Skip to main content
Log in

Röntgen-Phasenkontrast

Grundlagen, Potenzial und Fortschritte in der klinischen Translation

X‑ray Phase Contrast

Principles, potential and advances in clinical translation

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Vor mehr als 100 Jahren entdeckte Max von Laue in München, dass Röntgenstrahlung nicht nur als Röntgenquanten im Teilchenbild interpretiert werden kann, sondern ebenso einen Wellencharakter aufweist. Diese Eigenschaft wird mittlerweile auch schon lange in der Grundlagenforschung eingesetzt (z. B. in der Kristallographie zur Strukturbestimmung von Proteinen), hatte bisher jedoch keine Anwendung in der medizinischen Bildgebung. In den letzten 10 Jahren allerdings konnten in der vorklinischen Forschung sehr große technologische Fortschritte erzielt werden, die eine Nutzung dieses Wellencharakters von Röntgenlicht auch für die medizinische Bildgebung möglich machen. Diese neuartigen Radiographie-Verfahren, die sog. Phasenkontrast- und Dunkelfeldbildgebung, bergen ein großes Potenzial für eine deutliche Verbesserung der Röntgenbildgebung und somit auch der Diagnose von wichtigen Krankheiten. Dieser Artikel zeigt die Grundprinzipien dieser neuen Verfahren auf, fasst exemplarisch die bereits erreichten vorklinischen Forschungsergebnisse an verschiedenen Organen zusammen und zeigt das Potenzial für die zukünftige klinische Nutzung in Radiographie und Computertomographie auf.

Abstract

More than 100 years ago Max von Laue in Munich discovered that X‑rays can be interpreted not only as X‑ray quanta in a particle picture, but also show a wave character. This property has been used for a long time in basic research (e.g. in crystallography for determining the structure of proteins), but so far has had no application in medical imaging. In the last 10 years, however, very impressive technological progress could be made in preclinical research, which also makes the utilization of the wave character of X‑ray light possible for medical imaging. These novel radiography procedures, so-called phase-contrast and dark-field imaging, have a great potential for a pronounced improvement in X‑ray imaging and therefore, also the diagnosis of important diseases. This article describes the basic principles of these novel procedures, summarizes the preclinical research results already achieved exemplified by various organs and shows the potential for future clinical utilization in radiography and computed tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Bech M, Tapfer A, Velroyen A, Yaroshenko A, Pauwels B, Hostens J et al (2013) In-vivo dark-field and phase-contrast x‑ray imaging. Sci Rep 3(1):258–253

    Article  Google Scholar 

  2. Eggl E, Schleede S, Bech M, Achterhold K, Grandl S, Sztrókay A et al (2016) X‑ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x‑ray source. Eur Phys Lett 116(6):68003

    Article  Google Scholar 

  3. Grandl S, Scherer K, Sztrókay-Gaul A, Birnbacher L, Willer K, Chabior M et al (2015) Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study. Eur Radiol 25(12):3659–3668

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grandl S, Willner M, Herzen J, Sztrókay-Gaul A, Mayr D, Auweter SD et al (2014) Visualizing typical features of breast fibroadenomas using phase-contrast CT: an ex-vivo study. PLoS ONE 9(5):e97101–e97112

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gromann LB, De Marco F, Willer K, Noël PB, Scherer K, Renger B et al (2017) In-vivo X‑ray dark-field chest radiography of a pig. Sci Rep 7(1):134–137

    Article  Google Scholar 

  6. Habbel C, Hetterich H, Willner M, Herzen J, Steigerwald K, Auweter S et al (2017) Ex vivo assessment of coronary atherosclerotic plaque by grating-based phase-contrast computed tomography. Invest Radiol 52(4):223–231

