Skip to main content
Log in

Secular variation of calcium carbonate mineralogy; an evaluation of ooid and micrite chemistries

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

In der Kohlenkalk-Schelffazies des Untertournais bei Velbert (Bundesrepublik Deutschland) lassen sich drei Ooidtypen unterscheiden. Gemeinsam ist diesen Ooiden ein vorwiegend konzentrischer Lagenbau. Dagegen ist das Vorkommen radial-konzentrischer und radial-fibröser Ooide minimal. Die diagenetische Entwicklung der Kohlenkalkooide ist hinsichtlich ihrer chemischen Zusammensetzung deutlich von gleichalten Crinoiden- oder Brachiopodenmaterial zu unterscheiden. Strukturelle Beobachtungen lassen darauf schließen, daß radial-konzentrische und radial-fibröse Ooide ursprünglich aus Aragonit/Hoch-Mg-Calcit bzw. Hoch-Mg-Calcit bestanden. Die Zusammensetzung der Spurenelemente und die Struktur der konzentrisch aufgebauten Ooide hingegen deutet auf eine Fällung von Aragonit, der im Laufe der Diagenese zu Niedrig-Mg-Calcit umgewandelt wurde.

In letzter Zeit wurde in einigen Veröffentlichungen die These vertreten, daß die Mineralogie von nicht-skelett Karbonaten zwischen Calcit und Aragonit in unbekannten Intervallen wechselt. Wechsel des atmosphärischen CO2 Drucks und des Mg/Ca Verhältnisses in den Ozeanen während des Phanerozoikums könnten Vorgänge sein, die die vorherrschende Mineralogie dieser Karbonate beeinflussen. In dieser Arbeit wird der Chemismus der Kohlenkalkooide in Verbindung mit anderen Ooiden und Daten über Mikrite des Mittelpaläozoikums bis heute in bezug auf den Wechsel zwischen »Calcit«- und »Aragonit-Ozeanen« diskutiert. Der Strontiumgehalt der Ooide (¯x = 1010 ppm, Spannbreite: 145–3010 ppm) und der Mikrite (¯x = 841 ppm, Spannbreite: 3–8800 ppm) spricht für eine primäre Aragonitfällung. Zwischen der Ooid/Mikrit Chemie und ihrer Mineralogie gab es keine mögliche statistische Korrelation. Daraus schließen wir, daß während des ganzen Phanerozoikums aragonitische Ooide und mikrite große Bedeutung in flachmarinen Schelfregionen mit Karbonatsedimentation hatten und haben. Das Vorkommen aragonitischer und calcitischer Ooide ist wahrscheinlich an hydraulische und physiko-chemische Vorgänge gebunden, die auf globale Tektonik, eustatische-, klimatische- und atmosphärische Veränderungen zurückzuführen sind. Diese führten dazu, daß die ursprüngliche Geochemie und Struktur diagenetisch verändert wurde.

Abstract

Three ooid types are recognized from the Lower Tournaisian »Kohlenkalk« shelf facies at Velbert, Germany. Ooids from this unit have a predominantly concentric laminae fabric. Radial-concentric and small radial fibrous ooids are minor components to this oolite. The diagenetic response of Kohlenkalk ooid chemistry is significantly different from that observed in contemporaneous crinoid and brachiopod material. Fabric evidence suggests that radial-concentric and radial-fibrous ooids were probably originally aragonite/high-Mg calcite and high-Mg calcite respectively. Fabric and trace elemental chemistries of the concentric fabric ooids suggests that they were originally precipitated as aragonite and subsequently altered to low-Mg calcite.

