Skip to main content
Log in

Vertical profile and canopy organization in a mixed deciduous forest

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

A combination of optical measurements of leaf heights and observations on litterfall provided a vertical and temporal description of the leaf community structure in a tall, Liriodendron forest on the Maryland coastal plain. Leaf area, mass, and number were bimodally distributed with height. Median leaf number occurs far below (7–8 m) and median leaf mass far above (22–23 m) the median leaf area (18–19 m). Tree species exhibited leaf stratification into 3 height levels: understory (0–10 m), mid canopy (10–25 m), and overstory (25–37 m). Species leaf area in litterfall was related to the species basal area, although representation of leaf number in litterfall was not correlated with stem numbers for species in the stand. Species also showed a clear phenological sequence of leaf fall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LAD =:

Leaf Area Duration

LAI =:

Leaf Area Index

SLA =:

Specific Leaf Area

References

  • Aber J. D. 1979. A method for estimating foliage-height profiles in broad-leaved forests. J. Ecol. 67: 35–40.

    Google Scholar 

  • Anderson M. C. 1966. Stand structure and light penetration. II. A theoretical analysis. J. Appl. Ecol. 3: 41–51.

    Google Scholar 

  • Bongers F., Popma J., delCastillo J. Meave & Carabias J. 1988. Structure and floristic composition of the lowland rain forest of Los Tuxtlas, Mexico. Vegetatio 74: 55–80.

    Google Scholar 

  • Bray J. R. 1964. Primary consumption in three forest canopies. Ecology 45: 165–167.

    Google Scholar 

  • Bray J. R. & Gorham E. 1964. Litter production in forests of the world. Adv. Ecol. Res. 2: 101–157.

    Google Scholar 

  • Brush G. S., Lenk C. & Smith J. 1980. The natural forests of Maryland: an explanation of the vegetation map of Maryland. Ecol. Monogr. 50: 77–92.

    Google Scholar 

  • Campbell G. S. 1977. An introduction to environmental biophysics. Springer-Verlag, New York.

    Google Scholar 

  • Carlisle A., Brown A. H. F. & White E. J. 1966. Litterfall, leaf production and the effects of defoliation by Tortrix viridana in a sessile oak (Quercus petraea) woodland. J. Ecol. 54: 65–85.

    Google Scholar 

  • Carroll G. L. 1980. Forest canopies: complex and independent subsystems. In: Waring R. H. (ed.), Forests: fresh perspectives from ecosystem analysis, pp. 87–107. Oregon State University Press, Corvallis, OR.

    Google Scholar 

  • Chirlin G. R. & Schaffner R. W. 1977. Observations on the water balance for seven sub-basins of the Rhode River, Maryland. In: Correll D. L. (ed.), Watershed research in eastern North America, pp. 277–306. Smithsonian Press, Washington, D.C.

    Google Scholar 

  • Correll D. L. 1977. An overview of the Rhode River Watershed Program. In: Correll D. L. (ed.), Watershed research in eastern North America, pp. 105–124. Smithsonian Press, Washington, D.C.

    Google Scholar 

  • Dixon K. R. 1976. Analysis of seasonal leaf fall in north temperate deciduous forests. Oikos 27: 300–306.

    Google Scholar 

  • Eyre F. H. (ed.) 1980. Forest cover types of the United States and Canada. Society of American Foresters, Washington, D.C.

    Google Scholar 

  • Ferguson D. K. 1985. The origin of leaf assemblages-new light on an old problem. Rev. Palaeobot. Palynol. 46: 117–188.

    Google Scholar 

  • Hubbell S. P. & Foster R. B. 1986. Canopy gaps and the dynamics of a neotropical forest. In: Crawley M. J. (ed.), Plant ecology, pp. 77–96. Blackwell Scientific Publishers, Boston.

    Google Scholar 

  • Hughes M. K. 1971. Tree biocontent, reproduction and litter fall in a deciduous woodland. Oikos 22: 62–73.

    Google Scholar 

  • Ishizuka M. 1984. Spatial patterns of trees and their crowns in natural mixed forests. Jap. J. Ecol. 34: 421–430.

