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Abstract. In times of rapid global change, ecosystem monitoring is of utmost importance. Combined field
and remote sensing data enable large-scale ecosystem assessments, while maintaining local relevance and
accuracy. In heterogeneous landscapes, however, the integration of field-collected data with remote sensing
image pixels is not a trivial matter. Indeed, much of the uncertainty in models that use remote sensing to
map larger areas lies on the field data integration. In this study, we propose to use fine spatial resolution
(5 9 5 m2) remote sensing data as auxiliary data for upscaling field-sampled aboveground carbon data to
target (meso-scale, i.e., 30 9 30 m2) image pixels. In this process, we assess the effects of field data disaggre-
gation and extrapolation, with and without the auxiliary data. We test this on three study sites in heteroge-
neous landscapes of the Brazilian savanna. We thus compare two methods that use auxiliary data—surface
method, which uses a weighting layer, and regression method, which applies a regression model—with one
method without auxiliary data—cartographic method. To evaluate our results, we compared observed vs.
estimated aboveground carbon values (for known samples) at the pixel level. Additionally, we fitted a ran-
dom forest regression model with the assigned carbon estimates and the target satellite imagery and
assessed the influence of the fraction of extrapolated vs. sampled carbon values on model performance. We
observed that, in heterogeneous landscapes, the use of fine spatial resolution remote sensing data improves
the upscaling of field-based aboveground carbon data to coarser image pixels. We also show that a surface
method is more suitable for spatial disaggregation, while a regression approach is preferable for extrapolat-
ing non-sampled pixel fractions. In our study, larger datasets, which included a higher proportion of esti-
mated values, generally delivered better models of aboveground carbon than smaller datasets that are
assumed to more reliably reflect reality. Our approach enables to link field and remote sensing data, which
in turn enables the detailed mapping of aboveground carbon in heterogeneous landscapes over large areas
through the optimized integration of field data and multi-scale remote sensing data.

Key words: aboveground carbon; Brazilian savanna; carbon mapping; Cerrado; data integration; ecosystem
monitoring; Hyperion; hyperspectral; RapidEye; upscaling.
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INTRODUCTION

In times of rapid global change, with implica-
tions on ecosystem functioning and the services
provided (Foley et al. 2005, Cardinale et al.
2012), the monitoring of ecosystems is of utmost
importance. Indeed, only through monitoring it
is possible to assess the degree and patterns of
change in order to develop adequate mitigation
and adaptation strategies (Turner et al. 2007).
International programs toward mitigating the
effects of climate change and halting biodiversity
loss, such as the United Nations Reducing Emis-
sions from Deforestation and Forest Degradation
(REDD+) program or the Aichi Biodiversity Tar-
gets set by the Convention on Biological Diver-
sity, require monitoring of carbon stocks and
biodiversity at a global scale (Running et al.
1999, Schmeller et al. 2015), including the defini-
tion of Essential Climate Variables (GCOS 2018)
and Essential Biodiversity Variables (Pereira
et al. 2013).

Field-based monitoring schemes form the basis
of our knowledge on, for example, stored carbon
of ecosystems. Implementation costs render
field-based assessments being best suited for
local studies, while broad-scale monitoring is
usually unfeasible (see S�olymos et al. 2015). The
use of remote sensing data, on the other hand,
allows cost-effective ecosystem monitoring for
large areas (Hansen et al. 2013, Petrou et al.
2015), but potentially with limited applicability
at local scales (Burivalova et al. 2015). Continu-
ous large-scale ecosystem monitoring requires
permanent monitoring plots distributed over
large areas, such as the Long Term Ecological
Research Network (Magnusson et al. 2005,
Magurran et al. 2010) or National Forest Invento-
ries (Blackard et al. 2008). Data from local field
monitoring programs, providing that the loca-
tion of the plots is precisely recorded, can then
be integrated with remote sensing data for
broad-scale assessments of, for example, carbon
stocks or biodiversity (McRoberts and Tomppo
2007, Bustamante et al. 2016). Combined remote