Recent papers have proposed temporal shifts in the dominant mineralogy of shallow marine non-skeletal carbonates between calcite and aragonite. Changing Phanerozoic atmospheric pCO2 levels and oceanic Mg/Ca ratios may have been factors controlling the dominant mineralogy. The chemistries of the Kohlenkalk ooids in conjunction with other ooid and micrite data spanning the Mid-Paleozoic to Recent are evaluated in context with these temporal shifts between »calcite« and »aragonite seas«. The strontium chemistries of the ooids (¯x = 1010 ppm, range 145–3010 ppm) and micrites (¯x = 841 ppm, range 3–8800 ppm) suggests they had an aragonite precursor mineralogy. No statistical correlation was observed between ooid/micrite chemistries, their mineralogies and the proposed secular trend. Therefore, we suggest that aragonitic ooids and micrites were dominant components of shallow-marine carbonate environments throughout the Phanerozoic. The distribution and abundance of aragonitic and calcitic ooids in the geologic past was probably dependant on local hydraulic, physicochemical, and environmental conditions, areally constrained by global tectonics, eustatic, climatic and atmospheric effects, with significant diagenetic overprinting of the original geochemical and fabric information.

Résumé

Parmi les facies de plate-forme du Tournaisien inférieur, dans le calcaire carbonifère de Velbert (RFA), on distingue trois types d'ooïdes: les plus abondantes présentent une structure lamellaire concentrique; d'autres, en quantité subordonnée, sont radiaires-concentriques et fibro-radiées. En réponse à leur chimisme, les ooïdes du calcaire carbonifère ont connu une évolution diagénétique nettement différente de celle des sédiments à crinoïdes et à brachiopodes de même âge. L'organisation structurale des ooides radiaires-concentriques et fibro-radiées indique que'elles étaient constituées respectivement d'aragonite + calcite magnésienne et de calcite magnésienne. Par contre, la structure et le chimisme des éléments en traces des ooïdes concentriques suggèrent qu'elles ont été d'abord précipitées en aragonite et transformées ensuite en calcite pauvre en Mg.

Selon certains travaux récents, la composition minéralogique des sédiments carbonatés non organo-détritiques aurait fluctué au cours du temps entre l'aragonite et la calcite. Des factures déterminants de ce processus auraient pû être les changements, au cours du Phanérozoïque, de pCO2 dans l'atmosphère et du rapport Mg/Ca dans les océans. Le chimisme des ooïdes du calcaire carbonifère, comparé à celui de micrites et d'autres ooïdes d'âges phanérozoïque moyen à récent est examiné en relation avec ces passages de «mers à calcite» à «mer à aragonite» au cours du temps. Le chimisme du Sr des ooïdes (x = 1010 ppm; intervalle 145–3010 ppm) et des micrites (x = 841 ppm; intervalle 3–8800 ppm) suggère une précipitation primaire d'aragonite. Il n'apparaît aucune corrélation statistique entre le chimisme des ooïdes et micrites, leur minéralogie, et les fluctuations temporelles suggérées. Pour ces raisons, nous pensons que les ooïdes et micrites aragonitiques ont été les composants dominants des milieux carbonatés peu profonds pendant tout le Phanérozoïque. L'abondance et la répartition des ooïdes aragonitiques et calcitiques dans la nature ancienne ont vraisemblablement résulté de conditions locales hydrauliques, physico-chimiques et d'environnement, déterminées par la tectonique globale, et par les changements eustatiques, climatiques ou atmosphériques, qui ont surimposé leur empreinte diagénetique aux caractères structuraux et géochimiques primaires.

Краткое содержание

В шельфовой фации изв естняка нижнего карб она нижне-турнейского яр уса в регионе Вельбер та (Федеративная Республика Германия) установлены три типа ооидов, имеющих гл. обр. концентрическое стр оение; радиально-концентри ческое и радиально-фи брозное строение встречаетс я здесь редко. Диагене тическое развитие известняка нижнего карбона знач ительно отличает его от матер иала криноидов и брах иопод сегодняшнего дня по и х химическому состав у. Изучение структуры разрещает заключить, что исходн ым материалом радиальн о-концентрических и радиальнофиброзных ооидов является араг онит-кальцит с высоки м содержанием магния, и ли кальцит с высоким содержанием магния. Н а основании изучения микроэлементов и строения концентри ческих ооидов пришли к заключению, что здес ь выпадал арагонит, ко торый превращался под влия нием процессов диаге неза в кальцит с низким соде ржанием магния.