    Google Scholar 

  • Jackson J. A. 1979. Tree surfaces as foraging substrates for insectivorous birds. In: Dickson J. G. et al. (eds.), The role of insectivorous birds in forest ecosystems, pp. 69–93, Academic Press, New York.

    Google Scholar 

  • Jackson L. W. R. 1967. Effects of shade on leaf structure of deciduous tree species. Ecology 48: 498–499.

    Google Scholar 

  • Larcher W. 1980. Physiological plant ecology (translated by Biederman-Thorson, M. A.). Springer-Verlag, Berlin.

    Google Scholar 

  • Lechowicz M. J. 1984. Why do temperate deciduous forest trees leaf out at different times? Adaptation and ecology of forest communities. Am. Nat. 124: 821–842.

    Google Scholar 

  • Lee R. 1978. Forest microclimatology. Columbia University Press, N.Y.

    Google Scholar 

  • Lindroth A. & Halldin S. 1986. Numerical analysis of pine forest evaporation and surface resistance. Agric. For. Met. 38: 59–79.

    Google Scholar 

  • Lull M. W. 1968. A forest atlas of the northeast. USDA Forest Service. Northeastern Forest Experiment Station, Upper Darby, PA.

    Google Scholar 

  • MacArthur R. H. & Horn H. S. 1969. Foliage profile by vertical measurements. Ecology 50: 802–804.

    Google Scholar 

  • Miller P. C. 1967. Tests of solar radiation models in three forest canopies. Ecology 50: 878–885.

    Google Scholar 

  • Pierce J. W. 1982. Geology and soils of the Rhode River Watershed. In: Correll D. L. (ed.), Environmental data summary for the Rhode River Ecosystem. Vol. A, Part I. pp. 181–216. Smithsonian Environmental Research Center, Edgewater, MD.

    Google Scholar 

  • Popma J., Bongers F. & delCastillo J. Meave. 1988. Pattern in the vertical structure of the tropical lowland rainforest of Los Tuxtlas, Mexico. Vegetatio 74: 81–91.

    Google Scholar 

  • Reichle D. E., Goldstein R. A., VanHookJr. R. I. & Dodson G. J. 1973. Analysis of insect consumption in a forest canopy. Ecology 54: 1076–1084.

    Google Scholar 

  • SAS Institute, Inc. 1985. SAS Users Guide: Statistics, Version 5 Edition. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Schowalter T. D., Hargrove W. W. & CrossleyJr. D. A. 1986. Herbivory in forested ecosystems. Ann. Rev. Entomol. 31: 177–196.

    Google Scholar 

  • Schulze E. D., Fuchs M. I. & Fuchs M. 1977. Spacial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany. I. Biomass distribution and daily CO2 uptake in different crown layers. Oecologia 29: 43–67.

    Google Scholar 

  • Shinozaki K., Yoda K., Hozumi K. & Kira T. 1964a. A quantitative analysis of plant form-the pipe model theory, I. Basic analyses. Jap. J. Ecol. 14: 97–105.

    Google Scholar 

  • Shinozaki K., Yoda K., Hozumi K. & Kira T. 1964b. A quantitative analysis of plant form-the pipe model theory, II. Further evidence of the theory and its application in forest ecology. Jap. J. Ecol. 14: 133–139.

    Google Scholar 

  • Smith A. P. 1973. Stratification of temperate and tropical forests. Am. Nat. 107: 671–683.

    Google Scholar 

  • Strong D. R. 1977. Epiphyte loads, treefalls, and perennial forest disruption: a mechanism for maintaining higher tree species richness in the tropics without animals. J. Biogeogr. 4: 215–218.

    Google Scholar 

  • Waring R. M. 1983. Estimating forest growth and efficiency in relation to canopy leaf area. Adv. Ecol. Res. 13: 327–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, G.G., O'Neill, J.P. & Higman, D. Vertical profile and canopy organization in a mixed deciduous forest. Vegetatio 85, 1–11 (1989). https://doi.org/10.1007/BF00042250

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042250

Keywords

Navigation