Skip to main content
Log in

Numerical Modeling of a He–N2 Capillary Surface Wave Discharge at Atmospheric Pressure

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A self-consistent steady-state spatially averaged collisional-radiativemodel in which the rate coefficients involving electrons are calculatedfrom the solution to the electron Boltzmann equation has been developedfor describing an atmospheric pressure plasma in helium–nitrogen(He–N2) mixtures. The influence of small nitrogenconcentrations (typically less than 1%) on the discharge characteristicsis studied and compared with available experimental data. It is foundthat nitrogen is highly dissociated and that the density of metastablehelium atoms is considerably reduced by the presence of nitrogen, evenat such low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Hubert, S. Bordeleau, K. C. Tran, S. Michaud, B. Milette, R. Sing, J. Jalbert, D. Boudreau, M. Moisan, and J. Margot, Fresenius J. Anal. Chem. 355, 494 (1966).

    Google Scholar 

  2. I. Pérès, L. L. Alves, J. Margot, T. Sadi, C. M. Ferreira, K. C. Tran, and J. Hubert, Plasma Chem. Plasma Proc., in press (1999).

  3. M. Moisan, J. Hubert, J. Margot, and Z. Zakrzewski, “The development and use of surface-wave discharges for applications,” in Advanced Technologies Based on Wave and Beam Generated Plasmas, NATO ASI Partnership Subseries3, Physics, vol. 67 (H. Schlüter and A. Shivarova, eds.), Kluwer, New York, 1999).

    Google Scholar 

  4. L. L. Alves and C. M. Ferreira, J. Phys. D 24, 581 (1991).

    Google Scholar 

  5. L. L. Alves, G. Gousset, and C. M. Ferreira, J. Phys. D 25, 1713 (1992).

    Google Scholar 

  6. V. Guerra and J. Loureiro, J. Phys. D 28, 1903 (1995).

    Google Scholar 

  7. V. Guerra and J. Loureiro, Plasma Sources Sci. Technol. 6, 373 (1997).

    Google Scholar 

  8. V. Guerra and J. Loureiro, Plasma Sources Sci. Technol. 6, 361 (1997).

    Google Scholar 

  9. P. A. Sá and J. Loureiro, J. Phys. D 30, 2320 (1997).

    Google Scholar 

  10. B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, IEEE Trans. Plasma Sci. 23, 750 (1995).

    Google Scholar 

  11. A. V. Phelps and L. C. Pitchford, JILA Information Center Rep. No. 26 (1985).

  12. J. Bacri and A. Medani, Physica 112C, 101 (1982).

    Google Scholar 

  13. L. Vriens and A. H. M. Smeets, Phys. Rev. A 22, 940 (1980).

    Google Scholar 

  14. G. D. Billing, Chem. Phys. 43, 395 (1979).

    Google Scholar 

  15. J. Loureiro and C. M. Ferreira, J. Phys. D 19, 17 (1986).

    Google Scholar 

  16. R. J. Frost and I. W. H. Smith, Chem. Phys. Lett. 40, 499 (1987).

    Google Scholar 

  17. I. Armenise, M. Capitelli, E. Garsia, C. Gorse, A. Lagana, and S. Longo, Chem. Phys. Lett. 200, 999 (1992).

    Google Scholar 

  18. A. J. Banks, D. C. Clary, and H.-J. Werner, J. Chem. Phys. 84, 3788 (1986).

    Google Scholar 

  19. M. M. Marico, E. A. Grogry, C. T. Wickham-Jones, D. J. Cartwright, and C. J. S. M. Simpson, Chem. Phys. 75, 347 (1983).