В последнее время в не которых опубликован иях высказывается предп оложение, что у карбон атов нескелетного происхождения в неки е интервалы времени происходит смена кал ьцита на арагонит и на оборот. Изменение давления а тмосферного СО2 и соо тношения магния/кальция во вре мя фанерозоя могут бы ть теми процессами, кото рые влияют на состав э тих карбонатных пород. В д анном опубликовании обсуждается химизм ооидов извест няка нижнего карбона и проводится сравнени е с ооидами иного сост ава, а также с данными о микритах о т среднего палеозоя д о сегодняшнего дня с точки зрения сме ны кальцита и арагони та в океанах. Содержание стронция в ооидах / ¯х 1010 ррm; диапазон: 145–3010 ррm / и ми критах / ¯х - 841 ррт; диапазон: 3–8800 ррm / гов орит и первичном выпа дении арагонита. Между хими змом ооидов/микритов и их минералогией ста тистической корреля ции установить не удалос ь. Авторы заключают, чт о во время фанерозоя араг онитовые ооиды и микр иты играли большую роль в мелководных региона х шельфа, где шло образование к арбонатных пород. Поя вление арагонитовых и калыг ятовых ооидов, вероят но связано с гидравличе скими и физико-химиче скими процессами, вызванны ми тектоническими со бытиями в глобальном масштаб е и приводящими к эвст атическим, климатическим и атмо сферным изменениям в то время. Вызванные эт ими изменениями диагенетические процессы оказали бол ьшое влияние на геохи мический состав этих ооидов.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alexandersson, T. (1969): Recent littoral and sublittoral high-Mg calcite lithification in the Mediterranean.- Sedimentology,12, 47–61.

    Google Scholar 

  • Arthur, M. A.,Dean, W. E. &Schlanger, S. O. (1985): Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. - In: The carbon cycle and atmospheric CO2; Natural variations Archean to Present, Sundquist, E. T., and Broecker, W. S. (eds.): American Geophysical Union Monograph,32, p.

  • Bathurst, R. G. C. (1975): Carbonate sediments and their diagenesis. - Elsevier, Amsterdam, 231–319.

    Google Scholar 

  • Berner, R. A., Berner, E. K. &Kier, R. S. (1976): Aragonite dissolution on the Bermuda Pedestal, it's depth and geochemical significance. - Earth Planetary Science Letters,30, 169–178.

    Google Scholar 

  • —,Lasaga, A. C. &Garrels, R. M. (1983): The carbonatesilicate geochemical cycle and it's effect on atmospheric carbon dioxide over the past 100 million years. - American Journal of Science,283, 641–683.

    Google Scholar 

  • Boardman, M. R., Neumann, A. C., Baker, P. A., Dulin, L. A., Kenter, R. J., Hunter, G. E. &Kiefer, K. B. (1986a): Banktop responses to Quaternary fluctuations in sea level recorded in peri-platform sediments. - Geology,14, 28–31.

    Google Scholar 

  • — (1986b): Reply: Banktop responses to Quaternary fluctuations m sea level recorded in peri-platform sediments. - Geology,14, p. 1040–1041.

    Google Scholar 

  • Bordine, B. W. (1965): Paleoecologic implications of strontium, calcium and magnesium in Jurassic rocks near Thistle, Utah.- Brigham Young University Geology Studies,12, 91–120.

    Google Scholar 

  • Brand, U. (1981): Mineralogy and chemistry of the lower Pennsylvanian Kendrick fauna, eastern Kentucky, 1: Trace elements.- Chemical Geology,32, 1–16.

    Google Scholar 

  • — (1983): Mineralogy and chemistry of the lower Pennsylvanian Kendrick fauna, eastern Kentucky, U.S.A.- Chemical Geology,40, 167–181.

    Google Scholar 

  • — (1987a): Depositional analysis of the Breathitt Formation's marine horizons, Kentucky: Trace elements and stable isotopes. - Isotope Geoscience,65, 117–136.

