content inside the study area, equal to the
average metal concentrations inside the CCZ (Table 6) (Volk-
mann, 2015), and 90 % metal recovery efficiency – could re-
sult in an estimated resource haul of 45 450 t Mn, 2232 t Ni,
1891 t Cu, 374 t Co, and 102 t Mo (Table 6).

5 Discussion

We present a case study that highlights the applicability of
the combination of AUV bathymetric and optical data for
Mn-nodule resource modeling using RF machine learning.
The use of AUVs for collecting hydroacoustic and optical
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Figure 14. (a) The variable importance of each predictor in the RF model. (b) The partial dependence plot of depth. The ticks on the graphs
indicate the deciles of the data.

Figure 15. The total abundance of Mn nodules from the surface and embedded in the sediment (max 15 cm), in areas with slope ≤ 3◦ inside
block G77 (continuous values of abundance are not given due to confidentiality).

data in areas of scientific and commercial interest can pro-
vide more precise bathymetric and Mn-nodule distribution
maps. Regarding the bathymetric maps, the accurate and de-
tailed reconstruction of the seafloor bathymetry at meter-
scale resolution enables to use bathymetry and its deriva-
tives as source data layers within a high-resolution RF model.
These data should have high-quality characteristics, as the
presence of acquisition artefacts may affect the robustness of
the modeling procedure (Preston, 2009; Herkül et al., 2017).
The combined use of cameras as the DeepSurveyCamera
(Kwasnitschka et al., 2016) for acquiring high-resolution
photographs and an automated analysis with a state-of-the-
art algorithm (Schoening et al., 2017a) provide essential
quantitative information about the distribution of Mn nod-
ules. Image analysis results are more robust for constant
AUV altitudes (7–9 m) above flat areas (< 3◦), while the al-
ternation of the flying altitude and camera orientation during
the ascending and descending phases limits the quality of the

obtained images and can affect the derived number of Mn
nodules m−2 .

Inside block G77, the number of Mn nodules m−2 seems
to follow a normal distribution without extreme outliers and
without being linearly correlated with the predictor variables
used. Spatially, a clumped autocorrelated pattern is demon-
strated, mainly with clustered areas of H–H and L–L val-
ues. It is still unclear if this heterogeneity is caused by ex-
ternal processes (e.g., topographic characteristics, geochem-
ical conditions, or the availability of nucleus material) or if
it results from the interaction of neighboring Mn nodules.
The areas with a higher number of Mn nodules could pro-
vide more fragments as potential nucleus material. However,
the less available space in these areas may make individ-
ual Mn-nodule growth more difficult, resulting in smaller
median sizes. Conversely, a recent study from Kuhn and
Rathke (2017) showed that the blanketing of the Mn nodules
by sediments is higher for larger Mn nodules and, as a re-

www.biogeosciences.net/15/7347/2018/ Biogeosciences, 15, 7347–7377, 2018



7362 I.-Z. Gazis et al.: Quantitative mapping and predictive modeling

sult, fewer large nodules will be counted, resulting in biased
results in areas where the Mn nodules are bigger. Probably
all of these effects can happen at the same time (with differ-
ent degrees of influence), promoting a given, scale-dependent
spatial structure.

This study did not consider the geochemical properties
of the sediments as input data in the modeling process,
which might give additional clues as to why Mn nodules
are distributed as they are. However, RF importance and
partial dependence plots show that bathymetric and topo-
graphic factors tend to affect this distribution in a nonlinear
way and with the bulk of data plotting in specific ranges of
the bathymetric derivatives. Classic studies have shown that
the bathymetry and the variation in the topographic charac-
teristics of the seafloor affects the sediment deposition en-
vironment and bottom currents and thus also geochemical
processes in the sediment. All these factors determine Mn-
nodule growth and thus affect the distribution of Mn nodules
on regional scales (e.g., Craig, 1979; Sharma and Kodagali,
1993). It is still unknown how these properties influence the
Mn-nodule distribution on meter to tens of meter scales as
seen in our AUV data. The nonlinear relationship between
Mn nodules and bathymetry on such high-resolution scales
only began to be investigated very recently (e.g., Peukert et
al., 2018; Alevizos et al., 2018). To elaborate more on the
hydrodynamic and geochemical reasons behind the observed
distribution pattern, we would need more investigations at
and in the sediment on the same scale.