    Google Scholar 

  20. S. DeBenedict and G. Dilecce, Plasma Sources Sci. Technol. 4, 212 (1995).

    Google Scholar 

  21. E. J. Stone and E. C. Zipf, Phys. Rev. A, 4, 610 (1971).

    Google Scholar 

  22. R. M. Frost, P. A. Awakowicz, H. P. Summers, and N. R. Badnell, J. Appl. Phys. 84(6), 2987 (1998).

    Google Scholar 

  23. P. S. Ganas, J. Chem. Phys. 59, 5411 (1973).

    Google Scholar 

  24. K. A. Berrington, P. G. Burke, and W. D. Robb, J. Phys. B 8, 2500 (1975).

    Google Scholar 

  25. L. D. Thomas and R. K. Nesbet, Phys. Rev. A 12, 2367 (1975).

    Google Scholar 

  26. H. W. Drawin, Z. Phys. 225, 483 (1969).

    Google Scholar 

  27. A. C. H. Smith, E. Caplinger, R. H. Neynaber, E. W. Rothe, and S. M. Trujillo, Phys. Rev. 127, 1647 (1962).

    Google Scholar 

  28. W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities, Natl. Std. Ref. Data Series (1966).

  29. J. M. Pouvesle, A. Bouchoule, and J. Stevefelt, J. Chem. Phys. 77, 817 (1982).

    Google Scholar 

  30. T. Sommerer and M. J. Kushner, J. Appl. Phys. 71(4), 1645 (1992).

    Google Scholar 

  31. R. T. Brown, J. Appl. Phys. 46(11), 4767 (1992).

    Google Scholar 

  32. A. Rabehi et al. Proc. 23rd International Conference on Phenomena in Ionized Gases, Toulouse (1997).

  33. D. K. Bohme, D. B. Dunkin, and F. C. Fehsenfeld, J. Chem. Phys. 51, 863 (1969).

    Google Scholar 

  34. F. C. Fehsenfeld, A. L. Schmeltekopf, P. D. Goldan, H. I. Schiff, and E. E. Ferguson, J. Chem. Phys. 44, 4087 (1966).

