Electron and Ion Densities Measurement in Reactive Magnetron Zinc Sputtering Plasma

Article Preview

Abstract:

Abstract. Investigation on the plasma properties is an essential fundamental works in order to precisely control the growth of nanoscale thin film. In the present work, we produced and study the reactive magnetron sputtering plasma in Ar+O2 ambient using a solid Zn target as sputter source. We evaluate the electron temperature, electron density and ion density using Langmuir probe measurement as a function of O2 flow rate and working pressure. We found that the electron temperature increased spontaneously with the oxygen flow rate. The electron temperature was almost doubled when O2 flow rate increased from 0 sccm to 10 sccm. The electron and ion densities increased with the oxygen flow rate between 0 sccm and 5 sccm. However, after 5 sccm of O2 flow rate which is approximately 11% of O2/(O2+Ar) flow rate ratio the electron density decreased drastically. This is due to the electron attachment and the production of negative ion species in Ar+O2 plasma environment. In addition, we found that the ion flux increase monotonically with the O2 flow rate thus will increase the ion bombardment effect on the deposited thin film and eventually damage the thin film. Our experimental results suggest that the O2 flow rate and the working pressure would have a significant influence on ion bombardment effect on deposited thin film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

344-349

Citation:

Online since:

November 2013

Export:

Price:

[1] L. I. Berger, Semiconductor Materials, CRC Press, 1997.

Google Scholar

[2] H. Morkoc and U. Ozgur, ZnO: Fundamentals, Materials and Device Technology, Wiley-VCH, 2009.

Google Scholar

[3] D. C. Kundaliya, S. B. Ogale, S. E. Lofland, S. Dhar, C. J. Metting, S. R. Shinde, Z. Ma, B. Varughese, K. V. Ramanujachary, L. Salamanca-Riba and T. Venkatesan, 2004, On the origin of high-temperture ferromagnetism in the low-temperature-processed Mn-Zn-O system, Nat. Mater. 3, 709-714.

DOI: 10.1038/nmat1221

Google Scholar

[4] M. H. Mamat, M. Z. Sahdan, Z. Khusaimi, A. Zain Ahmed, S. Abdullah and M. Rusop, 2010, Influence of doping concentration on aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications, Optical Materials 32, 696-699.

DOI: 10.1016/j.optmat.2009.12.005

Google Scholar

[5] C. K. Chung, M. W. Liao and C. W. Lai, 2009, Effect of oxygen flow ratios and annealing temperature on Raman and photoluminescence of titanium oxide thin films deposited by reactive magnetron sputtering, Thin Solid Films 518, 1415-1418.

DOI: 10.1016/j.tsf.2009.09.076

Google Scholar

[6] Z. L. Wang, 2004, Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condens. Matter 16, R829-R858.

DOI: 10.1088/0953-8984/16/25/r01

Google Scholar

[7] T. Ghosh and D. Basak, 2011, Effect of oxygen flow rate and radio frequency power on the photoconductivity of highly ultraviolet sensitive ZnO thin films grown by magnetron sputtering, Mater. Res. Bull. 46, 1975-1979.

DOI: 10.1016/j.materresbull.2011.07.019

Google Scholar

[8] T. Kakeno, K. Sakai, H. Komaki, K. Yoshino, H. Sakemi, K. Awai, T. Yamamoto and T. Ikari, 2005, Dependence of oxygen flow rate on piezoelectric photothermal spectra of ZnO thin films grown by a reactive plasma deposition, Materials Science and Engineering B 118, 70-73.

DOI: 10.1016/j.mseb.2004.12.014

Google Scholar

[9] K. Ellmer, 2000, Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties. J. Phys. D: Appl. Phys. 33, R17.

DOI: 10.1088/0022-3727/33/4/201

Google Scholar

[10] Z. Li and W. Gao, 2004, ZnO thin films with DC and RF reactive sputtering, Materials Letters 58, 1363-1370.

DOI: 10.1016/j.matlet.2003.09.028

Google Scholar

[11] B. Liebig, N. St. J. Braithwaite, P. J. Kelly and J. W. Bradley, 2010, Spatial and temporal investigation of high power pulsed magnetron discharges by optical 2D-imaging, Thin Solid Films 519, 1699-1704.

DOI: 10.1016/j.tsf.2010.06.055

Google Scholar

[12] C. W. Hsu, T. C. Cheng, W. H. Huang, H. S. Wu, C. C. Cheng, K. W. Cheng, and S. C. Huang, 2010, Relation between the plasma characteristics and physical properties of functional zinc oxide thin film prepared by radio frequency magnetron sputtering process. Thin Solid Films 518, 1953-1957.

DOI: 10.1016/j.tsf.2009.07.181

Google Scholar

[13] Thomas Thundat, 2008, Flexible approach pays off, Nat. Nanotechnology 3, 133.

Google Scholar

[14] John F. Wager, 2003, Transparent Electronics, Science 300, 1245-1246.

Google Scholar

[15] B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, (2001) 943.

Google Scholar

[16] N. V. Joshy, J. Isaac and M. K. Jayaraj, J. Appl. Phys. 103, (2008) 23305.

Google Scholar

[17] N. H. Al-Hardan, M. J. Abdullah, A. Abdul Aziz, H. Ahmad, and M. Rashid, Physica B 405, (2010) 1081.

Google Scholar

[18] I. Sayago, M. Aleixandre, L. Ares, M. J. Fernandez, J. P. Santos, J. Gutierrez, and M. C. Horrillo, 2005, The effect of the oxygen concentration and the rf power on the zinc oxide films properties deposited by magnetron sputtering, Appl. Surf. Sci. 245, 273-280.

DOI: 10.1016/j.apsusc.2004.10.035

Google Scholar

[19] C. Wiemer, F. Levy and R. Messier, 1996, Langmuir probe evaluation of ion bombardment during Ti-N growth by unbalanced magnetron sputtering, Thin Solid Films 281-282, 52-56.

DOI: 10.1016/0040-6090(96)08573-2

Google Scholar

[20] I. Petrov, V. Orlinov, I. Ivanov and J. Kourtev, 1988, Electrostatic probe measurement in the glow discharge plasma of a D.C. magnetron sputtering system, Contrib. Plasma Phys. 28, 157-167.

DOI: 10.1002/ctpp.2150280207

Google Scholar

[21] N. Nafarizal, N. Takada, K. Nakamura, Y. sago and K. Sasaki, J. Vac. Sci. Technol. A 24(6), (2006) 2206.

Google Scholar