    Google Scholar 

  • — (1987b): Biogeochemistry of nautiloids and paleo-environmental conditions of Buckhorn seawater (Pennsylvanian), southern Oklahoma. - Palaeoecology, Palaeoclimatology, Palaeogeography,62, 255–264.

    Google Scholar 

  • — (1989 a): Aragonite-calcite transformation based on Pennsylvanian molluscs. - Geological Society of America Bulletin,101, 377–390.

    Google Scholar 

  • — (1989 b): Biogeochemistry of late Paleozoic North American brachiopods and secular variation of seawater composition. - Biogeochemistry,7, 159–193.

    Google Scholar 

  • Brand, U. &Morrison, J. O. (1987): Diagenesis and pyritization of crinoid ossicles. - Canadian Journal of Earth Sciences,24, 2486–2498.

    Google Scholar 

  • — &Veizer, J. (1980): Chemical diagenesis of a multi-component carbonate system-1: Trace elements. - Journal of Sedimentary Petrology,50, no. 4, 1219–1236.

    Google Scholar 

  • - (1983): Origin of a coated grains: Trace element constraints. - In: Coated Grains: Heidelberg, Peryt, T. M. (ed)., Springer-Verlag, p. 9–26.

  • Burton, E. A. &Walter, L. M. (1987a): Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control? - Geology,15, 111–114.

    Google Scholar 

  • - (1987b): Experimental evaluation of chemical controls on marine carbonate mineralogy: implications for paleoocean modelling. - A.A.P. G., Research Conference on Chemostratigraphy and the Evolution of the Ocean-Atmosphere System, 6p.

  • Chow, N. &James, N. P. (1988): Facies-specific, calcitic and bimineralic ooids from Middle and Upper Cambrian platform carbonates, Western Newfoundland, Canada. - Journal of Sedimentary Petrology,57, 970–921.

    Google Scholar 

  • Davies, P. J. (1972): Trace element distribution in reef and subreef rocks of Jurassic age in Britain and Switzerland.- Journal of Sedimentary Petrology,42, 183–194.

    Google Scholar 

  • — &Martin, K. (1978): Radial aragonitic ooids, Lizard Island, Great Barrier Reef, Queensland, Australia, Geology,4, 120–122.

    Google Scholar 

  • Droxler, A. W. (1986): Banktop responses to Quaternary fluctuations in sea level recorded in peri-platform sediments: Discussion. - Geology,14, 1038–1040.

    Google Scholar 

  • —,Morse, J. W. &Kornicker, W. A. (1988): Controls on carbonate mineral accumulation. - Journal of Sedimentary Petrology,58, 120–130.

    Google Scholar 

  • Engel, A. E. J. &Engel, C. G. (1964): Continental accretion and the evolution of North America. - In: Advancing frontiers in Geology and geophysics, Subramanian, A. P., and Balakrishna, S., (eds.): Indian Geophysical Union, p. 17–37.

  • Fischer, A. G. (1981): Climatic oscillations in the biosphere. - In: Biotic crises in ecological and evolutionary time, Nitecki, M. H., (ed.): New York, N. Y., Academic Press Inc., p. 103–131.

    Google Scholar 

  • — (1984): Long term oscillations recorded in stratigraphy. - In: Climate in Earth History, Berger, W. (ed.): National Academic Press, Washington D.C., p. 97–104.

    Google Scholar 

  • Flannery, B. P.,Callegari, A. J.,Hoffert, M. I.,Hseih, C. T. &Wainger, M. D. (1985): CO2 driven equator to pole paleotemperatures: Predictions of an energy balance climate model with or without a tropical evaporation buffer. - In: The carbon cycle and atmospheric CO2, Natural variations Archean to Present, Sundquist, E. T., and Broecker, W. S. (eds.): American Geophysical Union Monograph,32, 70–77.

  • Gavish, E. &Friedman, G. M. (1969): Progressive diagenesis in Quaternary to Late Tertiary carbonate sediments: Sequence and time scale. - Journal of Sedimentary Petrology,39, 980–1006.