sensing and field survey data can thus address
our needs for large-scale ecosystem assessments,
while keeping local relevance and accuracy
(Zheng et al. 2007, Boisvenue et al. 2016).
The registration of field data (e.g., forest inven-

tory data) to remote sensing pixels in managed
and homogeneous environments is usually done
by, for example, assigning tree density measures
at the plot level (often through the interpretation
of aerial imagery) which can then be related to
the image pixels (Wulder et al. 2008, Tuominen
et al. 2010). In natural, heterogeneous land-
scapes, it is, however, unfeasible to accurately
assign single values to heterogeneous plots
(Thessler et al. 2005), and the combination of
field and remote sensing data becomes a difficult
task (He et al. 1998). Assigning field data to a tar-
get image pixel may require the disaggregation
and interpolation between field-based samples
(He et al. 1998, Zheng et al. 2007), an area of
active research—most particularly in demo-
graphic and climatological studies (Langford
2006, Chen et al. 2015). Also, when the sample
units are smaller than the image pixels, the pro-
portions of pixels not fully covered by the field
data need to be extrapolated. Sample-to-pixel
data integration allows subsequent analysis at
the pixel level and hence at the full area covered
by the image. Such analyses include, for exam-
ple, modeling the aboveground carbon of a par-
ticular region by fitting the pixel-allocated
sample data to the respective remote sensing
data in a regression approach (Zandler et al.
2015). The integration of field and (meso-scale)
remote sensing data can be done with the aid of
high-resolution remote sensing data, either com-
ing from high-resolution satellite sensors or com-
ing from (manned and unmanned) airborne
sensors (Marvin et al. 2016).
We illustrate this data integration with a case

study where we upscale aboveground carbon
data derived from field-based woody vegetation
data, collected in small sample plots of up to
10 9 10 m2, to the pixel grid of spaceborne
hyperspectral data (with a 30 9 30 m2 spatial
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resolution). These data, by systematically
describing the Earth’s surface in a very detailed
manner, have great potential for ecosystem mon-
itoring and aboveground carbon mapping
(Leit~ao et al. 2015). Indeed, pioneer studies have
made use of spectral indices derived from hyper-
spectral Hyperion data (Pearlman et al. 2001) for
modeling aboveground biomass of both woody
and non-woody vegetation (Psomas et al. 2011,
Zandler et al. 2015), or estimating forest struc-
ture and diversity parameters (Kalacska et al.
2007). While spaceborne hyperspectral programs
are underway (Guanter et al. 2015, Lee et al.
2015), their planned meso-scale pixel (30 9

30 m2) can pose problems for sample-to-
pixel allocation, particularly in heterogeneous
environments.

We focus on three study sites in the Brazilian
savanna (Cerrado), a highly heterogeneous sys-
tem, which consists on a mosaic of different veg-
etation physiognomies (Schwieder et al. 2016).
Our hypothesis is that the use of auxiliary data
from a high spatial resolution sensor, such as
from the RapidEye sensor, with a pixel size of
5 9 5 m2 (Tyc et al. 2005) improves the upscal-
ing of field-sampled aboveground carbon data to
the image pixels, particularly in such heteroge-
neous landscapes, ultimately enabling its use for
carbon mapping across larger regions. Indeed, a
recent study by Gonzalez-Roglich and Swenson
(2016) also used high spatial resolution satellite
data for estimating tree cover in a savannah in
Argentina, which was later related to carbon val-
ues. High spatial resolution satellite data,
although not available to an extent that allows
for large area mapping, could be used for the
upscaling field samples.

We tested several methods of incorporating
auxiliary information for integrating these data
and assessed the effects of data disaggregation
and extrapolation, on the respective data integra-
tion, with and without auxiliary data. Further-
more, we investigate the importance of data
quality for the resulting model performance by
using random forest (RF) regression models to fit
different sets of pixel-based aboveground carbon
data to hyperspectral data. We thus propose the
use of high-resolution remote sensing data as
auxiliary data for upscaling field-sampled data
to target, meso-scale, image pixels in heteroge-
neous landscapes.