    Article  PubMed  Google Scholar 

  7. Hellbach K, Yaroshenko A, Willer K, Conlon TM, Braunagel MB, Auweter S et al (2017) X‑ray dark-field radiography facilitates the diagnosis of pulmonary fibrosis in a mouse model. Sci Rep 7(1):340. https://doi.org/10.1038/s41598-017-00475-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hellbach K, Yaroshenko A, Willer K, Pritzke T, Baumann A, Hesse N et al (2016) Facilitated diagnosis of pneumothoraces in newborn mice using X‑ray dark-field radiography. Invest Radiol 51(10):597–601

    Article  PubMed  Google Scholar 

  9. Hellbach K, Yaroshenko A, Meinel FG, Yildirim A, Conlon TM, Bech M et al (2015) In vivo dark-field radiography for early diagnosis and staging of pulmonary emphysema. Investig Radiol 50(7):1–6

    Article  Google Scholar 

  10. Hetterich H, Webber N, Willner M, Herzen J, Birnbacher L, Hipp A et al (2015) AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography. Eur Radiol 26(9):3223–3233

    Article  PubMed  Google Scholar 

  11. Hetterich H, Willner M, Habbel C, Herzen J, Hoffmann VS, Fill S et al (2015) X‑ray phase-contrast computed tomography of human coronary arteries. Invest Radiol 50(10):686–694

    Article  PubMed  Google Scholar 

  12. Hetterich H, Willner M, Fill S, Herzen J, Bamberg F, Hipp A et al (2014) Phase-contrast CT: qualitative and quantitative evaluation of atherosclerotic carotid artery plaque. Radiology 271(3):870–878

    Article  PubMed  Google Scholar 

  13. Koehler T, Daerr H, Martens G, Kuhn N, Löscher S, van Stevendaal U et al (2015) Slit-scanning differential x‑ray phase-contrast mammography: Proof-of-concept experimental studies. Med Phys 42(4):1959–1965

    Article  PubMed  Google Scholar 

  14. Meinel F, Yaroshenko A, Hellbach K, Bech M, Nikolaou K, Eickelberg O et al (2014) Improved diagnosis of pulmonary emphysema using in vivo dark-field radiography. Invest Radiol 49:653–658

    Article  PubMed  Google Scholar 

  15. Meinel FG, Schwab F, Schleede S, Bech M, Herzen J, Achterhold K et al (2013) Diagnosing and mapping pulmonary emphysema on X‑Ray projection images: incremental value of grating-based X‑Ray dark-field imaging. PLoS ONE 8(3):e59526–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry EF, Brönnimann C et al (2008) Hard-X-ray dark-field imaging using a grating interferometer. Nat Mater 7(2):134–137

    Article  CAS  PubMed  Google Scholar 

  17. Pfeiffer F, Kottler C, Bunk O, David C (2007) Hard X‑Ray phase tomography with low-brilliance sources. Phys Rev Lett 98(10):23–24

    Article  Google Scholar 

  18. Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X‑ray sources. Nat Phys 2(4):258–261

    Article  CAS  Google Scholar 

  19. Scherer K, Yaroshenko A, Bölükbas DA, Gromann LB, Hellbach K, Meinel FG et al (2017) X‑ray dark-field radiography − in-vivo diagnosis of lung cancer in mice. Sci Rep. https://doi.org/10.1038/s41598-017-00489-x

    Google Scholar 

  20. Scherer K, Braig E, Ehn S, Schock J, Wolf J, Birnbacher L et al (2016) Improved diagnostics by assessing the micromorphology of breast calcifications via X‑Ray dark-field radiography. Sci Rep. https://doi.org/10.1038/srep36991

    Google Scholar 

  21. Scherer K, Birnbacher L, Willer K, Chabior M, Herzen J, Pfeiffer F (2016) Correspondence: quantitative evaluation of X‑ray dark-field images for microcalcification analysis in mammography. Nat Commun 7:10863–10863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scherer K, Willer K, Gromann L, Birnbacher L, Braig E, Grandl S et al (2015) Toward clinically compatible phase-contrast mammography. PLoS ONE 10(6):e130776–e130777