It should be acknowledged that the aim of any ML pre-
dictive model is to derive accurate predictions based on an
existing (large) number of measurements to capture a com-
plex underlying relationship (e.g., nonlinear and multivari-
ate) between different types of data, for which our theoreti-
cal knowledge or conceptual understanding is still under de-
velopment (Schmueli, 2010; Lary et al., 2016). Especially
due to the constantly increasing size of scientific multivari-
ate data in marine sciences and the existence of such non-
linear relationships between predictor and response variables
(e.g., Zhi et al., 2014; Li et al., 2017), ML and RF are con-
sidered important analytic tools that can objectively reveal
patterns of a (unknown) phenomenon (Genuer et al., 2017;
Kavenski et al., 2009; Lary et al., 2016). Such predictions
may be used to derive causalities or may drive the creation
of new hypotheses. In other words, for a predictive model,
the “unguided” data analyses come first and the interpreta-
tion follows (Breiman, 2001b; Schmueli, 2010; Obermeyer
and Emanuel, 2016). This “a priori” knowledge of the dis-
tribution of the Mn-nodule number and size on such a scale
can contribute to the biological data survey planning, too.
Recent studies showed that the abundance and species rich-
ness of nodule fauna inside the CCZ is affected by the abun-
dance of Mn nodules (Amon et al., 2016; Vanreusel et al.,
2016) as well as their size (Veillette et al., 2007). Thus, high-
priority areas (e.g., those with the highest commercial in-
terest) can be targeted for sampling based on the results of

optic data and RF modeling. The RF modeling takes ad-
vantage of the multilayer information (here: hydroacoustic
and optical data), handling their complex relationships effec-
tively while being resistant to overfitting (Breiman, 2001a).
Moreover, the randomization of the input training points in
each tree in each run results in a completely different train-
ing data set each time with mixed points from the entire
study area. This random selection and mixing of points is
appropriate for clustered data, as it ignores their spatial lo-
cations and consequently limits the influence of spatial auto-
correlation (Appendix B). Along these lines, several authors
have included the values of latitude/longitude and even the
LMI values as predictor variables in order to increase the
model performance (e.g., Li, 2013; Li et al., 2011b, 2013).
RF has a high operational character due to its relatively sim-
ple calibration, which does not request extensive data prepa-
ration/transformation or the need for geostatistical assump-
tions (e.g., stationarity). The selection of the MGET toolbox
(Roberts et al., 2010) further increased the simplicity of the
workflow, as the RF modeling was performed entirely in-
side a graphic environment familiar to many geoscientists.
As RF model runs can be implemented inside various soft-
ware packages in future implementations of this workflow, it
would be interesting to include the uncertainty for the asso-
ciated predictions, e.g., with the use of the quantile regres-
sion forests (Meinshausen, 2006) from the quantregForest R
package (Meinshausen, 2012). However, this will increase
the computational time (Tung et al., 2014) and the simplic-
ity of the procedure, especially if other recently proposed
methodologies of estimating the uncertainty are used: the
jackknife method (Wager et al., 2014), the Monte Carlo ap-
proach (Coulston et al., 2016), and the U statistics approach
(Mentch and Hooker, 2016).

Similarly to other studies (e.g., Cutler et al., 2007; Mil-
lard and Richardson, 2015), RF showed increased stability
in its performance, allowing a small number of iterations to
compute sufficient results. The examination of the main two
tuning parameters (ntree and mtry) showed that the model
performance can be increased compared to default values.
However, the largest improvement results from using more
training data. In this respect, more photos would potentially
improve the RF performance as no clear threshold was ob-
served. Although the number of 11 276 photos seems to rep-
resent a large data set, the heterogeneity of the distribution
and the occurrence of spatial clusters (patches) in different
sizes and the inherent need of RF and ML in general for
big training data sets (van der Ploeg et al., 2014; Obermeyer
and Emanuel, 2016) stresses the need for collecting more and
well-distributed data. The influence of the number of training
data for model performance still remains a discussion point
between studies showing an improvement by adding more
data (e.g., Bishop, 2006) and other studies presenting stable
performance of the model even if more data are added (e.g.,
Zhu et al., 2012). The availability of more data, especially
if they are better distributed (i.e., data that will include the
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entire range of the number of Mn nodules m−2 and come
from all the different sub-terrains), would most likely rein-
force the model to build better and wider relationships be-
tween the predictor and response variables, keeping also a
larger number of validation data points.

Finally, the resource assessment showed that block G77 is
a potential mining area with high average Mn-nodule density
and gentle slopes. While the threshold of 3◦ (UNOET, 1987)
was used here, newer plans for mining machines seem to en-
able operations on steeper slopes (Atmanand and Ramadass,
2017), increasing the total amount of collected Mn nodules
within the area considered herein.