DATA AND METHODS

Study sites and field data
Our study is located in three sites in the Brazil-

ian savanna (Cerrado; Fig. 1): Parque Estadual
de Terra Ronca (PETR), Parque Nacional da Cha-
pada dos Veadeiros (PNCV), and Parque Estad-
ual da Serra Azul (PESA). These sites can be
considered characteristic of the typical savannas
of the central Brazil, while representing well its
variability, ranging from a low altitude sandy
savannah (PETR) to upland savannahs on rock
(PNCV) or deep soil substrates (PESA). The Cer-
rado covers ~20% of Brazil’s land surface, and it
holds the richest biodiversity of all of the world’s
savannahs (Franc�oso et al. 2016). This system is,
however, mostly unprotected and highly threat-
ened thus constituting a global biodiversity hot-
spot (Myers et al. 2000, Klink and Machado
2005) which requires monitoring. For all sites,
vegetation inventory data were collected, follow-
ing a common scheme within the Program for
Biodiversity Research (PPBio; Pezzini et al.
2012), using the RAPELD principle, adapted for
sampling the Cerrado (Magnusson et al. 2005,
Teixeira 2017). This approach constitutes a stan-
dardized integrated sampling of vegetation bio-
mass and multi-taxa biodiversity data, thus
allowing research on the linkages between car-
bon and biodiversity (Teixeira 2017, Bustamante
et al. 2016).
The data were collected on a system of trails

and plots, following a systematic scheme, as fol-
lows. It consists of two 5 km long parallel trails
with a distance of 1 km between them, placed in
a manner that fit fully within natural vegetation
areas. Along each trail, five transects were located
1 km apart from each other (at marks 500–
4500 m, counting from the beginning of the trail).
Each sampling transect consists of a 250 m center
line that follows the elevation contour, with a
varying width, according to the taxon sampled
(Pezzini et al. 2012, Teixeira 2015). Each transect
was further segmented in sections of ~10 m
length, in a total of 25 per transect. Woody plants
with a diameter at breast height of 10 cm or more
were sampled in two 10 m wide adjacent poly-
gons (sample plots) on each side of the central
line (although with a non-sampled sensitive area
along the transect, on the right side), for each sec-
tion (Fig. 2). In the cases where the transect
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crossed an obstacle (such as a road or river
stream), or when adjacent sections had too much
overlap (depending on topography), some sec-
tions were excluded and compensated at the end
of the transect, thus guaranteeing the sampling of
25 sections per plot (Teixeira 2015). In this study,
we considered only data collected in transects
covering savannah vegetation, although with
varying density (Table 1). Also, data with missing
spatial reference were excluded. In total, we con-
sidered eight transects in PESA, six in PNCV, and
eight in PETR. The floristic inventory data were
converted into aboveground carbon, following

general allometric equations for the region
(Rezende et al. 2006).

Remote sensing data
To improve the upscaling of field-based above-

ground carbon values to the target pixel level,
we used auxiliary data derived from high spatial
resolution (5 9 5 m2) RapidEye data (Fig. 2; Tyc
et al. 2005). The RapidEye data are delivered
with a ground sampling distance (spatial resolu-
tion) of 5 m. A particularly interesting feature of
these data is the so-called red edge band that
covers the spectral region between 690 and

Fig. 1. This study is located in three sites in the Brazilian Cerrado: Parque Estadual da Serra Azul (PESA),
Parque Nacional da Chapada dos Veadeiros (PNCV), and Parque Estadual de Terra Ronca (PETR). Above, the
Cerrado is depicted in dark gray (right), and the study sites with a triangle. Below are represented the three
study sites, with the respective parallel trails that define the sampling scheme, overlaid on the near-infrared
spectral band of the respective RapidEye image.
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730 nm and makes the data especially valuable
for characterizing vegetation condition and
structure (Gitelson et al. 1996, Gomes and Mail-
lard 2015). In this study, the ortho-rectified pro-
duct was used, which was already corrected for
radiometric-, geometric-, and sensor-specific
effects, and delivered as top-of-atmosphere
reflectance. For all three study sites, we used
nearly cloud-free data, which were acquired
close to the dates of the field surveys (Table 1).
These data were corrected for atmospheric effects

by applying a dark object subtraction (Chavez
1996), for subsequent analysis. Finally, we
derived the Red Edge Normalized Difference
Vegetation Index (RENDVI; Peng and Gitelson
2012), following the formula:

RENDVI ¼ ðNIR� REÞ=ðNIR þ REÞ (1)

where NIR are the reflectance values on the near-
infrared spectral band (band 5: 760–850 nm) and
RE are the reflectance values on the red edge
band (band 4: 690–730 nm). This spectral index,
by retrieving information relevant for describing
vegetation productivity (Peng and Gitelson
2012), is thus suitable for use as auxiliary data
for the spatial allocation of vegetation and above-
ground carbon.
We used spaceborne hyperspectral data from

the Hyperion sensor on board of the Earth
Observing-1 (EO-1) platform as target remote
sensing data (Fig. 1), to which the aboveground
carbon data should be registered for subsequent
modeling (Table 1). The EO-1 satellite was
launched as a scientific demonstrator in 2001, and
while it was originally planned for a lifetime of
one year, it has recorded multi-spectral and
hyperspectral data until March 2017 (Pearlman
et al. 2001). The Hyperion data were radiometri-
cally corrected, including correction for pixel
shifts, striping, keystone, and smile, as well as
atmospheric effects. The visible and near-infrared
(400–1000 nm) and the shortwave infrared (SWIR,
1000–2500 nm) detectors, which separately record
electromagnetic radiation in their respective
wavelength ranges, were co-registered (Datt et al.
2003, Rogass et al. 2014a, b). Data were spatially
subsetted to the respective study regions (Fig. 2)
and co-registered using precision terrain-cor-
rected (L1T) Landsat OLI scenes for spatial consis-
tency across all study areas. Erroneous or noisy
spectral bands were interactively screened and
excluded. Data were spectrally smoothed with a
Savitzky-Golay filter (Savitzky and Golay 1964,
Miglani et al. 2011). This resulted in a total of 83
spectral bands per Hyperion image (from the
original 242), covering the visible, near, and SWIR
portions of the electromagnetic spectrum.

Tests on the disaggregation and extrapolation of
aboveground carbon data
To test our hypothesis that using auxiliary

high spatial resolution satellite data improves the

Fig. 2. Spatial allocation of the field-based data to
the target (Hyperion) pixels in one of the sample tran-
sects (dashed black line). The sample plots along the
transect are represented by the dashed gray polygons,
whereas the unfilled gray polygons are those corre-
sponding to the (non-sampled) sensitive area. The
target (Hyperion) pixels are represented in black. The
Red Edge Normalized Difference Vegetation Index
values derived from the RapidEye data are repre-
sented in the background in grayscale.

Table 1. Overview of the remote sensing and field data
used in this study along with their spatial resolution
and acquisition dates.

Study
site

Field data
(up to 10 x 10 m2)

RapidEye
(5 x 5 m2)

Hyperion
(30 x 30 m2)

PESA 02/2012 - 05/2014 21/07/2014 27/06/2014
PNCV 08/2014 - 05/2015 07/09/2014 15/04/2015
PETR 05/2014 27/06/2014 29/06/2014

