Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Molecular subtypes based on PANoptosis-related genes and tumor microenvironment infiltration characteristics in lower-grade glioma

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

This article was retracted on 11 May 2024

This article has been updated

Abstract

The growth of cancer, the effectiveness of treatment, and prognosis are all closely related to PANoptosis (include pyroptosis, apoptosis, and necroptosis). It remains unclear whether PANoptosis genes (PANGs) may contribute to lower-grade glioma (LGG) tumor microenvironment (TME). In this study, we collected 1203 LGG samples from three public databases and reported that PANoptosis involves TME interaction and prognosis. Firstly, we provided a comprehensive review of the pan-cancer landscape of PANGs in terms of expression characteristics, prognostic value, mutational profile, and pathway regulation. Then, we identified two distinct PANclusters, each with its own molecular, clinical, and immunological profile. We then developed a scoring system for LGG patients called PANscore. As well as investigating immune characteristics, tumor mutational characteristics, and drug sensitivity, we examined the differences between groups with high PANscores and those with low PANscores. Based on this PANscore and clinicopathological variables, an instant nomogram for predicting clinical survival in LGG patients was developed. Our thorough examination of PANGs in LGG revealed their probable function in TME, as well as their clinicopathological characteristics and prognosis. These discoveries could deepen our comprehension of PANGs in LGG and provide doctors fresh perspectives on how to forecast prognosis and create more efficient, individualized treatment plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article and further enquiries can be directed to the corresponding author.

Change history

References

  • Aguila B, Morris AB, Spina R, Bar E, Schraner J, Vinkler R, Sohn JW, Welford SM (2019) The Ig superfamily protein PTGFRN coordinates survival signaling in glioblastoma multiforme. Cancer Lett 462:33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2011) NCBI GEO: archive for functional genomics data sets--10 years on. Nucleic Acids Res 39:D1005–D1010

    Article  CAS  PubMed  Google Scholar 

  • Barth ND, Subiros-Funosas R, Mendive-Tapia L, Duffin R, Shields MA, Cartwright JA, Henriques ST, Sot J, Goñi FM, Lavilla R, Marwick JA, Vermeren S, Rossi AG, Egeblad M, Dransfield I, Vendrell M (2020) A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis. Nat Commun 11:4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Chen H, Yao H, Zhao K, Zhang Y, He D, Zhu Y, Cheng Y, Liu R, Xu R, Cao K (2021) Turning up the heat on non-immunoreactive tumors: pyroptosis influences the tumor immune microenvironment in bladder cancer. Oncogene 40:6381–6393

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Zhang Y, Ren X, Li D, Fu H, Liu C, Zhou W, Liu Q, Liu Q, Wu M (2020) Leucine-rich repeat containing 4 act as an autophagy inhibitor that restores sensitivity of glioblastoma to temozolomide. Oncogene 39:4551–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Xia T, Ge Y, Zhang K, Ji X, Luo S, Shen Y (2022a) Computed tomography imaging-based radiogenomics analysis reveals hypoxia patterns and immunological characteristics in ovarian cancer. Front Immunol 13:868067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Xu Y, Dai Z, Yin H, Zhang K, Shen Y (2022b) Integrative analysis from multicenter studies identifies a WGCNA-derived cancer-associated fibroblast signature for ovarian cancer. Front Immunol 13:951582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goenaga AL, Zhou Y, Legay C, Bougherara H, Huang L, Liu B, Drummond DC, Kirpotin DB, Auclair C, Marks JD, Poul MA (2007) Identification and characterization of tumor antigens by using antibody phage display and intrabody strategies. Mol Immunol 44:3777–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilmain W, Colin S, Legrand E, Vannier JP, Steverlynck C, Bongaerts M, Vasse M, Al-Mahmood S (2011) CD9P-1 expression correlates with the metastatic status of lung cancer, and a truncated form of CD9P-1, GS-168AT2, inhibits in vivo tumour growth. Br J Cancer 104:496–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R, Li Z, Zhu X, Yan P, Song D, Yin H, Hu P, Lin R, Wu S, Meng T, Zhang J, Huang Z (2020) Collagen Type III Alpha 1 chain regulated by GATA-Binding Protein 6 affects Type II IFN response and propanoate metabolism in the recurrence of lower grade glioma. J Cell Mol Med 24:10803–10815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Deng Z, Dai X, Zhao W (2021) PANoptosis: a new insight into oral infectious diseases. Front Immunol 12:789610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karki R, Sharma BR, Lee E, Banoth B, Malireddi RKS, Samir P, Tuladhar S, Mummareddy H, Burton AR, Vogel P, Kanneganti TD (2020) Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI insight 5

  • Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, Schreiner P, Neale G, Vogel P, Webby R, Jonsson CB, Kanneganti TD (2021) Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184:149–168.e17

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Burette A, Chung HS, Kwon SK, Woo J, Lee HW, Kim K, Kim H, Weinberg RJ, Kim E (2006) NGL family PSD-95-interacting adhesion molecules regulate excitatory synapse formation. Nat Neurosci 9:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Kolesnikova TV, Kazarov AR, Lemieux ME, Lafleur MA, Kesari S, Kung AL, Hemler ME (2009) Glioblastoma inhibition by cell surface immunoglobulin protein EWI-2, in vitro and in vivo. Neoplasia 11:77–86 4p following 86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD (2021) AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 597:415–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemasson B, Chenevert TL, Lawrence TS, Tsien C, Sundgren PC, Meyer CR, Junck L, Boes J, Galbán S, Johnson TD, Rehemtulla A, Ross BD, Galbán CJ (2013) Impact of perfusion map analysis on early survival prediction accuracy in glioma patients. Transl Oncol 6:766–774

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Feng J, Liu Y, Liu Q, Fan L, Liu Q, She X, Liu C, Liu T, Zhao C, Wang W, Li G, Wu M (2017) Novel Therapy for glioblastoma multiforme by restoring LRRC4 in tumor cells: LRRC4 inhibits tumor-infitrating regulatory T cells by cytokine and programmed cell death 1-containing exosomes. Front Immunol 8:1748

    Article  PubMed  PubMed Central  Google Scholar 

  • Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A and Ellison DW (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-oncology 23:1231-1251

  • Mala U, Baral TK, Somasundaram K (2022) Integrative analysis of cell adhesion molecules in glioblastoma identified prostaglandin F2 receptor inhibitor (PTGFRN) as an essential gene. BMC Cancer 22:642

    Article  PubMed  PubMed Central  Google Scholar 

  • Malireddi RKS, Karki R, Sundaram B, Kancharana B, Lee S, Samir P, Kanneganti TD (2021) Inflammatory cell death, panoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth. ImmunoHorizons 5:568–580

    Article  PubMed  Google Scholar 

  • Malireddi RKS, Kesavardhana S, Kanneganti TD (2019) ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol 9:406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto-Tomita M, Uchimura K, Bistrup A, Lum DH, Egeblad M, Boudreau N, Werb Z, Rosen SD (2005) Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. In: Neoplasia, vol 7, (New York, N.Y.), pp 1001–1010

  • Nawroth R, van Zante A, Cervantes S, McManus M, Hebrok M, Rosen SD (2007) Extracellular sulfatases, elements of the Wnt signaling pathway, positively regulate growth and tumorigenicity of human pancreatic cancer cells. PLoS One 2:e392

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro-oncology 20:iv1-iv86

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan H, Pan J, Li P, Gao J (2022) Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer. Clin Immunol 238:109019

    Article  CAS  PubMed  Google Scholar 

  • Phillips JJ, Huillard E, Robinson AE, Ward A, Lum DH, Polley MY, Rosen SD, Rowitch DH, Werb Z (2012) Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. J Clin Invest 122:911–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song W, Ren J, Xiang R, Kong C, Fu T (2021) Identification of pyroptosis-related subtypes, the development of a prognosis model, and characterization of tumor microenvironment infiltration in colorectal cancer. Oncoimmunology 10:1987636