    Article  PubMed  PubMed Central  Google Scholar 

  23. Scherer K, Braig E, Willer K, Willner M, Fingerle AA, Chabior M et al (2015) Non-invasive differentiation of kidney stone types using X‑ray dark-field radiography. Sci Rep 5(1):87

    Article  Google Scholar 

  24. Scherer K, Birnbacher L, Chabior M, Herzen J, Mayr D, Grandl S et al (2014) Bi-directional X‑Ray phase-contrast mammography. PLoS ONE 9(5):e93502–e93507

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schleede S, Meinel FG, Bech M, Herzen J, Achterhold K, Potdevin G et al (2012) Emphysema diagnosis using X‑ray dark-field imaging at a laser-driven compact synchrotron light source. Proc Natl Acad Sci Usa 109(44):17880–17885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schleede S, Bech M, Achterhold K, Potdevin G, Gifford M, Loewen R et al (2012) Multimodal hard X‑ray imaging of a mammography phantom at a compact synchrotron light source. J Synchrotron Radiat 19(4):525–529

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stampanoni M, Wang Z, Thüring T, David C, Roessl E, Trippel M et al (2011) The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography. Invest Radiol 46(12):801

    Article  CAS  PubMed  Google Scholar 

  28. Sztrókay A, Herzen J, Auweter SD, Liebhardt S, Mayr D, Willner M et al (2012) Assessment of grating-based X‑ray phase-contrast CT for differentiation of invasive ductal carcinoma and ductal carcinoma in situ in an experimental ex vivo set-up. Eur Radiol 23(2):381–387

    Article  PubMed  Google Scholar 

  29. Tanaka J, Nagashima M, Kido K, Hoshino Y, Kiyohara J, Makifuchi C et al (2013) Cadaveric and in vivo human joint imaging based on differential phase contrast by X‑ray Talbot-Lau interferometry. Z Med Phys 23(3):222–227

    Article  PubMed  Google Scholar 

  30. Velroyen A, Yaroshenko A, Hahn D, Fehringer A, Tapfer A, Müller M et al (2015) Grating-based X‑ray dark-field computed tomography of living mice. EBioMedicine 2(10):1500–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Willner M, Herzen J, Grandl S, Auweter S, Mayr D, Hipp A et al (2014) Quantitative breast tissue characterization using grating-based x‑ray phase-contrast imaging. Phys Med Biol 59(7):1557–1571

    Article  CAS  PubMed  Google Scholar 

  32. Yaroshenko A, Pritzke T, Koschlig M, Kamgari N, Willer K, Gromann L et al (2016) Visualization of neonatal lung injury associated with mechanical ventilation using x‑ray dark-field radiography. Sci Rep 6:24269. https://doi.org/10.1038/srep24269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yaroshenko A, Hellbach K, Yildirim AÖ, Conlon TM, Fernandez IE, Bech M et al (2015) Improved in vivo assessment of pulmonary fibrosis in mice using X‑Ray dark-field radiography. Sci Rep 5:17492. https://doi.org/10.1038/srep17492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yaroshenko A, Meinel FG, Bech M, Tapfer A, Velroyen A, Schleede S et al (2013) Pulmonary emphysema diagnosis with a preclinical small-animal X‑ray dark-field scatter-contrast scanner. Radiology 269(2):427–433

    Article  PubMed  Google Scholar 

  35. https://www.youtube.com/watch?v=WeiADQ0h3B4. Zugegriffen am: 23.1.2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pfeiffer.

Ethics declarations

Interessenkonflikt

F. Pfeiffer, M. Reiser und E. Rummeny geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfeiffer, F., Reiser, M. & Rummeny, E. Röntgen-Phasenkontrast. Radiologe 58, 218–225 (2018). https://doi.org/10.1007/s00117-018-0357-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-018-0357-9

Schlüsselwörter

Keywords

Navigation