Note: PESA, Parque Estadual da Serra Azul; PNCV, Par-
que Nacional da Chapada dos Veadeiros; PETR, Parque
Estadual de Terra Ronca.
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spatial allocation of the field data to the target
image pixel, and to investigate which method for
data integration should be used, we performed
two tests (for each study site): one on spatial data
disaggregation and one on spatial extrapolation.
For these tests, we selected all the sample plots
that laid fully within each of the target pixels, for
which we have known (sampled) aboveground
carbon values (Fig. 3). The first test is on the
effects of using auxiliary data on the spatial dis-
aggregation of field data related to one sample
plot falling in two or more target pixels, i.e.,
whose carbon values had to be disaggregated to

the respective pixels. In this case, the sample
plots were merged (aggregated) in random pairs
and the respective aboveground carbon values
summed. These merged plots were subsequently
disaggregated following the described methods.
The second test, on data extrapolation, relates to
situations where the target pixels were not fully
sampled, and the respective carbon values need
to be extrapolated to represent the full image
pixel. In this test, one random plot was excluded
per target pixel to be subsequently estimated.
Each test was iterated 1000 times to ensure the
robustness of the results.

Fig. 3. Representation of the tests on the carbon data spatial disaggregation and extrapolation, for the Hyper-
ion pixels shown in Fig. 2. The sample plots selected for these tests are those which are fully within a target
(Hyperion) pixel. All tests used three different methods for data aggregation and extrapolation: cartographic
(which does not make use of high-resolution auxiliary data from RapidEye); surface (uses RapidEye auxiliary
data as a weighting layer); and regression (builds a regression model on the auxiliary data). In the test on spatial
disaggregation, two plots within each pixel are randomly merged, to be then estimated using the three methods
described. In the test on spatial extrapolation, within each pixel one random plot is deleted, to then be estimated
based on the information from the remaining plots within the same pixel.
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In each test, we applied three methods of data
integration—cartographic, surface, and regres-
sion. The cartographic method refers to an area-
weighting approach, which does not require any
auxiliary information. It thus assumes homo-
geneity on the spatial distribution of the target
values and served as control for testing our
hypothesis. The surface method works in a simi-
lar way to the previous, but uses auxiliary data
(in this case derived from the RapidEye imagery)
as a weighting layer, which are multiplied with
the area of the respective sample plots.

The regression method, here defined as a lin-
ear model, uses the auxiliary data and the plot
area combined as a predictor variable in the
model, in the following manner. For the data dis-
aggregation, it was assumed that the carbon val-
ues (Ct) are a function of the respective area (At)
multiplied by the auxiliary layer (Wt), while the
model intercept was kept at zero:

Ct �At �Wt (2)

The resulting model was used to disaggregate
the merged plots back to the original ones. For
the data extrapolation, it was assumed that the
total carbon value for the target pixel (Ct) to be
the sum of the known (sampled) carbon value
(Cs) and a function of the unknown (non-
sampled) area (Au) multiplied by the auxiliary
layer (Wu), while the model intercept was kept at
zero, and the coefficient for the first predictor
variable (Cs) was fixed at one:

Ct �Cs þ Au �Wu (3)

This way we constrained the regression so that
the response value is solely a function of the
known (sampled) carbon value added to the area
and auxiliary layer values. The resulting regres-
sion model was used to estimate the carbon
value for all pixels.

We validated the spatial disaggregation and
extrapolation tests at the target (Hyperion)
pixel level, which means that the sum of the
resulting carbon estimates per pixel were com-
pared to the actually sampled values, by the
averaged root-mean-square error (RMSE), rela-
tive RMSE (RMSErel equals the RMSE divided
by the mean input carbon value), and the coef-
ficient of determination (R2) between predicted
and observed validation samples, over the 1000
iterations.