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomczak K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol 19:A68–A77

    Google Scholar 

  • Wade A, Robinson AE, Engler JR, Petritsch C, James CD, Phillips JJ (2013) Proteoglycans and their roles in brain cancer. FEBS J 280:2399–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Kanneganti TD (2021) From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J 19:4641–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhao W, Liu X, Guan G, Zhuang M (2019) ARL3 is downregulated and acts as a prognostic biomarker in glioma. J Transl Med 17:210

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo J, Kwon SK, Choi S, Kim S, Lee JR, Dunah AW, Sheng M, Kim E (2009) Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci 12:428–437

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Wang R, Wang Z, Lei Q, Yu Z, Liu C, Li P, Yang Z, Cheng X, Li G, Wu M (2015) NGL-2 is a new partner of PAR complex in axon differentiation. J Neurosci 35:7153–7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wang Z, Wang J, Li J, Wang H, Yue W (2010) Lentivirus-mediated knockdown of cyclin Y (CCNY) inhibits glioma cell proliferation. Oncol Res 18:359–364

    Article  PubMed  Google Scholar 

  • Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, Zhao WJ, Zhang Q, Xiong K (2022) Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res 17:1761–1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan WT, Zhao WJ, Hu XM, Ban XX, Ning WY, Wan H, Zhang Q, Xiong K (2023) PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons. Neural Regen Res 18:357–363

    CAS  PubMed  Google Scholar 

  • Yang C, Zhang H, Chen M, Wang S, Qian R, Zhang L, Huang X, Wang J, Liu Z, Qin W, Wang C, Hang H, Wang H (2022) A survey of optimal strategy for signature-based drug repositioning and an application to liver cancer. eLife 11

  • Ye Y, Dai Q, Qi H (2021) A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer. Cell Death Dis 7:71

    Article  CAS  Google Scholar 

  • Ye Y, Xiang Y, Ozguc FM, Kim Y, Liu CJ, Park PK, Hu Q, Diao L, Lou Y, Lin C, Guo AY, Zhou B, Wang L, Chen Z, Takahashi JS, Mills GB, Yoo SH, Han L (2018) The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy. Cell systems 6:314–328.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng WJ, Yang YL, Liu ZZ, Wen ZP, Chen YH, Hu XL, Cheng Q, Xiao J, Zhao J, Chen XP (2018) Integrative analysis of DNA methylation and gene expression identify a three-gene signature for predicting prognosis in lower-grade gliomas. Cell Physiol Biochem 47:428–439

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, Wu F, Chai R, Wang Z, Zhang C, Zhang W, Bao Z, Jiang T (2021) Chinese Glioma Genome Atlas (CGGA): a comprehensive resource with functional genomic data from Chinese glioma patients. Genom Proteom Bioinform 19:1–12

    Article  CAS  Google Scholar 

  • Zheng M, Kanneganti TD (2020) The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev 297:26–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA (2006) Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 17:2476–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Xinjiang Key Laboratory of Neurological Disorder Research (grant number: XJDX1711-2202).

Author information

Authors and Affiliations

Authors

Contributions

AA, AM: the study’s design, data analysis, and article writing were all completed. NY, QF, SL, YL: checked the text and assisted with data analysis and collation. YW, QZ: reviewed and revised the manuscript. The article’s submission was reviewed and approved by all authors.

Corresponding authors

Correspondence to Yongxin Wang or Qingjiu Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s10142-024-01374-3

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abulaiti, A., Maimaiti, A., Yiming, N. et al. RETRACTED ARTICLE: Molecular subtypes based on PANoptosis-related genes and tumor microenvironment infiltration characteristics in lower-grade glioma. Funct Integr Genomics 23, 84 (2023). https://doi.org/10.1007/s10142-023-01003-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01003-5

Keywords

Navigation