6 Conclusions

The results of this study show that the acquisition and anal-
ysis of optical seafloor data can provide quantitative infor-
mation on the distribution of Mn nodules. This information
can be combined with AUV-based MBES data using RF ma-
chine learning to compute predictions of Mn-nodule occur-
rence on small operational scales. Linking such spatial pre-
dictions with sampling-based physical Mn-nodule data pro-
vides an efficient and effective tool for mapping Mn-nodule
abundance.

Data availability. The data used in this work are available at PAN-
GAEA. This includes MBES ship-based data (Greinert, 2016), op-
tical imagery (Greinert et al., 2017; Schoening, 2017c), and the
source code of the CoMoNoD algorithm (Schoening, 2017b). The
MBES AUV-based data are not publicly available due to the confi-
dentiality of coordinates.
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Appendix A: Methodology

A1 Hydroacoustic data acquisition and post-processing

The calculation of the bathymetric derivatives was per-
formed with the SAGA GIS v6.3.0 Morphometry li-
brary (http://www.saga-gis.org/saga_tool_doc/6.3.0/ta_
morphometry.html, last access: 6 December 2018).

A2 Spatial statistics

Global Moran’s I and local Moran’s I were performed with
the ArcMap™ 10.1 software, using the Spatial Statistics tool-
box, according to the equations provided. As a null hypoth-
esis, it is assumed that the examined attribute is randomly
distributed among the features in the study area. For the op-
timal conceptualization of spatial relationships, the inverse
Euclidian distance method was selected, as it is appropriate
for modeling processes with continuous data in which the
closer two samples are in space, the more likely they are to
interact/influence each other or have been influenced for the
same reasons. The distance threshold was set at 50 m, and
the increment analysis was performed with a step of 50 m.
Moreover, the spatial weights were standardized in order to
minimize any bias that exists due to sampling design (un-
even number of neighbors). Apart from the index value, the p
value and Z score are also provided. The local Moran’s I in-
dicates statistically significant clusters and outliers for a 95 %
confidence level. The high number of observations (� 30)
that was used ensures the robustness of the indexes.

Table A1. Spearman’s correlation coefficient for each pair of predictor variables.

D S Pl.C Pr.C TPI_B TPI_M TPI_F C TRI

D
S −0.07
Pl.C 0.06 −0.02
Pr.C 0.08 −0.01 0.37
TPI_B 0.76 −0.09 0.13 0.16
TPI_M 0.36 −0.06 0.20 0.27 0.72
TPI_F 0.23 −0.05 0.33 0.41 0.47 0.77
C −0.30 0.05 −0.25 −0.34 −0.54 −0.79 −0.90
TRI −0.10 0.91 −0.02 −0.03 −0.12 −0.06 0.04 0.05

Table A2. Descriptive statistics of different training samples.

% training sample: 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %

Training set size 1127 2255 3383 4511 5638 6766 7894 9021 10148
Mean 36.5 36.3 36.6 36.6 36.6 36.7 36.6 36.7 36.6
SE 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1
SD 9.3 9.2 9.4 9.2 9.2 9.3 9.3 9.2 9.3
Minimum 7 13 12 13 12 14 7 7 7
Maximum 63 70 72 66 78 78 78 72 78

A3 RF predictive modeling (selection of predictor
variables)

Correlation among the derivatives was checked by the Spear-
man’s correlation coefficient (ρ). This coefficient was pre-
ferred due to the skewed distribution of the values in the
derivatives. The majority of the possible pairs is uncorrelated
or weakly correlated. Only C vs. TPI_F and TRI vs. S have
a strong correlation. However, they should not be excluded
as they express different topographic characteristics and they
are not correlated with the remainder of derivatives. It should
be mentioned that in similar studies even higher thresholds
have been used during the selection of predictor variables
(Che Hasan et al., 2014; Li et al., 2016, 2017).

The nine training samples with different sizes were created
by the MGET tool “Randomly Split Table into Training and
Testing Records”. The spatial randomness of the procedure,
combined with the many available data, resulted in training
samples with similar descriptive statistics.
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Appendix B: Results

B1 RF predictive modeling (calibration of the model)

The descriptive statistics of the performance of each model
were used as decision factors for the number of iterations
(Tables B1–B5). In all cases, the mean value with very
low standard error, very low standard deviation, range, and
the 95 % confidence interval indicate a rather stable perfor-
mance, without the need for further iterations.