Sensitivity analysis on data quality
The number of pixels available for use in a

regression model of aboveground carbon
depends on the assigned threshold of minimum
pixel coverage by field samples. We performed a
sensitivity analysis on the resulting regression
models to evaluate the trade-off between having
a high number of pixels (which may cover a lar-
ger portion of the variability within the study
region) and a low share of estimated samples.
We defined equidistant 10% thresholds ranging
from 0% (all pixels partially sampled in the field)
to 90% (pixels which were at least 90% sampled
in the field) leading to a decreasing number of
input samples with an assumed increasing relia-
bility (Fig. 4), based on the fraction of pixels
actually sampled in the field. For each threshold,
we iterated the data splitting into 70% training
and 30% validation data 1000 times and fitted
the aboveground carbon values to the hyperspec-
tral Hyperion data using a RF regression model
(Breiman 2001). RF is a machine-learning
approach based on the Classification and Regres-
sion Tree (CART) algorithm (Breiman et al.
1984). The algorithm trains a decision tree with a
randomly drawn subset of the given input data
and internally evaluates its performance with the
leftover data. An ensemble of many decision
trees (a forest) is trained reflecting that every sin-
gle tree can be erroneous. Results are then aver-
aged into the final model. Model performance
was evaluated based on average RMSE, RMSErel,
and R2 between predicted and observed valida-
tion samples, from the withheld 30% validation
data, over the 1000 iterations. Standard devia-
tions around the mean are also reported and
graphed. All processing was performed in R (R
Development Core Team, 2016) using the ran-
domForest-package (Liaw and Wiener 2002).

RESULTS

Tests on the disaggregation and extrapolation of
aboveground carbon data
Our results were consistent across all study

sites and performance measures (Table 2). The
tests on disaggregation of aboveground carbon
data showed consistently better performances
when using auxiliary data in a surface interpola-
tion method (RMSErel values ranging between
0.479 and 0.655 and R2 values ranging between
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0.750 and 0.826). The regression method was the
least performing one for data disaggregation.

When extrapolating the aboveground carbon
data, the use of auxiliary information was always
beneficial. Their use in a regression approach

achieved the best results (RMSErel ranging
between 0.370 and 0.509 and R2 between 0.843
and 0.914), while the surface method was not so
well performing. The cartographic method used
was the least performing for the extrapolation of
aboveground carbon data.
The coefficients obtained in the regression

models (for the carbon data extrapolation) were
specific to each study site, though consistent
across all tests (between 2.728 and 2.805 for
PESA; 3.915 and 4.082 for PNCV; and 2.693 and
2.711 for PETR), and with little variation between
iterations.

Sensitivity analysis on data quality
The carbon model performances differed

between the three study sites, although it was
possible to identify general trends related to the
data thresholds used. Best model performances
were derived in the PESA study site with aver-
aged relative RMSE values ranging from 0.34 to
0.68. In PNCV, the RMSErel values ranged from
0.42 to 0.72 and in PETR from 0.52 to 1.09 (Fig. 5).
Generally, the decreasing number of training

pixels led to less robust results with a higher
standard deviation in the performance measures
along with an overall performance loss (increase
in RMSE and RMSErel). In terms of R2, the trend
of performance loss with decreasing sample size
was not always observed, although smaller sam-
ples always resulted in higher variation between
models (higher standard deviation). Also, as long
as a sufficient sample size is available (e.g., below
the 0.6–0.7 thresholds), and a sufficient portion
of the pixel is sampled in the field (e.g., above
the 0.1–0.2 thresholds), it is possible to achieve
reasonable good aboveground carbon models
using this approach.

DISCUSSION

We verified our hypothesis that, in heteroge-
neous landscapes, the use of auxiliary informa-
tion from high spatial resolution remote sensing
data improves the upscaling of field-sampled
aboveground carbon data to meso-scale remote
sensing image pixels. This, in turn, enables their
use for carbon mapping, potentially over large
areas. In this study, we observed that the use of
auxiliary data did improve the data integration,
although the choice of the method used can be

Fig. 4. Number of samples used for the analysis with
varying thresholds depicted as black dots and the solid
gray line. The black squares and the dashed gray line
relate to the averaged share of area sampled within all
pixel with the respective threshold (second y-axis).