    Google Scholar 

  • Given, K. R. &Wilkinson, B. H. (1985): Kinetic control of morphology, composition and mineralogy of abiotic sedimentary carbonates. - Journal of Sedimentary Petrology,55, 109–119.

    Google Scholar 

  • Grotzinger, J. P. &Reed, J. F. (1983): Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) Rocknest dolomite, Wopmay orogen, northwest Canada. - Geology,11, 710–713.

    Google Scholar 

  • Hallam, A. (1977): Secular changes in marine inundation of USSR and North America through the Phanerozoic. - Nature,269, 769–772.

    Google Scholar 

  • Heller, P. L., Komar, P. D. &Pevear, D. R. (1980): Transport processes in ooid genesis.- Journal of Sedimentary Petrology,50, 943–952.

    Google Scholar 

  • Hird, K. &Tucker, M. E. (1988): Contrasting diagenesis of two Carboniferous Oolites from South Wales: a tale of climatic influence. - Sedimentology,35, 587–602.

    Google Scholar 

  • James, N. P. &Ginsburg, R. N. (1979): The seaward margins of Belize Barrier and Atoll Reefs. - International Association of Sedimentologists Special Publication, 197 p.

  • — &Choquette, P. W. (1983): Diagenesis 6. Limestones — the sea floor diagenetic environment. - Geoscience Canada,11, 161–194.

    Google Scholar 

  • Kahle, C. F. (1965): Strontium in oolitic limestones. - Journal of Sedimentary Petrology,35, 846–856.

    Google Scholar 

  • Kulp, J. L., Turekian, K. &Boyd, D. W. (1952): Strontium content of limestones and fossils.- Geological Society of America Bulletin,63, 701–716.

    Google Scholar 

  • Land, L. S., Behrens, E. W. &Frishman (1979): The ooids of Baffin Bay, Texas. - Journal of Sedimentary Petrology,37, 1269–1279.

    Google Scholar 

  • Langheinrich, G. Von (1974): Die Deformation des Tournai-Ooliths im Velberter Sattel. - Nachrichten Deutsche Geologische Gesell., scherbl., Hannover, Alholiv,11, 30–31.

    Google Scholar 

  • Lasaga, A. C.,Berner, R. A. &Garrels, R. M. (1985): An improved geochemical model of atmospheric CO2 fluctuation over the past 100 million years. - In: The carbon cycle and atmospheric CO2; Natural variations Archean to Present, Sundquist, E. T. and Broecker, W. S. (eds.): American Geophysical Union Monograph,32, 397–412.

  • Lindholm, R. C. &Finkelman, R. B. (1972): Calcite staining: Semiquantitative determination of ferrous iron.- Journal of Sedimentary Petrology,42, 239–242.

    Google Scholar 

  • Lloyd, R. M., Perkins &Kerr, S. D. (1987): Beach and shoreface ooid deposition on shallow interior banks, Turks and Caicos Islands, British West Indies. - Journal of Sedimentary Petrology,57, 976–982.

    Google Scholar 

  • Mackenzie, F. T. &Pigott, J. D. (1981): Tectonic controls of Phanerozoic sedimentary rock cycling.- Journal of the Geological Society London,138, 183–196.

    Google Scholar 

  • Marshall, J. F. &Davies, P. J. (1975): High magnesium calcite ooids from the Great. Barrier Reef.- Journal of Sedimentary Petrology,45, 285–291.

    Google Scholar 

  • Medwedeff, D. A. &Wilkinson, B. H. (1983): Cortical fabrics in calcite and aragonite ooids. - In: Coated Grains: Heidelberg, Peryt, T. M. (ed.): Springer-Verlag, p. 109–115.

  • Milliken, J. L. &Pigott, J. D. (1977): Variation of oceanic Mg/Ca ratio through time: implication of the calcite sea. - Geological Society of America Program of Abstracts,9, 64–65.

    Google Scholar 

  • Milliman, J. D. (1974): Marine Carbonates: Springer-Verlag, Berlin, 375 p.