B1.1 Data exploration

The histogram of Mn nodules m−2 (Fig. B1) shows a good
fit with the superimposed theoretical normal curve, with the
shape of the distribution being rather symmetrical. This fact
is supported by the equal 5 % trimmed mean and median
and the slightly different mode (Table B6). Similarly, the
visual inspection of the probability plot (Fig. B1) shows a
good match as a linear pattern is observed for the greatest
part, with slight deviation existing only in the outer parts of
the curve. According to the box plot, there are only 21 mild
outliers (according to Hoaglin et al., 1986; Dawson, 2011),
which correspond to 0.18 % of the total observation. This
percentage is smaller than the 0.8 % threshold that has been
suggested for normal disturbed data (Dawson, 2011).The
small values for skewness and kurtosis combined with the
large sample size further support the normally distributed
pattern of the data (Table B6). Especially for large data sam-
ples, measurements of skewness and kurtosis combined with
the visual inspection of histogram and probability plot are
recommended ways of examining the normality (D’Agostino
et al., 1990; Yaziki and Yolacan, 2007; Field, 2009; Ghasemi
and Zahediasl, 2012; Kim, 2013).

The potential linear correlation between depth, bathymet-
ric derivatives, and the number of Mn nodules m−2 was in-
vestigated using the Spearman’s rank correlation coefficient
(ρ) (Table B7) because of the skewed distribution and pres-
ence of extreme values in the depth and bathymetric deriva-
tive values (Mukaka, 2012).

B1.2 Selection, application, and external validation of
the optimal model

Despite the fact that RF is a full nonparametric technique
and there is no need for the residuals to follow specific as-
sumptions (Breiman, 2001a), the examination of them can
provide an in-depth look at RF performance characteristics.
The scatterplot of residuals against predicted values shows
a random pattern, which is also confirmed by the low values
of Pearson, Spearman, andR2 coefficients between predicted
values and residuals (Fig. B2 and Table B8). Moreover, the
residuals tend to cluster towards the middle of the plot with-
out being systematically high or low and having a zero mean
value (Fig. B2 and Table B9). Their constant variance (ho-
moscedasticity) implies that the distribution of error has the

same range for almost all fitted values. Indeed, 99.3 % of the
residuals are inside the range ±15 and 81.2 % are inside the
range ±5 (Table B10). The presence of outliers is very lim-
ited without affecting the main statistical characteristics of
residuals (Table B9), indicating that the model adequately
fits the overwhelming majority of the observations (> 2165)
and only random variation (that exists in any real, natural
phenomenon) or noise can occur.

The spatial autocorrelation analysis of the residuals using
the global Moran’s index (same settings as Appendix A),
showed low spatial autocorrelation (I = 0.112112, p<0.01
and Z score > 2.58). The index number of the residuals is
relatively low compared with the high initial values of the
original data (I = 0.69890 and I = 0.697747 for the entire
data set and the 80 % training data set, respectively). More-
over, the spatial autocorrelation of the 5 % trimmed residuals
is only 0.093832. According to similar studies (i.e., regres-
sion RF), the presence of spatial autocorrelation in the resid-
uals of the model can result in underestimation of the true
prediction error (Ruß und Kruse, 2010). The presence of low
spatial autocorrelation values in the residuals of regression
RF has been reported also by other authors (e.g., Mascaro et
al., 2014; Xu et al., 2016), and it is a common problem in all
the well-established machine learning methods (e.g., random
forests, neural network, gradient boosting machines, and sup-
port vector machines) when dealing with regression predic-
tions of spatial variables (Gilardi and Bengio, 2009; Ruß und
Kruse, 2010; Santibanez et al., 2015a, b). The spatial plotting
and visual examination of the residuals (Fig. B3) showed that
this spatial clustering exists mainly in the small subarea b and
especially in the areas which are associated with an increased
slope (>3◦), where the AUV is forced to vary its altitude be-
tween the ascending and descending phase and consequently
affects the image quality and the later modeling results.

B1.3 RF importance

The production of the RF partial dependence plots show the
nonlinear character between the Mn nodules m−2 and the
bathymetric derivatives.
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Table B1. Descriptive statistics of MSR from different training set sizes, after 10 iterations with default settings.