 ❖ www.esajournals.org 8 August 2018 ❖ Volume 9(8) ❖ Article e02298

EMERGING TECHNOLOGIES LEIT~AO ET AL.



influential. We found that the best approach for
upscaling field-collected aboveground carbon
data makes use of auxiliary data in a (local) sur-
face method for data disaggregation and in a
regression for data extrapolation. Indeed, the
lack of auxiliary information (with a cartographic
method) never delivered the best results in
upscaling the field-collected data. Its assumption
of homogeneity in the distribution of above-
ground carbon is not verified in such heteroge-
neous systems. Also, when disaggregating the
field samples into different target pixels, the use
of auxiliary data in a regression approach for
data disaggregation resulted in the poorest
results for data disaggregation. This also agrees
with what has been previously found by Fisher
and Langford (1995). As regression models are
fitted globally, estimates from locally fitted meth-
ods should adapt better to heterogeneous envi-
ronments. When extrapolating the field samples
into the full (partially non-sampled) pixels, how-
ever, the regression method was the best per-
forming approach.

Our conclusions on the use of high spatial res-
olution as auxiliary data agree with findings in a
similar system, the Argentinean savannahs
(Gonzalez-Roglich and Swenson 2016), which
suggests the generality of our approach for
savannahs and other heterogeneous systems. In
the referred study, the authors used fine resolu-
tion satellite imagery for scaling up field data, to
assess tree cover at the meso (Landsat) scale,
which was later related to carbon. While extre-
mely relevant for heterogeneous environments,

this approach is not necessarily required in
homogeneous environments. Indeed, in the latter
conditions the co-registration of field samples
and image pixels is commonly done through the
estimation of plot-level tree density values in a
dasymetric approach (McRoberts and Tomppo
2007, Tuominen et al. 2010).
The use of multi-scale remote sensing imagery

for vegetation monitoring has been widely used
for, for example, generating maps of forest bio-
mass or productivity over large areas (Tomppo
et al. 2002, Lefsky et al. 2005, Muukkonen and
Heiskanen 2007). The choice of the higher-resolu-
tion data to be used as auxiliary information in
this approach is critical for successfully upscaling
field data, as it needs to relate to the field mea-
sured variable—in our case, the vegetation’s
aboveground carbon. Here, we used a spectral
index based on the red edge spectral bands of
RapidEye imagery, known to relate to vegetation
structure and therefore biomass in the Cerrado
(Gomes and Maillard 2015). Further research is
still required to learn about the best possible data
to be used as a weighting layer. This, however,
falls outside the scope of this study and would
raise issues related to data availability constraints.
Ultimately, the data used as auxiliary layer will
determine the estimated regression coefficient
used in this approach. Also, the approach pre-
sented here could potentially be used to integrate
field data with multi-scale systems, such as that of
Sentinel-2, which collects large amounts of data
across the globe on a high frequency (Drusch
et al. 2012). In this case, where the data are

Table 2. Results of the tests on the disaggregation and extrapolation of field data to the pixel level, using a carto-
graphic (area-weighted), surface, and linear regression method.

Study site n Method

Disaggregation Extrapolation

RMSE RMSErel R2 Coefficient RMSE RMSErel R2 Coefficient

PESA 87 Cartographic 0.922 0.588 0.724 — 0.648 0.409 0.870 —

Surface 0.752 0.479 0.826 — 0.639 0.403 0.873 —
Regression 1.308 0.794 0.473 2.728 � 0.001 0.587 0.370 0.896 2.805 � 0.007

PNCV 70 Cartographic 1.003 0.733 0.717 — 0.567 0.414 0.907 —
Surface 0.819 0.599 0.821 — 0.571 0.418 0.907 —

Regression 1.516 1.091 0.335 4.082 � 0.003 0.539 0.394 0.914 3.915 � 0.019
PETR 106 Cartographic 1.066 0.751 0.661 — 1.049 0.739 0.750 —

Surface 0.930 0.655 0.750 — 0.979 0.689 0.769 —

Regression 1.593 1.097 0.260 2.693 � 0.001 0.723 0.509 0.843 2.711 � 0.012

Notes: PESA, Parque Estadual da Serra Azul; PNCV, Parque Nacional da Chapada dos Veadeiros; PETR, Parque Estadual de
Terra Ronca; n, sample size; RMSE, root-mean-square error; RMSErel, relative RMSE; R2, coefficient of determination. The best
performing method for each test is represented in bold.
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collected at different spatial resolutions (10, 20,
and 60 m, depending on the spectral bands), for
example, the 10 m data could be used for the
upscaling of field data to the 20-m pixels. Like-
wise, data collected by unmanned aerial vehicles
(or drones)—a technology with an exponential
popularity—could be used for the bridging the
gap between ground-based and satellite data (He
et al. 2015, Marvin et al. 2016).