    Google Scholar 

  • — &Barretto, H. T. (1975): Relict magnesian calcite oolite and subsidence of the Amazon shelf. - Sedimentology,22, 137–145.

    Google Scholar 

  • Moore, C. H. &Druckman, Y. (1981): Burial diagenesis and porosity evolution, Upper Jurassic Smackover, Arkansas and Louisiana. - American Association Petroleum Geologists Bulletin,65, 597–628.

    Google Scholar 

  • Morrison, J. O. &Brand, U. (1986): Paleoscene #5: Geochemistry of Recent marine invertebrates.- Geoscience Canada,13, 237–254.

    Google Scholar 

  • —,Brand, U. &Rollins, H. B. (1985): Paleoenvironmental and chemical analysis of the Pennsylvanian Brush Creek fossil allochems, Pennsylvania, U.S.A., 10th International Carboniferous Congress, Madrid, Sept. 12–17, 1985. - Compte Rendu (Madrid),2, 271–280.

    Google Scholar 

  • Pigott, J. D. (1981): Global tectonic control of secular variations in Phanerozoic sedimentary rock/ocean/atmospheric chemistry (abs.). - American Association of Petroleum Geologists Bulletin,65, 971.

    Google Scholar 

  • Pingitore, N. J. (1976): Vadose and phreatic diagenesis: Processes, products and their recognition in corals. - Journal of Sedimentary Petrology,46, 985–1006.

    Google Scholar 

  • — (1978): The behaviour of Zn+2 and Mn2+ during carbonate diagenesis. - Journal of Sedimentary Petrology,48, 799–814.

    Google Scholar 

  • — (1982): The role of diffusion during carbonate diagenesis. - Journal of Sedimentary Petrology,52, 27–39.

    Google Scholar 

  • Richter, D. K. (1983): Calcareous ooids: a synopsis. - In: Coated Grains: Heidelberg, Peryt, T. M. (ed.): Springer-Verlag, p. 71–99.

  • Sandberg, P. A. (1975a): New interpretations of Great Salt Lake ooids and of ancient non-skeletal carbonate mineralogy.- Sedimentology,22, 497–537.

    Google Scholar 

  • — (1975b): Bryozoan diagenesis: Bearing on the nature of the original skeleton of rugose corals.- Journal of Sedimentary Petrology,49, 587–606.

    Google Scholar 

  • — (1983): An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. - Nature,305, 19–22.

    Google Scholar 

  • - (1985a): Aragonite cements and their occurrence in ancient limestones. - In: Carbonate Cements, Schneidermann, N. & Harris, P. M. (eds.): Society of Economic Paleontologists and Mineralogists, Special Publication No. 36, p. 33–58.

  • - (1985b): Nonskeletal aragonite and pCO2 in the Phanerozoic and Proterozoic. - In: The carbon cycle and atmospheric CO2; Natural variations Archean to Present, Sundquist, E. T. & Broecker, W. S. (eds.): American Geophysical Union Monograph,32, 585–594.

  • - &Popp, B. N. (1981): Pennsylvanian aragonite from south-eastern Kansas — environmental and diagenetic implications. - Abstracts with Programs, AAPG Annual Meeting, San Francisco, p. 985.

  • — &Hudson, J. D. (1983): Aragonite relic preservation in Jurassic calcite-replaced bivalves. - Sedimentology,30, 879–892.

    Google Scholar 

  • —,Schneidermann, N. &Wunder, S. J. (1973): Aragonitic ultrastructural relics in calcite-replaced Pleistocene skeletons. - Nature Physical Science,245, 133–134.

    Google Scholar 

  • Schroeder, J. H. (1972): Fabrics and sequences of submarine carbonate cements in Holocene Bermuda cup reefs. - Geologische Rundschau,61, 708–730.

    Google Scholar 

  • Scoffin, T. P. (1987): An introduction to carbonate sediments and rocks. - Blackie & Son Ltd., Glasgow, p. 221–223.

    Google Scholar 

  • Selim, A. A. (1974): Origin and lithification of the Pleistocene carbonates of the Salum area, western coastal plain of Egypt.- Journal of Sedimentary Petrology,44, 70–78.