    Google Scholar 

  35. W. P. Sholette and E. E. Muschlitz, Jr., J. Chem. Phys. 36, 3368 (1962).

    Google Scholar 

  36. M. Cher and C. S. Hollingsorth, J. Chem. Phys. 50, 4942 (1969).

    Google Scholar 

  37. D. K. Bohme, N. G. Adams, M. Mosesman, D. B. Dunkin, and E. E. Ferguson, J. Chem. Phys. 52, 5094 (1970).

    Google Scholar 

  38. C. B. Collins and F. W. Lee, J. Chem. Phys. 68, 1391 (1978).

    Google Scholar 

  39. F. W. Lee, C. B. Collins, and R. A. Waller, J. Chem. Phys. 65, 1605 (1976).

    Google Scholar 

  40. R. C. Bolden, R. S. Hemsworth, M. J. Shaw, and N. D. Twiddy, J. Phys. B 3, 61 (1970).

    Google Scholar 

  41. G. H. Bearman, J. D. Earl, R. J. Pieper, H. H. Harris, and J. J. Leventhal, Phys. Rev. A 13, 1734 (1976).

    Google Scholar 

  42. D. B. Dunkin, F. C. Fehsenfeld, A. L. Schmeltekopf, and E. E. Ferguson, J. Chem. Phys. 49, 1365 (1968).

    Google Scholar 

  43. M. Capitelli, J. N. Bardsley, Nonequilibrium Processes in Partially Ionized Gases, Plenum, New York (1990).

    Google Scholar 

  44. B. H. Maan, J. Chem. Phys. 43, 3080 (1965).

    Google Scholar 

  45. A. E. Belikov, Chem. Phys. 215, 97 (1997).

    Google Scholar 

  46. P. Warneck, J. Chem. Phys. 47, 4279 (1967).

    Google Scholar 

  47. G. Myers and A. J. Cunningham, J. Chem. Phys. 67, 3352 (1977).

    Google Scholar 

  48. P. A. M. van Koppen, M. F. Jarrold, and M. T. Bowers, J. Chem. Phys. 81, 288 (1984).

    Google Scholar 

  49. A. L. Schmeltekopf, E. E. Ferguson, and F. C. Fehsenfeld, J. Chem. Phys. 48, 2966 (1968).

    Google Scholar 

  50. A. L. Schmeltekopf and F. C. Fehsenfeld, J. Chem. Phys. 53, 3173 (1970).

    Google Scholar 

  51. F. W. Lee and C. B. Collins, J. Chem. Phys. 65, 5189 (1976).

    Google Scholar 

  52. J. J. Leventhal, J. D. Earl, and H. H. Harris, Phys. Rev. Lett. 35, 719 (1975).

    Google Scholar 

  53. C. H. Chen, J. P. Judish, and M. G. Payne, J. Chem. Phys. 67, 3376 (1977).

    Google Scholar 

  54. H. Sekiya, M. Tsuji, and Y. Nishimura, J. Chem. Phys. 87, 325 (1987).

    Google Scholar 

  55. E. Herbst, J. Chem. Phys. 72, 5284 (1980).

    Google Scholar 

  56. E. Herbst, J. Chem. Phys. 70, 2201 (1979).

    Google Scholar 

  57. F. A. Wolf, J. Chem. Phys. 44, 1619 (1966).

    Google Scholar 

  58. V. A. Kartoshkin and G. V. Klement'ev, Sov. Phys. Tech. Phys. 34(1), 111 (1989).

    Google Scholar 

  59. N. B. Kolokolov and A. B. Blagoev, Sov. Physics-Uspekhi 36, 152 (1993).

    Google Scholar 

  60. N. B. Kolokolov, A. A. Kudrjavtsev and A. B. Blagoev, Physica Scripta 50, 371 (1994).

    Google Scholar 

  61. L. M. Biberman, V. S. Vorob'ev and I. T. Iakubov, Kinetics of Nonequilibrium Low Temperature Plasma, Plenum, New York (1987).

    Google Scholar 

  62. T. D. Mark and H. J. Oskam, Phys. Rev. A 4, 1445 (1971).

    Google Scholar 

  63. J. Heirmel, Bull. Amer. Phys. Soc. 13, 205 (1968).

    Google Scholar 

  64. A. L. Farragher, Trans. Farraday Soc. 66, 1141 (1970).

    Google Scholar 

  65. C. B. Collins and W. W. Robertson, Spectrochim. Acta 19, 742 (1963).

    Google Scholar 

  66. C. B. Collins, A. J. Cunningham, and M. Stockton, Appl. Phys. Lett. 25, 344 (1974).

    Google Scholar 

  67. C. B. Collins, A. J. Cunningham, S. M. Curry, B. W. Johnston, and M. Stockton, Appl. Phys. Lett. 24, 477 (1974).

    Google Scholar 

  68. B. H. Mahan, J. Chem. Phys. 43, 3080 (1965).

    Google Scholar 

  69. E. E. Nikitin and B. M. Smirnov, Atomic and Molecular Processes, Moskow, Nauka (1988).

    Google Scholar 

  70. C. B. Collins, Phys. Rev. 177, 254 (1969).

    Google Scholar 

  71. E. W. McDaniel and E. A. Mason, The Mobility and Diffusion of Ions in Gases, Wiley, New York (1973).

    Google Scholar 

  72. H. W. Ellis, R. I. Pal, and E. W. McDaniel, Atomic Data Nuclear Data Tables 17, 177 (1976).

    Google Scholar 

  73. S. Lévesque, M.Sc. thesis, Université de Montreal (1991).

  74. C. M. Ferreira and M. Moisan, Physica Scripta 38, 382 (1988).

    Google Scholar 

  75. S. De Benedictis and G. Dilecce, Plasma Sources Sci. Technol. 4, 212 (1995).

    Google Scholar 

  76. V. M. Batenin et al., Sov. J. Plasma Phys. 2, 463 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, G.M., Matte, J.P., Pérès, I. et al. Numerical Modeling of a He–N2 Capillary Surface Wave Discharge at Atmospheric Pressure. Plasma Chemistry and Plasma Processing 20, 183–207 (2000). https://doi.org/10.1023/A:1007065022725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007065022725

Navigation