Our analyses also showed that, while a more
restrictive (high) threshold on the share of sam-
pled (vs. estimated) data should ensure better
data reliability, it also results in fewer training
pixels which in turn generate less good models.
Indeed, smaller sample sizes usually mean that a
smaller proportion of the system’s variability is
captured, thus resulting in less generalizable esti-
mations (Wisz et al. 2008). Further, we can

Fig. 5. Averaged carbon model results in terms of root-mean-square error (RMSE), relative RMSE, and R2 after
1000 iteration for all three study sites. The gray shaded area along the curves shows � one standard deviation
around the mean performance measures.
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conclude that by using high-resolution data for
upscaling field data, as long as a sufficient sam-
ple size is available and a sufficient portion of the
pixel is sampled in the field, it is possible to
achieve good aboveground carbon models.

We also observed that spaceborne hyperspec-
tral imagery is suitable for monitoring and map-
ping ecosystems properties (Abdel-Rahman
et al. 2013, Leit~ao et al. 2015). Indeed, in this
study we used end-of-life Hyperion data (was
shut down in March 2017), which came with
many different issues, such as data striping, pixel
shift, and a low Signal-to-Noise ratio (Scheffler
and Karrasch 2014). After thorough data

correction and screening, the remaining 82 spec-
tral bands (out of the original 242) had enough
detailed information to characterize and predict
the up-scaled aboveground carbon data. It is
expected that the advent of forthcoming hyper-
spectral missions, such as EnMAP (Guanter et al.
2015) or HyspIRI (Lee et al. 2015), will enable
many more applications related to ecosystem
monitoring and mapping of natural resources
(Schwieder et al. 2014, Leit~ao et al. 2015, Pel-
lissier et al. 2015, Steinberg et al. 2016).
Upscaling field samples to target pixels

enables the use of remote sensing imagery for
carbon mapping and ecosystem monitoring in
heterogeneous environments (Schwieder et al.
2018). Through this approach, it is possible to,
for example, do wall-to-wall mapping of carbon
over large areas with time series of widely avail-
able multi-spectral imagery (Wulder et al. 2015),
or characterize particular areas with high detail
with spaceborne hyperspectral imagery (Guanter
et al. 2015). Ultimately, this will have deep impli-
cations for global carbon mitigation programs
such as REDD+, by allowing the detailed calcula-
tion of aboveground carbon in a spatially explicit
manner.
To our knowledge, this is the first study that

compares different methods of multi-scale data
integration in heterogeneous environments, this
way providing clear guidelines on how to pro-
ceed in such cases. Our study thus facilitates the
integration of existing field-collected datasets
with remote sensing imagery, this way contribut-
ing with the generation of workflows for the
large-scale assessments of natural systems.

CONCLUSION

Using high spatial resolution remote sensing
imagery as auxiliary data are beneficial for the
spatial allocation of field-sampled data to a
larger target pixel. This is particularly relevant in
heterogeneous environments, where it is not
possible to define homogeneous plots of known
vegetation density. The method for integrating
the auxiliary data in the analysis is, however, not
trivial and can have a great influence in its over-
all performance. While local, surface approaches
are preferable for the spatial disaggregation of
field samples to the target pixel grid, the extrapo-
lation of the data into the full pixel extent is

(Fig. 5. Continued)
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better done with a global, regression model. This
approach enables the spatial allocation of field
data to larger image pixels, thus allowing the use
of remote sensing imagery for ecosystem moni-
toring and carbon mapping over large heteroge-
neous areas.
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