    Google Scholar 

  • Simone, L. (1981): Ooids a review. - Earth Science Review,65, 894–919.

    Google Scholar 

  • Singh, U. (1987): Ooids and cements from the late Precambrian of the Flinders Range, South Australia. - Journal of Sedimentary Petrology,57, 117–127.

    Google Scholar 

  • Strasser, A. (1986): Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. - Sedimentology,33, 711–727.-Tucker, M. E. (1982): Precambrian dolomites; petrographic and isotopic evidence that they differ from Phanerozoic dolomites. - Geology,10, 7–12.

    Google Scholar 

  • — (1984): Calcitic, aragonitic and mixed calcitie-aragonitic ooids from the mid-Proterozoic Belt Supergroup, Montana. - Sedimentology,31, 627–644.

    Google Scholar 

  • — (1986): Formerly aragonitic limestones associated with tillites in the Late Proterozoic of Death Valley, California. - Journal of Sedimentary Petrology,56, 818–830.

    Google Scholar 

  • Vail, P. R.,Mitchum, R. M., Jr. &Thompson, S. (1977): Seismic stratigraphy and global changes of sea level., Part 4. - In: Seismic Stratigraphy, Peyton, C. E. (ed.): American Association of Petroleum Geologists Memoir,26.

  • Veizer, J. (1977): Diagenesis of pre-Quaternary carbonates as indicated by tracer studies. - Journal of Sedimentary Petrology,47, 565–581.

    Google Scholar 

  • — (1983a): Chemical diagenesis of carbonates: theory and application of trace element techniques. - In: Stable isotopes in sedimentary Geology. - S.E.P.M., Short Course, No.10, p. 3.1–3.100.

    Google Scholar 

  • - (1983b): Trace element and stable isotopes in sedimentary carbonates. - In: Reeder, R. J. (ed.), Carbonates: mineralogy and chemistry. - Reviews in Mineralogy,11, 265–299.

  • —, &Demovic, R. (1974): Strontium as a tool in facies analyses. - Journal of Sedimentary Petrology,44, 93–115.

    Google Scholar 

  • Walter, L. M. &Morse, J. W. (1984a): Magnesian calcite stabilities: A re-evaluation. - Geochimica Cosmochimica Acta,48, 1059–1069.

    Google Scholar 

  • — (1984b): Reactive surface area of skeletal carbonates during dissolution: effect of grain size.- Journal of Sedimentary Petrology,54, 1081–1090.

    Google Scholar 

  • Wilkinson, B. H. (1979): Biomineralisation, paleoceanography and the evolution of calcareous marine organisms. - Geology,7, 524–527.

    Google Scholar 

  • —,Buckzynski, C. &Owen, R. M. (1984): Chemical control of carbonate phases: Implications from Upper Pennsylvanian Ooids of southeastern Kansas. - Journal of Sedimentary Petrology,54, 932–947.

    Google Scholar 

  • — (1985a): Chemical control of carbonate phases: Implications from Upper Pennsylvanian Ooids of southeastern Kansas: Reply. - Journal of Sedimentary Petrology,55, 927.

    Google Scholar 

  • —,Owen &Carroll, A. R. (1985b): Submarine hydrothermal weathering, global eustacy and carbonate polymorphism in Phanerozoic marine oolites. - Journal of Sedimentary Petrology,55, 171–183.

    Google Scholar 

  • —,Owen &Carroll, A. R. (1987): Submarine hydrothermal weathering, global eustacy and carbonate polymorphism in Phanerozoic marine oolites — Reply. - Journal of Sedimentary Petrology,57, 186–188.

    Google Scholar 

  • — &Given, K. R. (1986): Secular variation in abiotic marine carbonates: Constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios. - Journal of Geology,94, 321–333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, N.R., Brand, U. Secular variation of calcium carbonate mineralogy; an evaluation of ooid and micrite chemistries. Geol Rundsch 79, 27–46 (1990). https://doi.org/10.1007/BF01830446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01830446

Keywords

Navigation