% training sample: 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %

Mean 34.8 30.2 26.1 23.3 22.2 21.3 19.7 18.3 18.1
SE 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Median 34.8 30.3 26.1 23.2 22.2 21.3 19.7 18.3 18.1
Mode 34.7 30.3 26.1 23.2 22.2 21.3 19.7 18.3 18.1
SD 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1
Minimum 34.5 30.1 25.9 23.2 22.1 21.2 19.6 18.2 18.1
Maximum 35.1 30.4 26.3 23.5 22.3 21.3 19.7 18.3 18.1
C.I. (95.0 %) 0.1 0.1 0.1 0.1 0.1 0.0 0.0. 0.0 0.0

Table B2. Descriptive statistics of MSR from a different number of the ntree parameter, after 10 iterations with 80 % of the sample as
training data and mtry= 3.

ntree: 100 200 300 400 500 600 700 800 900 1000

Mean 18.8 18.4 18.3 18.3 18.3 18.2 18.2 18.2 18.2 18.2
SE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Median 18.8 18.4 18.3 18.3 18.3 18.2 18.2 18.2 18.2 18.2
Mode 18.8 18.4 18.3 18.3 18.3 18.2 18.2 18.2 18.2 18.2
SD 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0
Minimum 18.5 18.4 18.2 18.2 18.2 18.1 18.1 18.1 18.1 18.1
Maximum 18.9 18.5 18.5 18.4 18.3 18.3 18.3 18.3 18.2 18.2
C.I. (95.0 %) 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table B3. Descriptive statistics of MSR from different number of the mtry parameter, after 10 iterations with 80 % of the sample as training
data and ntree= 600.

mtry: 1 2 3 4 5 6 7

Mean 23.4 19.3 18.2 17.9 17.7 17.6 17.6
SE 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Median 23.4 19.3 18.2 17.9 17.7 17.6 17.6
Mode 23.4 19.3 18.2 17.9 17.7 17.6 17.6
SD 0.0 0.1 0.1 0.1 0.0 0.0 0.0
Minimum 23.3 19.1 18.1 17.8 17.6 17.5 17.6
Maximum 23.5 19.4 18.3 17.9 17.7 17.7 17.7
C.I. (95.0 %) 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Table B4. Descriptive statistics of MSR for the optimum selected RF model, after 30 iterations with 80 % of the sample as training data,
ntree= 600, and mtry= 6.

Mean SE Median Mode SD Minimum Maximum C.I. (95 %)

Optimum RF 17.6 0.0 17.6 17.6 0.0 17.5 17.7 0.0
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Table B5. Descriptive statistics of RF importance for the optimum RF model, after 30 iterations with 80 % of the sample as training data,
ntree= 600, and mtry= 6.

RF importance: Depth TPI_B TPI_M TRI TPI_F C S Pl.C Pr.C

Mean 80.1 63.6 46.7 36.1 24.5 19.7 12.0 2.6 2.4
SE 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Median 80.1 63.5 46.7 36.1 19.7 19.7 11.9 2.6 2.4
Mode 80.1 63.3 46.9 36.1 19.8 19.8 11.9 2.6 2.4
SD 0.4 0.6 0.6 0.2 0.2 0.2 0.2 0.0 0.0
Minimum 79.1 62.6 45.0 35.7 19.2 19.2 11.7 2.5 2.3
Maximum 80.8 64.9 47.7 36.4 20.1 20.1 12.4 2.6 2.5
C.I. (95.0 %) 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0

Figure B1. (a) Histogram of Mn nodules m−2 with the superimposed normal curve. (b) The normal probability plot of Mn nodules m−2. (c)
The box plot of Mn nodules m−2.

Table B6. The descriptive statistics of the number of Mn nodules m−2.

Mean 5 % trim. mean Median Mode SD Min Max Skew. Kurtosis

Mn nodules m−2 36.6 36.4 36.4 39 9.2 6.8 78.2 0.1 −0.4

Table B7. The Spearman’s rank correlation coefficient between Mn nodules m−2, depth, and bathymetric derivatives.

Depth Slope TRI Pl.C Pr.C TPI_B TPI_M TPI_F C.I. (95.0 %)

0.38 0.08 0.07 0.03 0.04 0.29 0.24 0.05 −0.14
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Figure B2. Scatterplot between residuals and predicted values.

Table B8. Pearson, Spearman, and R2 correlation coefficients be-
tween residuals and predicted values.

Pearson Spearman R2

Correlation of residuals and predicted values 0.1 0.2 0.0

Table B9. Main descriptive statistics of residuals and 5 % trimmed
residuals.

Mean SE Median Mode SD

Residuals −0.2 0.1 −0.2 0.6 4.4
5 % trimmed −0.2 0.1 −0.2 0.6 2.9
residuals

Table B10. Residuals range.

Residuals range ±20 ±15 ±10 ±5

% of residuals 99.8 99.3 96.1 81.2
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Figure B3. Spatial plotting of the RF residuals (absolute values). The intervals of their range are in accordance with the Table B10.
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Figure B4. Partial dependence plots for each of the predictor variables. The y axis represents the number of Mn nodules m−2 and the x axis
the values of each predictor variable (depth derivatives). The ticks on the graphs indicate the deciles of the data.
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